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The model

Interface — transition region that separates different phases

Λ ⊂ Zd finite, ∂Λ := {x /∈ Λ, ||x− y|| = 1 for some y ∈ Λ}
Height Variables (configurations) φx ∈ R, x ∈ Λ

Boundary condition ψ, such that

φx = ψx, when x ∈ ∂Λ.

tilt u = (u1, . . . , ud) ∈ Rd and tilted boundary condition
ψu

x = x · u, x ∈ ∂Λ.

Gradients∇φ: ηb = ∇φb = φx − φy for b = (x, y), ||x− y|| = 1
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The model

The finite volume Gibbs measure on RΛ

νψΛ(φ) :=
1

ZψΛ
exp(−β

∑
i,j∈Λ∪∂Λ
|i−j|=1

V(φi − φj))
∏
i∈Λ

dφi,

where φi = ψi for i ∈ ∂Λ.

V : R→ R+, V ∈ C2(R), satisfies:

symmetry: V(x) = V(−x), x ∈ R
V(x) ≥ Ax2 + B,A > 0,B ∈ R, for large x ∈ R.

Finite volume surface tension (free energy) σΛ(u): macroscopic
energy of a surface with tilt u ∈ Rd.

σΛ(u) :=
1

β|Λ|
log Zψ

u

Λ .
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The model

For GFF

If V(s) = s2, then νψΛ is a Gaussian measure, called the Gaussian
Free Field (GFF).

If x, y ∈ Λn

cov ν0
Λn

(φx, φy) = GΛn(x, y),

where GΛn(x, y) is the Green’s function, that is, the expected
number of visits to y of a simple random walk started from x
killed when it exits Λn.

GFF appears in many physical systems, and two-dimensional
GFF has close connections to Schramm-Loewner Evolution
(SLE).
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Questions

Questions (for general potentials V):

Existence and (strict) convexity of infinite volume surface
tension

σ(u) = lim
Λ↑Zd

σΛ(u).

Existence of shift-invariant infinite volume Gibbs measure

ν := lim
Λ↑Zd

νψΛ

Uniqueness of shift-invariant Gibbs measure under additional
assumptions on the measure.

Quantitative results for ν: decay of covariances with respect to φ,
central limit theorem (CLT) results, large deviations (LDP)
results.
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Known results

Results: Strictly Convex Potentials

Known results for potentials V with

0 < C1 ≤ V ′′ ≤ C2 :

Existence and strict convexity of the surface tension for d ≥ 1.
Gibbs measures ν do not exist for d = 1, 2.
We can consider the distribution of the∇φ-field under the Gibbs
measure ν. We call this measure the∇φ-Gibbs measure µ.
∇φ-Gibbs measures µ exist for d ≥ 1.
(Funaki-Spohn: CMP 1997) For every u = (u1, . . . , ud) ∈ Rd

there exists a unique shift-invariant ergodic∇φ- Gibbs
measure µ with Eµ[φek − φ0] = uk, for all k = 1, . . . , d.
Decay of covariance results, CLT results, LDP results
Important properties for proofs: shift-invariance, ergodicity and
extremality of the infinite volume Gibbs measures

Bolthausen, Brydges, Deuschel, Funaki, Giacomin, Ioffe, Naddaf,
Olla, Sheffield, Spencer, Spohn, Velenik, Yau
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Known results

Techniques: Strictly Convex Potentials

For
0 < C1 ≤ V ′′ ≤ C2 :

Brascamp-Lieb Inequality: for all x ∈ Λ and for all i ∈ Λ

1
C2

var
ν̃ψΛ

(φi) ≤ var
νψΛ

(φi) ≤
1

C1
var

ν̃ψΛ
(φi),

ν̃ψΛ is the Gaussian Free Field with potential Ṽ(s) = s2.

More generally, for any real convex function F bounded below,
we have

E
νψΛ

(F(v · (φ− µ(φ))) ≤ 1
C1

E
ν̃ψΛ

(F(φ)), ∀v ∈ R|Λ|.



Gradient Gibbs measures with disorder

Known results

Techniques: Strictly Convex Potentials

Techniques: Strictly Convex Potentials (cont.)

Random Walk Representation Deuschel-Giacomin-Ioffe
(PTRF-2000): Representation of Covariance Matrix in terms of
the Green function of a particular random walk.

GFF: If x, y ∈ Λ

cov ν0
Λ

(φx, φy) = GΛ(x, y),

where GΛ(x, y) is the Green’s function, that is, the expected
number of visits to y of a simple random walk started from x
killed when it exits Λ.
General 0 < C1 ≤ V ′′ ≤ C2 :
0 ≤ cov νψΛ

(φx, φy) ≤ C
]|x−y|[d−2 , |cov µρΛ

(∇iφx,∇jφy)| ≤
C

]|x−y|[d−2+δ
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Known results

Techniques: Strictly Convex Potentials

Techniques: Strictly Convex Potentials (cont.)

