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1. a: Continuum formulations of 2D quantum gravity

Quantization = Feynman path integral over 2D Riemannian 
metrics (+ matter fields)

For physicists, this is a fairly well understood theory
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Polyakov functional integral, use the conformal gauge
                                                

The Faddeev-Popov ghost systems leads to the effective action for 
the remaining conformal factor. 

The effective theory is the Liouville theory (from conformal 
anomaly consistency condition), a CFT and integrable quantum 
theory
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�

SL['] =
1

2⇡

Z p
ĝ
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Dĝ['] e

�SL[']

cM = 0
�1 < cM  1

F. David,  June 26, 2015 GGI, Firenze, Italy

4vendredi 26 juin 15



1.b: Discretized formulations of 2D quantum gravity *
Random planar lattices (maps)

Also fairly well understood

F. D.,  J. Fröhlich,  V. Kazakov & A. Migdal (circa 1984-85)
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2 dim gravity

Continuous 2d gravity

Liouville theory &
conformal field theories

Topological gravity

Gaussian free field, SLE

QFT
CFT

integrability

conformal invariance
probabilities

Random matrices

Planar maps
(diagrams)

Discrete 2d gravity 

Brownian maps &
well labelled trees 

combinatorics

Cori-Vauquelin-
Schaeffer-....
bijections

combinatorics
probabilities

KPZ relations

recursion relations
integrability

Still lacking: a constructive & geometrical 
link between the discrete and the 

continuous formulations
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2.a: Circle packings
The Koebe-Andreev-Thurston theorem

There is a bijection between simple triangulations and 
circle packings, modulo SL(2,C) Möbius transformations

Illustrations borrowed to Schramm & Mishenko

(a) (b)
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v3
v3

(c) (d)

Figure 3: A circle packing approximation of a triply connected domain, its nerve, its completion
to a triangulation of S2, and a combinatorially equivalent circle packing; (a)-(c) are from Oded’s
thesis; thanks to Andrey Mishchenko for creating (d)
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2.b: A generalisation of circle packings: circle patterns

circle packing = circle patterns
with angles 0 or        only⇡/2

theorem of existence and unicity
(Igor Rivin 1994,  Ann. of Math.)

Circles meeting at common points.
The angles of intersection of the circles are given.
Find the planar pattern and the radii of the circles.
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Sphere Plane
Sphere Plane

«Dressed» planar maps

✓1

✓3

✓5

✓6

✓2

✓4

                        T an abstract triangulation of the sphere, with
                               angles         attached to the edges e such that

1) the angles are positive

2) around each vertex

3) around each closed cycle 

✓e

X

e!v

✓e = 2⇡

X

e2C
✓e � 2⇡

T = (T, {✓})
{✓}

0 < ✓e < ⇡
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Delaunay triangulations and planar maps
There is a bijection* between such «dressed» planar maps and
Delaunay triangulations in the plane, such that the circle 
intersection angles are

* modulo global                 transformations (as usual) 

✓⇤e = ⇡ � ✓e

Sphere Plane

✓1
✓1 ✓3

✓3

✓5

✓5
✓6

✓6

✓2
✓2

✓4

✓4

SL(2,C)
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Voronoï tessellation and Delaunay triangulation in the plane

From Wikimedia Commons

Delaunay condition: no vertex of a triangle must be inside the 
circumscribed circle to any another triangle ⇒ 

Local flatness (p.l. manifold) ⇒

Last condition on cycles ⇒ no change of orientations or foldings (to be 
discussed later)

This excludes some triangulations but it is conjectured that one keeps 
generic ones (universality)

✓ > 0X

e!v

✓e = 2⇡
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Take as initial measure on triangulations the uniform measure on
triangulations and the flat measure on the angles (+ inequalities)

Question: which measure does this induce on Delaunay 
triangulations? For this consider N+3 points, 3 fixed by 

Figure 2: The triangles f and f ′, circumscribed circles C and C′ and angle ✓ and
✓∗ = ⇡ − ✓ associated to an edge e = (z

1

, z
2

) of a Delaunay triangulation. R and R′ are
the radii of the circles C and C′. 2triangle-1

Since the SL(2,C) invariance allows to fix 3 points in the triangulations, from now
on we work with triangulations and points ensembles with M = N + 3 points.

For this, we start from the uniform flat measure on T̃N+3.
Definition 2.1 We take the measure µ(T̃ ) = µ(T, d✓)) on T̃N+3 to be the discrete
uniform measure on triangulations (as in random planar map ensembles) times the
flat Lebesgue measure on the angles ✓(e)’s (constrained by (2.1)):

µ(T̃ ) = µ(T, d✓)) = uniform(T ) �
e∈E(T )

d✓(e) �
v∈V(T )

� ��
e�v

✓(e) − 2⇡� (2.3)

The uniform(T ) term in general takes into account the symmetry factor of T . If we
choose a point v∞, it is always equal to one. It is known that the space T̃N+3 is made
of the small pieces T̃ (T ) associated to each triangulation T , glued at their boundary
where one of the ✓(e) = 0, and where a flip of the edge e ∈ E(T ) ↔ e′ ∈ E(T )′ occurs.
So it is a connected, piecewise linear space. Its dimension as a real manifold (in fact
an orbifold) is 2N .

