Codina Cotar

University College London

June 25, 2015, GGI

Partly based on joint works with Christof Külske

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Outline

- 1 The model
- 2 Questions
- 3 Known results
 - Results: Strictly Convex Potentials
 - Techniques: Strictly Convex Potentials
 - Results: Non-convex potentials
- 4 New model: Interfaces with Disorder
 - Model A
 - Model B
 - Results for gradients with disorder
 - Non-convex potentials with disorder

- 5 Some new tools
- 6 Sketch of proof

- The model

- $\Lambda \subset \mathbb{Z}^d$ finite, $\partial \Lambda := \{x \notin \Lambda, ||x y|| = 1 \text{ for some } y \in \Lambda \}$
- Height Variables (configurations) $\phi_x \in \mathbb{R}, x \in \Lambda$
- Boundary condition ψ , such that

$$\phi_x = \psi_x$$
, when $x \in \partial \Lambda$.

• tilt $u = (u_1, \dots, u_d) \in \mathbb{R}^d$ and tilted boundary condition $\psi_x^u = x \cdot u, x \in \partial \Lambda$.

Gradients $\nabla \phi$: $\eta_b = \nabla \phi_b = \phi_x - \phi_y$ for b = (x, y), ||x - y|| = 1

• The finite volume Gibbs measure on \mathbb{R}^{Λ}

$$\nu_{\Lambda}^{\psi}(\phi) := \frac{1}{Z_{\Lambda}^{\psi}} \exp(-\beta \sum_{\substack{i,j \in \Lambda \cup \partial \Lambda \\ |i-j|=1}} V(\phi_i - \phi_j)) \prod_{i \in \Lambda} d\phi_i,$$

where $\phi_i = \psi_i$ for $i \in \partial \Lambda$.

- $V : \mathbb{R} \to \mathbb{R}^+, V \in C^2(\mathbb{R})$, satisfies:
 - symmetry: $V(x) = V(-x), x \in \mathbb{R}$
 - $V(x) \ge Ax^2 + B, A > 0, B \in \mathbb{R}$, for large $x \in \mathbb{R}$.
- Finite volume surface tension (free energy) σ_Λ(u): macroscopic energy of a surface with tilt u ∈ ℝ^d.

$$\sigma_{\Lambda}(u) := \frac{1}{\beta |\Lambda|} \log Z_{\Lambda}^{\psi^{u}}.$$

- The model

For GFF

- If V(s) = s², then ν^ψ_Λ is a Gaussian measure, called the Gaussian Free Field (GFF).
- If $x, y \in \Lambda_n$

$$\operatorname{cov}_{\nu_{\Lambda_n}^0}(\phi_x,\phi_y)=G_{\Lambda_n}(x,y),$$

where $G_{\Lambda_n}(x, y)$ is the Green's function, that is, the expected number of visits to y of a simple random walk started from x killed when it exits Λ_n .

 GFF appears in many physical systems, and two-dimensional GFF has close connections to Schramm-Loewner Evolution (SLE). -Questions

Questions (for general potentials *V*):

Existence and (strict) convexity of infinite volume surface tension

$$\sigma(u) = \lim_{\Lambda \uparrow \mathbb{Z}^d} \sigma_{\Lambda}(u).$$

Existence of shift-invariant infinite volume Gibbs measure

$$u := \lim_{\Lambda \uparrow \mathbb{Z}^d} \nu^\psi_\Lambda$$

- Uniqueness of shift-invariant Gibbs measure under additional assumptions on the measure.
- Quantitative results for ν: decay of covariances with respect to φ, central limit theorem (CLT) results, large deviations (LDP) results.