The dynamic: SDE satisfied by (φx)x∈Zd

dφx(t) = − ∂H
∂φx

(φ(t))dt +
√

2dWx(t), x ∈ Zd,

where Wt := {Wx(t), x ∈ Zd} is a family of independent 1-dim
Brownian Motions.
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Known results

Results: Non-convex potentials

Why look at the case with non-convex potential V?

Probabilistic motivation: Universality class

Physics motivation: For lattice spring models a realistic potential
has to be non-convex to account for the phenomena of fracturing
of a crystal under stress.

The Cauchy-Born rule: When a crystal is subjected to a small
linear displacement of its boundary, the atoms will follow this
displacement.

Friesecke-Theil: for the 2-dimensional mass-spring model,
Cauchy-Born holds for a certain class of non-convex potentials.
Generalization to d-dimensional mass-spring model by Conti,
Dolzmann, Kirchheim and Müller.
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Known results

Results: Non-convex potentials

Results for non-convex potentials

Funaki-Spohn: The surface tension σ(u) is convex as a function
of u ∈ Rd.

Existence of infinite volume∇φ-Gibbs measure µ with expected
tilt Eµ[φek − φ0] = uk, k = 1, 2, . . . d.

Hariya (2014): Brascamp-Lieb inequality in d = 1.

Brascamp-Lieb inequality for d ≥ 2 and 0-boundary condition
holds for a class of potentials at all temperatures

e−V(s) =

n∑
i=1

pie−ki
s2
2 ,
∑

i

pi = 1.

Conjecture: Brascamp-Lieb holds for ψ ≡ 0 for all V with
V(x) ≥ Ax2 + B,A > 0,B ∈ R, and V ′′ ≤ C2.
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Known results

Results: Non-convex potentials

For the potential

e−V(s) = pe−k1
s2
2 +(1−p)e−k2

s2
2 , β = 1, k1 << k2, p =

(
k1

k2

)1/4

V(s)

0 s

Biskup-Kotecký: (PTRF 2007) Existence of several∇φ-Gibbs
measures with expected tilt Eµ[φek − φ0] = 0, k = 1, 2, . . . d, but
with different variances.
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Known results

Results: Non-convex potentials

Results (cont)

Cotar-Deuschel-Müller (CMP 2009)/ Cotar-Deuschel (AIHP
2012 ):
Let

V = V0 + g, C1 ≤ V ′′0 ≤ C2, g′′ < 0.

If
C0 ≤ g′′ < 0 and

√
β||g′′||L1(R) small(C1,C2).

then we prove uniqueness of∇φ-Gibbs measures µ such that
Eµ [φek − φ0] = uk for all k = 1, 2, . . . , d. Our results includes
the Biskup-Kotecký model, but for different range of choices of
p, k1 and k2.

Adams-Kotecký-Müller (in preparation): Strict convexity of the
surface tension for small tilt u and large β.
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New model: Interfaces with Disorder

Model A

(Ω,F ,P) the probability space of the disorder, E the expectation w.r.t
P, V the variance w.r.t. P and Cov the covariance w.r.t P.

The Hamiltonian (random external field)

Hψ
Λ [ξ](φ) :=

1
2

∑
x,y∈Λ∪∂Λ
|x−y|=1

V(φx − φy) +
∑
x∈Λ

ξxφx,

χ is the set of ηb, with b = (x, y) bonds,
(ξx)x∈Zd are assumed to be i.i.d. real-valued random variables,
with finite non-zero second moments.
V ∈ C2(R) is an even function such that there exist 0 < C1 < C2
with

C1 ≤ V ′′(s) ≤ C2 for all s ∈ R.
The finite volume Gibbs measure on RΛ

νψΛ [ξ](φ) :=
1

ZψΛ [ξ]
exp(−βHψ

Λ [ξ](φ))
∏
x∈Λ

dφx,

where φx = ψx for x ∈ ∂Λ.
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New model: Interfaces with Disorder

Model A

For v ∈ Zd, we define the shift operators τv:
For the bonds by (τvη)(b) := η(b− v) for b bond and η ∈ χ
For the disorder by (τvξ)(y) := ξ(y− v) for y ∈ Zd and ξ ∈ RZd

.