→ → →
Figure 3: The basic flip of and edge e between triangulations occurs when ✓(e) = 0 FigFlip

4

SL(2,C)
DN+3 = CN+3/SL(2,C) ' CN

dµ(z4, · · · , zN+3) =?
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Transition between Delaunay triangulations by edge flips

the flip  of link     occurs when ✓(e) = 0e

Moving the points allows to explore the whole space of 
Delaunay triangulations and of dressed abstract triangulations

F. David,  June 26, 2015 GGI, Firenze, Italy
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Elementary example: the hexahedron (5 points)Elementary example: the hexahedron (5 points)
moving the 5th point

1

2
3

4

5
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Question 1:  Which sets of edges form independent basis for the 
angles?
Answer: The sets whose complementary form a cycle-rooted-
spanning-tree of the triangulation with odd length cycle
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Question 2:  What is the Jacobian of the change of angle variables 
between two basis of edges?

Answer:  Jacobian = 1 !

Indeed...

So, the measure over the points is given locally (for a given 
Delaunay triangulation) by a simple Jacobian

Figure 4: A triangulation T (with one point at ∞) and an odd CRST ¯E
0

(thick lines).
Its complement E

0

(dashed edges) form an independent basis of angle variables. pointinfty-CRST

A first step to study this space is to construct for any triangulation T in T̃N+3 a
basis E

0

⊂ E(T ) of 2N independent edges, such that given the 2N independent angles{✓(e), e ∈ E
0

}, they are always independent and the remaining N +3 {✓(e′), e′ ∉ E
0

} can
be reconstructed out of the N + 3 constraints 2.1. Such basis are characterized by the
following theorem, which is most plausibly already known

Theorem 2.1 A set E
0

⊂ E(T ) of 2N edges, is a basis if and only if its complementary
¯E
0

= E(T ) � E
0

form a cycle-rooted spanning tree of the triangulation T , whose cycle is
of odd length.

A cycle-rooted spanning tree (CRST) t of a graph G is a connected subgraph of G
which contains all the vertices of G and has as many edges as vertices. It is composed
of a single cycle and of trees attached to this cycle. See fig. 4

Choosing a specific basis of independent edges angles {✓(e); e ∈ E
0

}, i.e; an odd
CRST on T ∗, is not very important. Indeed one has

theorem2 Theorem 2.2 The measure on T̃N+3 can be written

µ(T, d✓) = 1

2

uniform(T ) × �
e∈E0(T )

d✓(e) (2.4) eqmeasuretdTdthetaE0bis

and is independent of a choice of basis E
0

(T ) ⊂ E(T ) for each triangulation T .

We now look at the induced measure on the space DN+3 of Delaunay triangulations
on the plane. For simplicity, from now on we consider triangulations T with N + 3
vertices, such that the first three points (z

1

, z
2

, z
3

) are fixed, and can be taken to be

5

the three vertex of a given triangle f
0

of T . The remaining variables are the complex
coordinates Z�{1,2,3} = z = (z

4

,�, zN+3) of the N free points. For a given z ∈ CN

there is generically a single Delaunay triangulation T . We shall denote ✓e the angle
associated to the edge e of T , and wf the complex coordinate of the center of the circle
circumscribed to the triangle f .

So this measure is simply given locally by a Jacobian determinant

µ(T, d✓) = dµ(z) = N+3�
v=4

d2zv �det �JT (z)�{1,2,3}× ¯E0�� (2.5)

where d2z = dz ∧ dz̄ is the flat measure on C, and with JT (z)�{1,2,3}× ¯E0 the 2N × 2N
Jacobian matrix (associated to a basis E

0

of independent edges) obtained from the(2N + 6) × 3N partial derivative matrix JT (z)
JT (z) = � @✓e

@(zv, z̄v)� e ∈E(T )
v∈V(T )

(2.6)

by removing the 6 lines associated to the three fixed vertices (z
1

, z̄
1

, z
2

, z̄
2

, z
2

, z̄
3

). From
theorem 2.2 the Jacobian determinant is independent of the choice of E

0

. So

Definition 2.2 The N point density measure associated to the (Delaunay) triangula-
tions T with the 3 fixed points {1,2,3} is

DT (z)�{1,2,3} = �det �JT (z)�{1,2,3}× ¯E0�� (2.7) defDJacob

It is a function of the N + 3 coordinates z = (z
1

,�, zN+3), and is well defined when no
points coincide.