- -Known results
 - Results: Strictly Convex Potentials

Outline

- 1 The model
- 2 Questions
- 3 Known results

Results: Strictly Convex Potentials

- Techniques: Strictly Convex Potentials
- Results: Non-convex potentials
- 4 New model: Interfaces with Disorder
 - Model A
 - Model B
 - Results for gradients with disorder
 - Non-convex potentials with disorder

- 5 Some new tools
- 6 Sketch of proof

Known results

Results: Strictly Convex Potentials

Known results for potentials V with

$$0 < C_1 \le V'' \le C_2:$$

- Existence and strict convexity of the surface tension for $d \ge 1$.
- Gibbs measures ν do not exist for d = 1, 2.
- We can consider the distribution of the ∇φ-field under the Gibbs measure ν. We call this measure the ∇φ-Gibbs measure μ.
- $\nabla \phi$ -Gibbs measures μ exist for $d \ge 1$.

• (Funaki-Spohn: CMP 1997) For every $u = (u_1, \ldots, u_d) \in \mathbb{R}^d$ there exists a **unique shift-invariant ergodic** $\nabla \phi$ - Gibbs measure μ with $E_{\mu}[\phi_{e_k} - \phi_0] = u_k$, for all $k = 1, \ldots, d$.

- Decay of covariance results, CLT results, LDP results
- Important properties for proofs: shift-invariance, ergodicity and extremality of the infinite volume Gibbs measures

Bolthausen, Brydges, Deuschel, Funaki, Giacomin, Ioffe, Naddaf, Olla, Sheffield, Spencer, Spohn, Velenik, Yau

- Known results
 - Techniques: Strictly Convex Potentials

Outline

- 1 The model
- 2 Questions
- 3 Known results
 - Results: Strictly Convex Potentials
 - Techniques: Strictly Convex Potentials
 - Results: Non-convex potentials
- 4 New model: Interfaces with Disorder
 - Model A
 - Model B
 - Results for gradients with disorder
 - Non-convex potentials with disorder

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- 5 Some new tools
- 6 Sketch of proof

Known results

Techniques: Strictly Convex Potentials

For

$$0 < C_1 \le V'' \le C_2:$$

Brascamp-Lieb Inequality: for all $x \in \Lambda$ and for all $i \in \Lambda$

$$\frac{1}{C_2} \operatorname{var}_{\tilde{\nu}^{\psi}_{\Lambda}}(\phi_i) \leq \operatorname{var}_{\nu^{\psi}_{\Lambda}}(\phi_i) \leq \frac{1}{C_1} \operatorname{var}_{\tilde{\nu}^{\psi}_{\Lambda}}(\phi_i),$$

$$\mathbb{E}_{\nu_{\Lambda}^{\psi}}(F(\nu \cdot (\phi - \mu(\phi))) \le \frac{1}{C_{1}} \mathbb{E}_{\tilde{\nu}_{\Lambda}^{\psi}}(F(\phi)), \ \forall \nu \in \mathbb{R}^{|\Lambda|}.$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Known results

- Techniques: Strictly Convex Potentials

Techniques: Strictly Convex Potentials (cont.)

- Random Walk Representation Deuschel-Giacomin-Ioffe (PTRF-2000): Representation of Covariance Matrix in terms of the Green function of a particular random walk.
 - **GFF:** If $x, y \in \Lambda$

$$\operatorname{cov}_{\nu_{\Lambda}^{0}}(\phi_{x},\phi_{y})=G_{\Lambda}(x,y),$$

where $G_{\Lambda}(x, y)$ is the Green's function, that is, the expected number of visits to y of a simple random walk started from x killed when it exits Λ .

■ General $0 < C_1 \le V'' \le C_2$: $0 \le \operatorname{cov}_{\nu_{\Lambda}^{\psi}}(\phi_x, \phi_y) \le \frac{C}{||x-y||^{d-2}}, |\operatorname{cov}_{\mu_{\Lambda}^{\rho}}(\nabla_i \phi_x, \nabla_j \phi_y)| \le \frac{C}{||x-y||^{d-2+\delta}}$

Known results

L Techniques: Strictly Convex Potentials

Techniques: Strictly Convex Potentials (cont.)