A measurable map ξ → µ[ξ] is called a shift-covariant random
gradient Gibbs measure if µ[ξ] is a∇φ− Gibbs measure for
P-almost every ξ, and if∫

µ[τvξ](dη)F(η) =

∫
µ[ξ](dη)F(τvη),

for all v ∈ Zd and for all F ∈ Cb(χ), where χ is the set of
gradients.
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New model: Interfaces with Disorder

Model B

Model B

For each (x, y) ∈ Zd × Zd, |x− y| = 1, we define the measurable
map Vω(x,y)(s) : (ω, s) ∈ Ω× R→ R.

Vω(x,y) are random variables with uniformly-bounded finite second
moments and jointly stationary distribution.

For some given 0 < Cω1,(x,y) < Cω2,(x,y), ω ∈ Ω, with
0 < inf(x,y) E

(
Cω1,(x,y)

)
< sup(x,y) E

(
Cω2,(x,y)

)
<∞, Vω(x,y) obey

for P-almost every ω ∈ Ω the following bounds, uniformly in the
bonds (x, y)

Cω1,(x,y) ≤ (Vω(x,y))
′′(s) ≤ Cω2,(x,y) for all s ∈ R.

For each fixed ω ∈ Ω and for each bond (x, y), Vω(x,y) ∈ C2(R) is
an even function.
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New model: Interfaces with Disorder

Model B

The Hamiltonian for each fixed ω ∈ Ω (random potentials)

Hψ
Λ [ω](φ) :=

1
2

∑
x,y∈Λ∪∂Λ,|x−y|=1

Vω(x,y)(φx − φy)

Let ω ∈ Ω be fixed. We will denote by µ[τvω] the
infinite-volume gradient Gibbs measure with given Hamiltonian
H̄[ω](η) :=

(
Hρ

Λ[ω](τvη)
)

Λ⊂Zd . This means that we shift the
field of disorded potentials on bonds from Vω(x,y) to Vω(x+v,y+v).

Questions of interest: Disorder-relevance, universality
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New model: Interfaces with Disorder

Results for gradients with disorder

Results for gradients with disorder

For model A, van Enter-Külske (AAP-2007): For d = 2, there
exists no shift-covariant gradient Gibbs measure µ[ξ] with
E
∣∣∫ µ[ξ](dη)V ′(η(b))

∣∣ <∞ for all bonds b.

For model A, Cotar-Külske (AAP-2010): For d = 3, 4, there
exists no shift-covariant Gibbs measure.

Cotar-Külske (PTRF-to appear): (Model A) Let d ≥ 3, ξ(0) with
symmetric distribution and u ∈ Rd. Assume 0 < C1 ≤ V ′′ ≤ C2.
Then there exists exactly one shift-covariant random gradient
Gibbs measure ξ → µ[ξ] with E

(∫
µ[ξ]

)
ergodic and such that

E
(∫

µ[ξ](dη)ηb

)
= 〈u, yb − xb〉 for all b = (xb, yb).
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New model: Interfaces with Disorder

Results for gradients with disorder

(Model B) Let d ≥ 1 and u ∈ Rd. Assume
0 < C1 ≤ (Vω(x,y))

′′ ≤ C2 for all ω. Then there exists exactly one
shift-covariant random gradient Gibbs measure ω → µ[ω] with
E
(∫
µ[ω]

)
ergodic and such that

E
(∫

µ[ω](dη)ηb

)
= 〈u, yb − xb〉 for all b = (xb, yb).



Gradient Gibbs measures with disorder

New model: Interfaces with Disorder

Results for gradients with disorder

For our 2nd main result, we need

Poincaré inequality assumption on the distribution γ of the
disorder ξ(0), (respectively of Vω(0,e1)): There exists λ > 0 such
that for all smooth enough real-valued functions f on Ω, we have
for the probability measure γ

λvar γ(f ) ≤
∫
|∇f |2 dγ, (1)

where |∇f | is the Euclidean norm of the gradient of f smooth
enough.

Let

∂bF(η) :=
∂F(η)

∂ηb
, ||∂bF||∞ := sup

η∈χ
|∂bF(η)| and ]|b|[= max{|xb|, 1}.
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New model: Interfaces with Disorder

Results for gradients with disorder

Cotar-Külske (PTRF-to appear): Let u ∈ Rd.
(a) (Model A) Let d ≥ 3. Assume that (ξ(x))x∈Zd are i.i.d with mean

0 and the distribution of ξ(0) satisfies (1). Then for all F,G ∈ Cb

|Cov (µ[ξ](F(η)), µ[ξ](G(η))) | ≤ c
∑
b,b′

||∂bF||∞||∂b′G||∞
]|b− b′|[d−2 ,

for some c > 0 which depends only on d,C1, C2 and on the
number of terms b, b′ in F and G.