The matrix elements of JT (z) are easy to calculate. For a given triangulation T ,
the elements

Jv,e = @✓e
@zv

, Jv̄,e = @✓e
@z̄v

(2.8)

are non zero only if the vertex v is a vertex of one of the two triangles f and f ′ that
share the edge e (see fig. 2). With the notations of fig. 2 one has explicitly for the edge
e = (v

1

, v
2

)
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x
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� (2.9) JveExpl

2.3 Spanning trees representation of D
2.9 implies that D(z) is locally a rational function of the (zi, z̄i), and is the determinant
of a "derivative-like" operator involving only neighbors vertices and links in the trian-
gulation T , like Dirac and Laplace operators. The determinant of Laplace operators on
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The determinant of the Jacobian matrix is locally a rational 
function of the    ’s and     ’szv z̄v

F. David,  June 26, 2015 GGI, Firenze, Italy
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Figure 5: 2 inequivalent triangle-rooted spanning 3-trees of a N = 3 planar triangulation
(here the octahedron). The fixed triangle △ is here the exterior black triangle. The
three trees I, I ′ and I ′′ are respectively made of the dotted-red, dashed-blue and
dot-dashed-green edges. The natural orientation towards the triangle △ is depicted. TR3Tree

graphs are known to have a representation in term of spanning trees (or extensions).D has also such a representation, but involving more complicated geometrical objects.

Definition 2.3 (triangle rooted spanning 3-tree)
Let T be a planar triangulation with N + 3 vertices, and △ = f

0

be a face (triangle)defTRS3T
of T , with 3 vertices V(△) = (v

1

, v
2

, v
3

) and 3 edges E(△) = (e
1

, e
2

, e
3

). Let E(T )�△ =E(T ) � E(△) be the set of 3N edges of T not in △.
We call a △-rooted 3-tree of T (△R3T ) a family F of three disjoint subsets (I,I ′,I ′′)

of edges of E(T ) such that:

1. (I,I ′,I ′′) are disjoint and disjoint of E(△)
2. Each I ∪ E(△), I ′ ∪ E(△), I ′′ ∪ E(△) is a cycle rooted spanning tree of T with

cycle △.

It follows that each I, I ′, I ′′ contains N edges. There is a natural orientation e → �e
of their edges, that we take to be “pointing towards the triangle △”. See fig. ?? for a
simple illustration.

When we keep the vertices (v
1

, v
2

, v
3

) of the triangle △ fixed, the measure deter-
minant DT (z)�{1,2,3}) defined in 2.7 can be rewritten a sum over the △-rooted 3-trees
of T of products of the building blocks Jv,e and ¯Jv,e of the Jacobian matrix J . More
precisely

ThDas3T Theorem 2.3 Let T be a planar triangulation of the plane with N +3 vertices. If the 3
fixed points (v

1

, v
2

, v
3

) belong to a triangle (face) of T , the measure determinant takes
the form

DT (z)�{1,2,3}) = 4

−N �
F=(I,I′,I′′)△R3T of T

✏(F) × ��e=(v→v′)∈I
1

zv − zv′ × ��e=(v→v′)∈I′
1

z̄v − z̄v′ (2.10) Das3trees
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nb: ∆-rooted spanning 3-trees are NOT Schnyder woods !
F. David,  June 26, 2015 GGI, Firenze, Italy
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7where ✏(F) = ±1 is a sign factor, coming from the topology of T and of F , that will be
defined later.

This theorem is non trivial, and is not obtained simply by expanding the determinant
of TT (z) in terms of permutations. Its proof involves techniques developed in the
derivation of the very nice and useful representation of D, that we present in Th. 2.6.

Remark: The trees I, I ′ and I ′′ play equivalent roles, but only the lines of the first
two appear in the r.h.s. of 2.10. Each term in the sum is complex, but exchanging I
and I ′ exchanges the zv’s and the z̄v’s, and in fact does not changes the sign of the
✏(F) prefactor, so that the determinant is real. (To check)

2.10 shows that DT (z) diverge when two or more points zv coincide. However it
allows to control the singularity.

ThConvD Theorem 2.4 Each individual term in the sum of 2.10 is singular when some zv’s
coincide, but the associated measure

dµF(z) =�
v∉△

d2zv ��e=(v→v′)∈I
1

zv − zv′ × ��e=(v→v′)∈I′
1

z̄v − z̄v′ (2.11)

is well defined and absolutely integrable.

The fact that the total determinant D(z) defines an integrable measure is not sur-
prising, since the original flat measure µ(T,✓) over the angles ✓(e) is finite. The
decomposition 2.10 is interesting since it takes into account many cancellations in the
expansion of the determinant, so that each term is also integrable, and can be used to
study the properties of the measure.