The dynamic: SDE satisfied by $(\phi_x)_{x \in \mathbb{Z}^d}$

$$d\phi_x(t) = -\frac{\partial H}{\partial \phi_x}(\phi(t))dt + \sqrt{2}dW_x(t), \ x \in \mathbb{Z}^d,$$

where $W_t := \{W_x(t), x \in \mathbb{Z}^d\}$ is a family of independent 1-dim Brownian Motions.

- -Known results
 - Results: Non-convex potentials

Outline

- 1 The model
- 2 Questions

3 Known results

- Results: Strictly Convex Potentials
- Techniques: Strictly Convex Potentials
- Results: Non-convex potentials
- 4 New model: Interfaces with Disorder
 - Model A
 - Model B
 - Results for gradients with disorder
 - Non-convex potentials with disorder

- 5 Some new tools
- 6 Sketch of proof

Known results

Why look at the case with non-convex potential V?

- Probabilistic motivation: Universality class
- Physics motivation: For lattice spring models a realistic potential has to be non-convex to account for the phenomena of fracturing of a crystal under stress.
- The Cauchy-Born rule: When a crystal is subjected to a small linear displacement of its boundary, the atoms will follow this displacement.
- Friesecke-Theil: for the 2-dimensional mass-spring model, Cauchy-Born holds for a certain class of non-convex potentials. Generalization to *d*-dimensional mass-spring model by Conti, Dolzmann, Kirchheim and Müller.

Results for non-convex potentials

- Funaki-Spohn: The surface tension $\sigma(u)$ is convex as a function of $u \in \mathbb{R}^d$.
- Existence of infinite volume $\nabla \phi$ -Gibbs measure μ with expected tilt $E_{\mu}[\phi_{e_k} \phi_0] = u_k, k = 1, 2, \dots d$.
- Hariya (2014): Brascamp-Lieb inequality in d = 1.
- Brascamp-Lieb inequality for $d \ge 2$ and 0-boundary condition holds for a class of potentials at all temperatures

$$e^{-V(s)} = \sum_{i=1}^{n} p_i e^{-k_i \frac{s^2}{2}}, \sum_i p_i = 1.$$

• Conjecture: Brascamp-Lieb holds for $\psi \equiv 0$ for all *V* with $V(x) \ge Ax^2 + B, A > 0, B \in \mathbb{R}$, and $V'' \le C_2$.

Known results

Results: Non-convex potentials

For the potential

$$e^{-V(s)} = pe^{-k_1\frac{s^2}{2}} + (1-p)e^{-k_2\frac{s^2}{2}}, \ \beta = 1, k_1 << k_2, \ p = \left(\frac{k_1}{k_2}\right)^{1/4}$$

■ Biskup-Kotecký: (PTRF 2007) Existence of several $\nabla \phi$ -Gibbs measures with expected tilt $E_{\mu}[\phi_{e_k} - \phi_0] = 0, k = 1, 2, ..., d$, but with different variances.

Known results

Results: Non-convex potentials

Results (cont)

 Cotar-Deuschel-Müller (CMP 2009)/ Cotar-Deuschel (AIHP 2012): Let

$$V = V_0 + g, \ C_1 \le V_0'' \le C_2, \ g'' < 0.$$

If

 $C_0 \leq g'' < 0 ext{ and } \sqrt{eta} ||g''||_{L^1(\mathbb{R})} ext{ small}(C_1, C_2).$

then we prove uniqueness of $\nabla \phi$ -Gibbs measures μ such that $E_{\mu} [\phi_{e_k} - \phi_0] = u_k$ for all k = 1, 2, ..., d. Our results includes the Biskup-Kotecký model, but for different range of choices of p, k_1 and k_2 .

• Adams-Kotecký-Müller (in preparation): Strict convexity of the surface tension for small tilt u and large β .