(b) (Model B) Let d ≥ 1. Assume that Vω(x,y) are i.i.d., and they also
satisfy (1) for P-almost every ω and uniformly in the bonds (x, y).
Then for all F,G ∈ C1

b

|Cov (µ[ω](F(η)), µ[ω](G(η))) | ≤ c
∑
b,b′

||∂bF||∞||∂b′G||∞
]|b− b′|[d

.

The independence assumption can be relaxed by using, for
example, Marton (2013) and Caputo, Menz, Tetali (2014)



Gradient Gibbs measures with disorder

New model: Interfaces with Disorder

Non-convex potentials with disorder

Outline

1 The model

2 Questions

3 Known results
Results: Strictly Convex Potentials
Techniques: Strictly Convex Potentials
Results: Non-convex potentials

4 New model: Interfaces with Disorder
Model A
Model B
Results for gradients with disorder
Non-convex potentials with disorder

5 Some new tools

6 Sketch of proof



Gradient Gibbs measures with disorder

New model: Interfaces with Disorder

Non-convex potentials with disorder

Conjecture for disordered non-convex potentials

Consider for simplicity the corresponding disordered model

e−Vb(ηb) := pe−k1(ηb)2+ωb+(1−p)e−k2(ηb)2−ωb , (wb)b i.i.d. Bernoulli.

Conjectures (work-in-progress):
uniqueness for low enough d ≤ dc (shows disorder relevance);
uniqueness/non-uniqueness phase transition for high enough
d > dc ≥ 2 (disorder relevance?).
Strict convexity for the surface tension when the gradient Gibbs
measure is unique.

Adaptation of the Aizenman-Wehr (CMP-1990) argument.
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Some new tools

Gloria-Otto (AOP-2012)/ Ledoux (2001): Fix n ∈ N and let
a = (ai)

n
i=1 be independent random variables with

uniformly-bounded finite second moments on (Ω,F ,P). Let
X,Y be Borel measurable functions of a ∈ Rn (i.e. measurable
w.r.t. the smallest σ-algebra on RN for which all coordinate
functions Rn 3 a→ ai ∈ R are Borel measurable). Then
|cov (X,Y)| ≤

max1≤i≤n var (ai)
∑n

i=1

(∫
supai

∣∣∣ ∂X
∂ai

∣∣∣2 dP
)1/2(∫

supai

∣∣∣ ∂Y
∂ai

∣∣∣2 dP
)1/2

,

where supai

∣∣∣ ∂Z
∂ai

∣∣∣ denotes the supremum of

∂Z
∂ai

(a1, . . . , ai−1, ai, ai+1, . . . , an)

of Z with respect to the variable ai, for Z = X,Y .
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Some new tools

The theorem below will allow us to pass from results for the annealed
measure to results for the quenched measure.

Komlos (1967): If (ζn)n∈N is a sequence of real-valued random
variables with lim infn→∞ E(|ζn|) <∞, then there exists a
subsequence {θn}n∈N of the sequence {ζn}n∈N and an integrable
random variable θ such that for any arbitrary subsequence
{θ̃n}n∈N of the sequence {θn}, we have almost surely that

lim
n→∞

θ̃1 + θ̃2 + . . .+ θ̃n

n
= θ.
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Sketch of proof

We will first prove:

Theorem

Fix u ∈ Rd. Let for all α ∈ {1, 2, . . . , d}

Eα := {η | lim
|Λ|→∞

1
|Λ|
∑
x∈Λ

η(bx,α) = uα},

along the sequence with bx,α := (x + eα, x) ∈ χ.
Then there exists a unique shift-covariant random gradient Gibbs
measure ξ → µ[ξ] which satisfies for P-almost every ξ

µ[ξ](Eα) = 1, α ∈ {1, 2, . . . , d}.

Moreover, µ[ξ] satisfies the integrability condition

E
∫
µ[ξ](dη)(η(b))2 <∞ for all bonds b ∈ χ.
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Sketch of proof

Ergodicity of the unique averaged measure:

Let Finv(χ) the σ-algebra of shift-invariant events on χ. Let

µav =

(∫
P(dξ)µ[ξ]

)
( dη).

We need to show that for all A ∈ Finv(χ), we have µav(A) = 0 or
µav(A) = 1. We will show that this holds by contradiction.

Suppose that there exists A ∈ Finv(χ) such that 0 < µav(A) < 1.
Then, for P-almost all ξ we have 0 < µ[ξ](A) < 1. We define
now for all ξ the distinct measures on χ

µA[ξ](B) :=
µ[ξ](B ∩ A)

µ[ξ](A)
and µAc [ξ](B) :=

µ[ξ](B ∩ Ac)

µ[ξ](Ac)
, ∀B ∈ T ,

where we denoted by T := σ({ηb : b ∈ χ}) the smallest
σ-algebra on χ generated by all the edges in χ.
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Sketch of proof

THANK YOU!
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