2.4 D as a Kähler volume form and hyperbolic geometry

Here we show that the space DN+3 � CN of Delaunay triangulations with 3 point fixed
is embodied with a natural structure of a N -dimensional Kähler manifold, and that
the measure determinant D(z) is nothing but the volume form for this Kähler metric.

In the geometry of circle packings and circle patterns in 2 dimensions, 3 dimensional
hyperbolic geometry plays a central role. Let us recall a few definitions and basic facts.
The complex plane C is considered as the boundary of the 3 dimensional hyperbolic
space H

3

, represented by the upper half-space above C. Adding the point at ∞, the
Riemann sphere S

2

is therefore the boundary of the 3 dimensional Poincaré ball B
3

.

Definition 2.4 (Hyperbolic volume of a triangle) Let f = (z
1

, z
2

, z
3

) be a (ori-
ented) triangle in C. The hyperbolic volume Vol(f) of the triangle f is the hyperbolic
volume of the ideal tratraedron in H

3

with vertices (z
1

, z
2

, z
3

,∞) on its boundary. In
term of the coordinates it is given by the Bloch-Wigner function

Vol(f) = Im(Li
2

(z)) + ln(�z�)Arg (1 − z) with z = z
3

− z
1

z
2

− z1 (2.12) VolHLi

8

•The measure can be written as a sum over these spanning 3-
trees

•Tree 1: analytic part -  Tree 2: anti-analytic part
•This is a non trivial extension of the spanning tree 
representation of the determinant of scalar Laplacians. 

•This representation is specific to this Jacobian matrix D.
•It is useful for proof of convergence, factorization properties, etc.
•Can we use it for more?

F. David,  June 26, 2015 GGI, Firenze, Italy
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Hyperbolic volume of triangle = volume of ideal tetrahedron 
above the triangle in hyperbolic Poincaré half-space
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In term of the angles (↵
1

,↵
2

,↵
3

) of the triangle it is given by

Vol(f) = L(↵
1

) +L(↵
2

) +L(↵
2

) (2.13) VolHd

where L is the Lobatchevski-Milnor function

L(↵) = −ˆ ↵

0

d✓ log(2 sin(✓)) (2.14) LobL

See fig. 6. Vol(f) satisfies the basis variation formula (`i being the length of the side
of the triangle opposite to the angle i.

dVol(f) = − �
3 angles

d↵i ln(sin(↵i)) = − �
3 angles

d↵i ln(`i)) (2.15) dVolH

Figure 6: A triangle f = (z
1

, z
2

, z
3

) in the plane and the associated ideal tetrahedron
in the upper-space H

3

. fIdealT

Now let us consider a planar Euclidean triangulation ˜T on the sphere and the
associated Delaunay triangulation T in C, where 3 points are fixed. We define an
action (or prepotential) AT for T simply as

Definition 2.5 (Action of a triangulation) The action AT of a Delaunay triangu-
lation T is defined as minus the sum of the hyperbolic volumes of its faces (triangles)

AT = − �
triangles f∈F(T )

Vol(f) (2.16) ATsumV

9
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The mesure as a Kähler form!
Define the N x N matrix 

1.        is a Kähler form on               i.e.  

2.         is countinuous (no discontinuity when a flip occurs)

3. The measure determinant is the Kähler volume form

The (2N x 2N) Jacobian has been reduced to a N x N Kähler 
determinant! 
But it is not a determinantal process! 

Remark: Some care should be exercised in this definition with the 3 fixed points and
the point at ∞. Here we shall consider two cases:

case1 Point at infinity: The Delaunay triangulation T contains the point at ∞, v∞ as one
of the died points. As depicted in fig. 2.1, the faces that do not contain the point
at ∞ are contained within the convex hull of the Delaunay triangulation of the
remaining points zv ≠∞. The faces that contain v∞ are of the form f = (v, v′, v∞)
with e = (v, v′) an edge of the convex hull„ and hence are such that Vol(f) = 0.
They do not contribute to AT which becomes

AT = − �
triangles f⊂ convex hull

Vol(f) (2.17) ATzinfty

case2 Fixed face: The 3 fixed points (v
1

, v
2

, v
3

) are the vertices of a triangle f
0

of T . Then,
by a well chosen SL(2,C) transformation, this face can be taken to be the exterior
face of T , namely all the other points are inside the (circumscribed circle to the)
exterior face f

0

. Then AT is

AT = ��− �
triangles f≠f0

Vol(f)�� + Vol(f
0

) (2.18) AT3z

The + sign for the contribution of the exterior face f
0

comes from the fact that
it is now clockwise oriented, instead of anti-clockwise as the internal faces of T .
Since the 3 points z

1

, z
2

, z
3

are fixed, this Vol(f
0

) will not play any role in what
follows anyway.

case3 General case The general case is to consider an arbitrary Delaunay triangulation of
the Riemann sphere, mapped by stereographic mapping on the complex plane,
and to associate the algebraic hyperbolic volume Vol(f) to each triangle. It may
be positive or negative depending on the orientation of f .