New model: Interfaces with Disorder

L Model A

Outline

- 1 The model
- 2 Questions
- 3 Known results
 - Results: Strictly Convex Potentials
 - Techniques: Strictly Convex Potentials
 - Results: Non-convex potentials

4 New model: Interfaces with Disorder

- Model A
- Model B
- Results for gradients with disorder
- Non-convex potentials with disorder

- 5 Some new tools
- 6 Sketch of proof

New model: Interfaces with Disorder

└─ Model A

 $(\Omega, \mathcal{F}, \mathbb{P})$ the probability space of the disorder, \mathbb{E} the expectation w.r.t \mathbb{P}, \mathbb{V} the variance w.r.t. \mathbb{P} and \mathbb{C} ov the covariance w.r.t \mathbb{P} .

The Hamiltonian (random external field)

$$H^{\psi}_{\Lambda}[\xi](\phi) := rac{1}{2} \sum_{\substack{x,y \in \Lambda \cup \partial \Lambda \ |x-y|=1}} V(\phi_x - \phi_y) + \sum_{x \in \Lambda} \xi_x \phi_x,$$

 χ is the set of η_b , with b = (x, y) bonds,

- $(\xi_x)_{x \in \mathbb{Z}^d}$ are assumed to be *i.i.d.* real-valued random variables, with *finite non-zero second moments*.
- $V \in C^2(\mathbb{R})$ is an even function such that there exist $0 < C_1 < C_2$ with

$$C_1 \leq V''(s) \leq C_2$$
 for all $s \in \mathbb{R}$.

• The finite volume Gibbs measure on \mathbb{R}^{Λ}

$$\nu^{\psi}_{\Lambda}[\xi](\phi) := \frac{1}{Z^{\psi}_{\Lambda}[\xi]} \exp(-\beta H^{\psi}_{\Lambda}[\xi](\phi)) \prod_{x \in \Lambda} d\phi_x,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\phi_x = \psi_x$ for $x \in \partial \Lambda$.

└─ Model A

New model: Interfaces with Disorder

For $v \in \mathbb{Z}^d$, we define the shift operators τ_v :

- For the bonds by $(\tau_v \eta)(b) := \eta(b v)$ for *b* bond and $\eta \in \chi$
- For the disorder by $(\tau_v \xi)(y) := \xi(y v)$ for $y \in \mathbb{Z}^d$ and $\xi \in \mathbb{R}^{\mathbb{Z}^d}$.
- A measurable map ξ → μ[ξ] is called a shift-covariant random gradient Gibbs measure if μ[ξ] is a ∇φ− Gibbs measure for P-almost every ξ, and if

$$\int \mu[au_
u \xi](\mathrm{d}\eta)F(\eta) = \int \mu[\xi](\mathrm{d}\eta)F(au_
u\eta),$$

for all $v \in \mathbb{Z}^d$ and for all $F \in C_b(\chi)$, where χ is the set of gradients.

New model: Interfaces with Disorder

L Model B

Outline

- 1 The model
- 2 Questions
- 3 Known results
 - Results: Strictly Convex Potentials
 - Techniques: Strictly Convex Potentials
 - Results: Non-convex potentials

4 New model: Interfaces with Disorder

- Model A
- Model B
- Results for gradients with disorder
- Non-convex potentials with disorder

- 5 Some new tools
- 6 Sketch of proof

New model: Interfaces with Disorder

L Model B

Model B

- For each $(x, y) \in \mathbb{Z}^d \times \mathbb{Z}^d$, |x y| = 1, we define the measurable map $V^{\omega}_{(x,y)}(s) : (\omega, s) \in \Omega \times \mathbb{R} \to \mathbb{R}$.
- V^ω_(x,y) are random variables with *uniformly-bounded finite second moments* and jointly *stationary* distribution.
- For some given $0 < C_{1,(x,y)}^{\omega} < C_{2,(x,y)}^{\omega}$, $\omega \in \Omega$, with $0 < \inf_{(x,y)} \mathbb{E}(C_{1,(x,y)}^{\omega}) < \sup_{(x,y)} \mathbb{E}(C_{2,(x,y)}^{\omega}) < \infty$, $V_{(x,y)}^{\omega}$ obey for \mathbb{P} -almost every $\omega \in \Omega$ the following bounds, uniformly in the bonds (x, y)

$$C_{1,(x,y)}^{\omega} \leq (V_{(x,y)}^{\omega})''(s) \leq C_{2,(x,y)}^{\omega}$$
 for all $s \in \mathbb{R}$.