Definition 2.6 (Hermitian form) The space DN+3 � CN of Delaunay triangulations
with three fixed point (z

1

, z
2

, z
3

) (in one of the two above discussed cases), parametrized
by the N remaining points z = (z

4

,�, zN+3) is embodied with the Hermitian form D

Duv̄(z) = @

@zu

@

@z̄v
AT (z) (2.19) Dkd2zA

This form is defined locally for non-coinciding points and in each sub-domain of CN

corresponding to a given triangulation T . One has the two following results:

DasKahler Theorem 2.5 (D as a Kähler form) The Hermitian form D is positive, and con-
tinuous on DN+3, away from coinciding points configurations. Hence it is a continuous
Kähler form, whose prepotential is A.

10

Duv̄ DN+3

Duv̄
TDasKha Theorem 2.6 (The measure as a Kähler volume form) The measure over De-

launay triangulation is the volume form of D

DT (z)�{1,2,3}) = det �(Du,v̄) u,v ≠{1,2,3}
� (2.20) DdetDk

This means that the measure DT (z)�{1,2,3}), which is defined as the determinant of a
2N ×2N real Jacobian matrix, can be written as a simpler N ×N complex determinant.

Th. 2.5 follows from the explicit geometrical form of the Hermitean form D, that
we discuss below, and of its conformal properties. The fundamental result is Th. 2.6,
2.20, whose proof relies on tools common to Th. 2.3.

2.5 Geometrical form of D and conformal properties

Elementary plane geometry, using the differential of the hyperbolic volume function
2.15 leads to the explicit form for the matrix elements Duv̄ of D. First D can be
decomposed into a sum of contributions for each triangle f of T .

Du,v̄ =�
f

Du,v̄(f) , Du,v̄(f) = − @2

@zu@z̄v
Vol(f) (2.21) DsumDf

Each Du,v̄(f) is non-zero only if the vertices u and v belongs to the triangle f .

Figure 7: A triangle f = (v
1

, v
2

, v
3

). (e
1

, e
2

, e
3

) denote both the edges of f and the mid-
dle point of the edges. f denote both the triangle and the center of the circumscribed
circle. R is the radius of the circumscribed circle. triangleS1

For a given triangle f , depicted on Fig. 7, with (anti clockwise oriented) vertices(v
1

, v
2

, v
3

), oriented angles (↵
1

,↵
2

,↵
3

) and circumscribed radius R, the 3 × 3 matrix

11

D > 0
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This is not too surprising, the initial measure over independent 
angles can be written as a combination of Chern classes  

Notice that the coefficient C
T

might apparently depend on the triangulation T , how-
ever, it was proved by Kontsevich that it doesn’t 2 , and we have:

��
v

4⇡2 
v

�N = ± N ! 2

2N+1 �
e

d✓
e

(3.9)

This shows that our measure D
T

(z)�{1,2,3} is also the measure of topological gravity.

4 Proofs of the results

4.1 Chosing a basis of edges

4.1.1 Proof of Th. 2.1

We have defined the measure on ˜T
N+3 to be the uniform measure on triangulations

tensored with the flat Lebesgue measure on angles ✓
e

’s (constrained by (2.1)):

uniform(T )⊗ �
e∈E(T )

d✓
e

�
v∈V(T )

�(−2⇡ +�
e�v

✓
e

) (4.1)

One takes care of the constraints ∑
e�v

✓
e

= 2⇡ by chosing a basis of 2N independent
edges. We now prove Th. 2.1, which characterizes these basis.

Definition 4.1 (Adjacency matrix R) Let us define the (N + 3) × (3N + 3) matrix
R by

R
v,e

= � 1 if v adjacent to e
0 otherwise

(4.2)

If we choose a set E
0

⊂ E(T ) of 2N independent edges, we have:

�
e∈E(T )

d✓
e

�
v∈V(T )

�(−2⇡ +�
e�v

✓
e

) = 1

det

v∈V(T ), e∈E(T )�E0 Rv,e

�
e∈E0

d✓
e

(4.3)

Assume that we can find a basis E
0

with 2N edges.
First, notice that for every vertex v of T , at least one of adjacent edges to v must

not be in E
0

(otherwise the determinant at the denominator in (4.3) would have a
vanishing line, and be vanishing).

The dual E∗
0

of E
0

(i.e. the set of edges on the dual graph of T crossing the edges
of E

0

), must thus contain no loop, i.e. it must be a tree or a union of k disjoint trees
on the dual graph.

2Kontsevich introduced the combinatorial space of Strebel graphs Mcomb

g,n = ⊕TR#edges(T )+ with
trivalent graphs of genus g and n vertices, with some coordinates le ∈ R+ on each edge, subject to
constraints ∑e�v le = Lv fixed at each vertex. He considered the Chern classes  v = ∑e′<earoundv dle ∧
dle′ , and proved that (∑v  v)3g−3+n ∏v dLv = (3g − 3 + n)! 25g−5+2n ∏e dle. Our space TN+3 =Mcomb

0,N+3
corresponds to the planar case g = 0 and n = N + 3, and we identify le = ✓e�2⇡.

24

This case has been much studied in connection with dimer models and discrete analyt-
icity, and there exists beautiful explicit forms for the determinant of �

0

and its inverse
(the scalar propagator) [Kenyon, 2002,Kenyon and Schlenker, 2005] .

3 Link with topological gravity

Another approach to quantum gravity, is "topological gravity", introduced by Wit-
ten [Witten, 1990], and culminating with Kontsevich’s proof [Kontsevich, 1992] . Here
we make the link between our approach and Witten-Kontsevich, by relating our mea-
sure D

T

(z)�{1,2,3} to a combination of Chern classes on the moduli space of Riemann
surfaces.

3.1 Chern classes

T
N+3 = CN+3�Sl

2

(C) the set of N +3 point on the Riemann sphere, is the moduli spaceM
0,N+3 of Riemann surfaces of genus zero with N +3 marked points, and we have seen

that it is isomorphic to the combinatorial space T̃
N+3 of abstract triangulations T with

angles ✓
e

associated to edges with the constraint that ∑
e�v

✓
e

= 2⇡. A good tool to
study the topology of such a space, is to consider Chern classes of U(1) bundles.

Let us define the following circle bundle: L
v

→ T
N+3, as follows: the fiber over the

point {z
1

, . . . , z
N+3} ∈ T̃N+3, is the unit circle S

v

of center v in the Euclidian plane.
Some special points on S

v

are the intersections p
v,f

= S
v

∩ [v, f) of S
v

with the half
lines [v, f) emanating from v towards the centers f of adjacent circumcircles. Consider
a section � ∈ S

v

. For each face f adjacent to v, define the angles:

�
v,f

= angle alongS
v

between � andp
v,f

(3.1)

If we label the faces f
1

, . . . , f
n

in the trigonometric order arounf v, we have:

�
v,f+1 = �v,f − ✓f+ = �v,1 − ✓1+ − ⋅ ⋅ ⋅ − ✓f+ (3.2)

where [v, f+] is the edge following [v, f) around S
v

. The following 1-form depends only
on v, it is independent of the choice of labelling of faces around v:

u
v

= 1

4⇡2

�
f�v

✓
v,f+d�v,f = d�

v,1

2⇡
− 1

4⇡2

n�
f=2

f−1�
f

′=1
✓
v,f+d✓v,f ′+ (3.3)

It is clear that ˆ
Sv

u
v

= 1

4⇡2

�
f�v

✓
v,f+
ˆ
Sv

d�
v,f

= 2⇡

4⇡2

�
f�v

✓
v,f+ = 1 (3.4)

In other words, u
v

is a connection globally defined on the bundle L
v

, whose integral
along the fiber is 1, its curvature du

v

is then the Chern class:

 
v

= c
1

(L
v

) = du
v

= − 1

4⇡2

n�
f=2

f−1�
f

′=1
d✓

v,f+ ∧ d✓v,f ′+ (3.5)

22

Figure 11: The fiber of the circle bundle L
v

→ T
N+3, is a circle centered at v. A point

in the fiber, is a point � on the circle, and a coordinate for that point is the angle �
f,v

between � and the segment [v, f] where f is a face adjacent to v.

The Chern class  
v

of the bundle L
v

is a 2-form on T
N+3, notice that it is independent

of a choice of origin of labelling of faces around v.
In other words, if we label the edges around v in the trigonometric order e

1

, . . . , e
n

,
we have:

 
v

= − 1

4⇡2

n�
e=2

e−1�
e

′=1
d✓

e

∧ d✓
e

′ (3.6)

Notice that  
v

is independent of the choice of labelling, and also, notice that since
∑

e�v

✓
e

= 2⇡, we also have:

 
v

= − 1

4⇡2

n−1�
e=2

e−1�
e

′=1
d✓

e

∧ d✓
e

′ (3.7)

where the upper bound of the sum is now e ≤ n − 1, instead of n.