For each fixed $\omega \in \Omega$ and for each bond (x, y), $V_{(x,y)}^{\omega} \in C^{2}(\mathbb{R})$ is an even function.

New model: Interfaces with Disorder

└─ Model B

The Hamiltonian for each fixed $\omega \in \Omega$ (random potentials)

$$H^{\psi}_{\Lambda}[\omega](\phi) := \frac{1}{2} \sum_{x, y \in \Lambda \cup \partial \Lambda, |x-y|=1} V^{\omega}_{(x,y)}(\phi_x - \phi_y)$$

• Let $\omega \in \Omega$ be fixed. We will denote by $\mu[\tau_v \omega]$ the infinite-volume gradient Gibbs measure with given Hamiltonian $\overline{H}[\omega](\eta) := (H^{\rho}_{\Lambda}[\omega](\tau_v \eta))_{\Lambda \subset \mathbb{Z}^d}$. This means that we shift the field of disorded potentials on bonds from $V^{\omega}_{(x,y)}$ to $V^{\omega}_{(x+v,y+v)}$.

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Questions of interest: Disorder-relevance, universality

- New model: Interfaces with Disorder
 - Results for gradients with disorder

Outline

- 1 The model
- 2 Questions
- 3 Known results
 - Results: Strictly Convex Potentials
 - Techniques: Strictly Convex Potentials
 - Results: Non-convex potentials

4 New model: Interfaces with Disorder

- Model A
- Model B

Results for gradients with disorder

Non-convex potentials with disorder

- 5 Some new tools
- 6 Sketch of proof

Results for gradients with disorder

Results for gradients with disorder

- For model A, van Enter-Külske (AAP-2007): For d = 2, there exists no shift-covariant gradient Gibbs measure $\mu[\xi]$ with $\mathbb{E} \left| \int \mu[\xi](d\eta) V'(\eta(b)) \right| < \infty$ for all bonds *b*.
- For model A, Cotar-Külske (AAP-2010): For d = 3, 4, there exists no shift-covariant Gibbs measure.
- Cotar-Külske (PTRF-to appear): (Model A) Let $d \ge 3$, $\xi(0)$ with symmetric distribution and $u \in \mathbb{R}^d$. Assume $0 < C_1 \le V'' \le C_2$. Then there exists exactly one shift-covariant random gradient Gibbs measure $\xi \to \mu[\xi]$ with $\mathbb{E}(\int \mu[\xi])$ ergodic and such that

$$\mathbb{E}\left(\int \mu[\xi](\mathrm{d}\eta)\eta_b\right) = \langle u, y_b - x_b\rangle \text{ for all } b = (x_b, y_b).$$

New model: Interfaces with Disorder

Results for gradients with disorder

• (Model B) Let $d \ge 1$ and $u \in \mathbb{R}^d$. Assume $0 < C_1 \le (V_{(x,y)}^{\omega})^{\prime\prime} \le C_2$ for all ω . Then there exists exactly one shift-covariant random gradient Gibbs measure $\omega \to \mu[\omega]$ with $\mathbb{E}(\int \mu[\omega])$ ergodic and such that

$$\mathbb{E}\left(\int \mu[\omega](\mathrm{d}\eta)\eta_b\right) = \langle u, y_b - x_b\rangle \text{ for all } b = (x_b, y_b).$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Gradient Gibbs measures with disorder	
New model: Interfaces with Disorder	
Deculto for anodiente mith disorder	

For our 2nd main result, we need

Poincaré inequality assumption on the distribution γ of the disorder ξ(0), (respectively of V^ω_{(0,e1})): There exists λ > 0 such that for all smooth enough real-valued functions f on Ω, we have for the probability measure γ

$$\lambda \operatorname{var}_{\gamma}(f) \leq \int |\nabla f|^2 \, \mathrm{d}\gamma,$$
 (1)

▲□▶▲□▶▲□▶▲□▶ □ のQで

where $|\nabla f|$ is the Euclidean norm of the gradient of f smooth enough.