3.2 Measure and Chern classes

The 2N form (∑
v

 
v

)N is a top-dimensional form on T
N+3, with constant coefficients,

therefore it must be proportional to ∏
e∈E0 d✓e, i.e. to our measure D

T

(z)�{1,2,3}:
(N+3�
v=1

 
v

)N = C
T

D
T

(z)�{1,2,3} (3.8)

23

and the angle measure is a measure on the moduli space of the 
punctured Riemann sphere
So this measure is related (and quite possibly equivalent) to the 
Weil-Peterson measure over                and our model is related 
to topological 2D gravity 

M0,N+3

M0,N+3
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The 2-d metric on the boundary of the hyperbolic tetrahedra 
induced by the 2d-metric in H3 makes it a constant negative 
curvature ball with cusps singularities (punctured sphere)

F. David,  June 26, 2015 GGI, Firenze, Italy

If our measure is the W-P measure, this implies that our model is 
in the same universality class (pure gravity) than planar maps

H3

�string = �1/2
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H =
det

�
D\a,b,c

(z)
�

|�3(za, zb, zc)|2

�3(za, zb, zc) = (za � zb)(za � zc)(zb � zc)

z ! w =
az + b

cz + d
with ad� bc = 1

H(z) =

�����

N+3Y

i=1

w0(zi)

�����

2

H(w) =
N+3Y

i=1

1

|czi + d|2
H(w)

Independence of the 3 fixed points and                invarianceSL(2,C)

is independent of the choice of points

dµ(z) = d2z det(D) is a conformal point process 

Conformal invariance is exact and explicit
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Consequence: D is a very singular but integrable measure
One expects large fluctuations of the density of points at all scales, 
consequence of conformal invariance 

Poisson process on the sphere           collapse of half of the points 

The sum of angles around the collapsed points 
X

e!V

✓e ! 2⇡+

F. David,  June 26, 2015 GGI, Firenze, Italy
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1. Continuum and discrete 2D gravity: what remains 
to be understood?

2. Circle packings and circle patterns

3. Delaunay circle patterns and planar maps

4. A measure over planar triangulations

5. Spanning 3-trees representation

6. Kähler geometry over triangulation space and 3D 
hyperbolic geometry

7. Discretized Faddev-Popov operator and 
Polyakov’s 2D gravity

8. Local uniform bounds and the continuum limit
F. David,  June 26, 2015 GGI, Firenze, Italy
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Local geometrical representation of D as a sum over the triangles 
of  local operators

TDasKha Theorem 2.6 (The measure as a Kähler volume form) The measure over De-
launay triangulation is the volume form of D

DT (z)�{1,2,3}) = det �(Du,v̄) u,v ≠{1,2,3}
� (2.20) DdetDk

This means that the measure DT (z)�{1,2,3}), which is defined as the determinant of a
2N ×2N real Jacobian matrix, can be written as a simpler N ×N complex determinant.

Th. 2.5 follows from the explicit geometrical form of the Hermitean form D, that
we discuss below, and of its conformal properties. The fundamental result is Th. 2.6,
2.20, whose proof relies on tools common to Th. 2.3.

2.5 Geometrical form of D and conformal properties

Elementary plane geometry, using the differential of the hyperbolic volume function
2.15 leads to the explicit form for the matrix elements Duv̄ of D. First D can be
decomposed into a sum of contributions for each triangle f of T .

Du,v̄ =�
f

Du,v̄(f) , Du,v̄(f) = − @2

@zu@z̄v
Vol(f) (2.21) DsumDf

Each Du,v̄(f) is non-zero only if the vertices u and v belongs to the triangle f .

Figure 7: A triangle f = (v
1

, v
2

, v
3

). (e
1

, e
2

, e
3

) denote both the edges of f and the mid-
dle point of the edges. f denote both the triangle and the center of the circumscribed
circle. R is the radius of the circumscribed circle. triangleS1

For a given triangle f , depicted on Fig. 7, with (anti clockwise oriented) vertices(v
1

, v
2

, v
3

), oriented angles (↵
1

,↵
2

,↵
3

) and circumscribed radius R, the 3 × 3 matrix

11

D(f) reads

D(f) = 1

8R(f)2 ���
cot(↵

2

) + cot(↵
3

) − cot(↵
3

) − i − cot(↵
2

) + i− cot(↵
3

) + i cot(↵
3

) + cot(↵
1

) − cot(↵
1

) − i− cot(↵
2

) − i − cot(↵
1

) + i cot(↵
1

) + cot(↵
2

)
��� (2.22) DfExpl

This can be rewritten as a real and imaginary part

D(f) = −1
8R(f)2 �2�0

(f) + iE(f)� (2.23) DfDelE

where �
0

(f) is symmetric real, and E(f) the totally antisymmetric Levi-Civita tensor.
�

0

(f) is nothing but the contribution of the triangle f to the discretized scalar Laplace-
Beltrami operator on the triangulation T in the plane.