Let

$$\partial_b F(\eta) := rac{\partial F(\eta)}{\partial \eta_b}, \ ||\partial_b F||_\infty := \sup_{\eta \in \chi} |\partial_b F(\eta)| ext{ and }]|b|[= \max\{|x_b|, 1\}\}.$$

New model: Interfaces with Disorder

Results for gradients with disorder

■ Cotar-Külske (PTRF-to appear): Let $u \in \mathbb{R}^d$.

(a) (Model A) Let $d \ge 3$. Assume that $(\xi(x))_{x \in \mathbb{Z}^d}$ are i.i.d with mean 0 and the distribution of $\xi(0)$ satisfies (1). Then for all $F, G \in C_b$

$$\mathbb{C}\mathrm{ov}\left(\mu[\xi](F(\eta)),\mu[\xi](G(\eta))\right)| \leq c \sum_{b,b'} \frac{||\partial_b F||_{\infty}||\partial_{b'} G||_{\infty}}{||b-b'||^{d-2}},$$

for some c > 0 which depends only on d, C_1 , C_2 and on the number of terms b, b' in F and G.

(b) (Model B) Let d ≥ 1. Assume that V^ω_(x,y) are i.i.d., and they also satisfy (1) for P-almost every ω and uniformly in the bonds (x, y). Then for all F, G ∈ C¹_b

$$|\mathbb{C}\mathrm{ov}\left(\mu[\omega](F(\eta)),\mu[\omega](G(\eta))\right)| \leq c \sum_{b,b'} \frac{||\partial_b F||_{\infty}||\partial_{b'} G||_{\infty}}{]|b-b'|[^d]}.$$

The independence assumption can be relaxed by using, for example, Marton (2013) and Caputo, Menz, Tetali (2014)

- New model: Interfaces with Disorder
 - └─ Non-convex potentials with disorder

Outline

- 1 The model
- 2 Questions
- 3 Known results
 - Results: Strictly Convex Potentials
 - Techniques: Strictly Convex Potentials
 - Results: Non-convex potentials

4 New model: Interfaces with Disorder

- Model A
- Model B
- Results for gradients with disorder
- Non-convex potentials with disorder

- 5 Some new tools
- 6 Sketch of proof

New model: Interfaces with Disorder

Non-convex potentials with disorder

Conjecture for disordered non-convex potentials

Consider for simplicity the corresponding disordered model

$$e^{-V_b(\eta_b)} := p e^{-k_1(\eta_b)^2 + \omega_b} + (1-p) e^{-k_2(\eta_b)^2 - \omega_b}, (w_b)_b$$
 i.i.d. Bernoulli.

Conjectures (work-in-progress):

- uniqueness for low enough $d \leq d_c$ (shows disorder relevance);
- uniqueness/non-uniqueness phase transition for high enough $d > d_c \ge 2$ (disorder relevance?).
- Strict convexity for the surface tension when the gradient Gibbs measure is unique.

Adaptation of the Aizenman-Wehr (CMP-1990) argument.

Gloria-Otto (AOP-2012)/ Ledoux (2001): Fix $n \in \mathbb{N}$ and let $a = (a_i)_{i=1}^n$ be independent random variables with uniformly-bounded finite second moments on $(\Omega, \mathcal{F}, \mathbb{P})$. Let X, Y be Borel measurable functions of $a \in \mathbb{R}^n$ (i.e. measurable w.r.t. the smallest σ -algebra on \mathbb{R}^N for which all coordinate functions $\mathbb{R}^n \ni a \to a_i \in \mathbb{R}$ are Borel measurable). Then $|\operatorname{cov}(X, Y)| \leq |z|^{1/2}$

 $\max_{1 \le i \le n} \operatorname{var} (a_i) \sum_{i=1}^n \left(\int \sup_{a_i} \left| \frac{\partial X}{\partial a_i} \right|^2 d\mathbb{P} \right)^{1/2} \left(\int \sup_{a_i} \left| \frac{\partial Y}{\partial a_i} \right|^2 d\mathbb{P} \right)^{1/2}$ where $\sup_{a_i} \left| \frac{\partial Z}{\partial a_i} \right|$ denotes the supremum of

$$\frac{\partial Z}{\partial a_i}(a_1,\ldots,a_{i-1},a_i,a_{i+1},\ldots,a_n)$$

of Z with respect to the variable a_i , for Z = X, Y.

The theorem below will allow us to pass from results for the annealed measure to results for the quenched measure.

Komlos (1967): If (ζ_n)_{n∈N} is a sequence of real-valued random variables with lim inf_{n→∞} E(|ζ_n|) < ∞, then there exists a subsequence {θ_n}_{n∈N} of the sequence {ζ_n}_{n∈N} and an integrable random variable θ such that for any arbitrary subsequence {θ̃_n}_{n∈N} of the sequence {θ̃_n}, we have almost surely that

$$\lim_{n\to\infty}\frac{\tilde{\theta}_1+\tilde{\theta}_2+\ldots+\tilde{\theta}_n}{n}=\theta$$

Sketch of proof

We will first prove:

Theorem

Fix $u \in \mathbb{R}^d$. Let for all $\alpha \in \{1, 2, \dots, d\}$

$$E_{\alpha} := \{ \eta \mid \lim_{|\Lambda| \to \infty} \frac{1}{|\Lambda|} \sum_{x \in \Lambda} \eta(b_{x,\alpha}) = u_{\alpha} \},$$

along the sequence with $b_{x,\alpha} := (x + e_{\alpha}, x) \in \chi$. Then there exists a unique shift-covariant random gradient Gibbs measure $\xi \to \mu[\xi]$ which satisfies for \mathbb{P} -almost every ξ

$$\mu[\xi](E_{\alpha}) = 1, \ \alpha \in \{1, 2, \dots, d\}.$$

Moreover, $\mu[\xi]$ satisfies the integrability condition

$$\mathbb{E}\int \mu[\xi](\mathrm{d}\eta)(\eta(b))^2 < \infty \text{ for all bonds } b \in \chi.$$

Ergodicity of the unique averaged measure:

• Let $\mathcal{F}_{inv}(\chi)$ the σ -algebra of shift-invariant events on χ . Let

$$\mu_{av} = \left(\int \mathbb{P}(d\xi)\mu[\xi]\right) (\,\mathrm{d}\eta).$$

We need to show that for all $A \in \mathcal{F}_{inv}(\chi)$, we have $\mu_{av}(A) = 0$ or $\mu_{av}(A) = 1$. We will show that this holds by contradiction.

 Suppose that there exists A ∈ F_{inv}(χ) such that 0 < μ_{av}(A) < 1. Then, for P-almost all ξ we have 0 < μ[ξ](A) < 1. We define now for all ξ the *distinct* measures on χ

$$\mu_A[\xi](B) := rac{\mu[\xi](B \cap A)}{\mu[\xi](A)} \; ext{ and } \; \mu_{A^c}[\xi](B) := rac{\mu[\xi](B \cap A^c)}{\mu[\xi](A^c)}, \; orall B \in \mathcal{T},$$

where we denoted by $\mathcal{T} := \sigma(\{\eta_b : b \in \chi\})$ the smallest σ -algebra on χ generated by all the edges in χ .

Sketch of proof

THANK YOU!