It is easy to check that D(f) has 2 zero eigenvalues �
1

= �
2

= 0, with right eigen-
vectors (1,1,1) and (z̄

1

, z̄
2

, z̄
3

), and a non trivial positive one

�
3

= 1

4R2

(cot(↵
1

) + cot(↵
2

) + cot(↵
3

)) > 0 if f non-flat & counterclockwise oriented
(2.24) positive

From D(f) ≥ 0 and 11.7, the positivity of the Hermitean form DT follows.
To establish the continuity of D, one shows that the matrix elements of D are

continuous when a flip of an edge occurs. As depicted in Fig. 8, the flip of an edge e =(v
1

, v
2

)→ e′ = (v
3

, v
4

) occurs when the two triangles f = (v
1

, v
2

, v
3

) and f ′ = (v
2

, v
1

, v
4

)
have the same radii R = R′, so that their respective centers coincide wf = wf ′ . Then
it is easy to check from 11.4 that the matrix elements for the link e vanish, as well as
those for the flipped link e′ on th flipped triangulation T ′,

Dv1v̄2 = 0 , Dv2v̄1 = 0 (2.25)

while the other matrix elements Duv̄ and D′uv̄ are unchanged. This establishes Th. 2.5

Figure 8: A flip FlipDet

12
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This suggest  D is a ‘‘discretized’’ Fadeev-Popov determinant!

The Hermitean form D can be written as

with local derivative operator from

simple geometric characterization of 

Another simple property of the matrix D(f) for a triangle f = (z
1

, z
2

, z
3

) is

3�
i,j=1

z2i Di|̄(f) z̄2j = 1

2

Area(f) (2.26)

with Area(f) the algebraic area of the triangle f .
Using Th. 2.6 the measure determinant D can be shown to have nice properties

under global confomal SL(2,C) transformations. For instance, let us define D�a,b,c the
N×N matrix obtained from the general form Duv̄ by removing three (distinct) arbitrary
points (va, vb, vc) of the triangulations T . Comparing two different choices of these 3
points (which fix the SL(2,C) invariance, one has

Proposition 2.1 The function H(z) defined as

H = det

�D�a,b,c(z)���
3

(za, zb, zc)�2 (2.27) Hdens

with �

3

the Vandermonde determinant for the 3 points

�

3

(za, zb, zc) = (za − zb)(za − zc)(zb − zc) (2.28)

is independent of the choice of the three distance points (a, b, c). Morover, it is a weight
(1,1) function under global SL(2,C) conformal transformations, namely

z → w = az + b
cz + d with ad − bc = 1 , w′(z) = @w

@z
= 1(cz + d)2 (2.29)

namely

H(z) = �N+3�
i=1

w′(zi)�2H(w) = N+3�
i=1

1�czi + d�2H(w) (2.30)

2.6 D as a discretized Faddeev-Popov operator

Another nice representation of the Kähler form D leads to the connexion with the
continuous formulations of 2 dimensional gravity. Let us define a discretized complex
derivative operator on Delaunay triangulations.

Definition 2.7 Let CV(T ) and CF(T ) be respectively the vector spaces of complex func-
tions over the vertices and faces (triangles) of a Delaunay triangulation T in the com-
plex plane. We define the complex derivative operators ∇ and ∇ from CV(T ) → CF(T )
as follows, for an anticlockwise oriented triangle f = (v

1

, v
2

, v
3

)
∇�(f) = 1

2i

�(v
1

)(z̄
3

− z̄
2

) +�(v
2

)(z̄
1

− z̄
3

) +�(v
3

)(z̄
2

− z̄
1

)
Area(f) (2.31)

∇�(f) = − 1
2i

�(v
1

)(z
3

− z
2

) +�(v
2

)(z
1

− z
3

) +�(v
3

)(z
2

− z
1

)
Area(f) (2.32)

13

with (again) Area(f) the algebraic area of the triangle f

Area(f) = 1

2i

((z
3

− z
1

)(z̄
2

− z̄
1

) − (z
2

− z
1

)(z̄
3

− z̄
1

)) (2.33)

This corresponds to the naive definition of the derivative of the function � pointwise
defined on the vertices zi of the triangulation T , and interpolated linearly inside each
triangle. Indeed, if � is linear over C, �(vi) = a + b zi + c z̄i, then ∇� = b and ∇� = c.
These operators ∇ and ∇ differs from the @ and ¯@ operators usually considered in the
theory of discrete analytic functions (as far as we know, it is not possible to define
standard discrete analyticity on generic Delaunay triangulations).

The scalar product of the local operator D(f) relative to a single triangle f between
two functions of CV(T ) takes the specific form

Proposition 2.2

� ⋅D(f) ⋅ = �
i,j vertices of f

�(vi)Di|(f) (vj) = Area(f)
R(f)2 ∇�(f) ∇ (f) (2.34) PhiDPsi

This formula is very suggestive. Remember that D = ∑f D(f) is a complex Kähler
form and can be viewed as a linear operator acting on the space of real vector fields
V (living on the vertices of T ). For this, it is enough to identify a complex function
 ∈ CV(T ) with a real vector field with real components in the coordinate z = x1 + ix2

( 1, 2) = (Re( ), Im( )) (2.35) Psixy

or in complex component notations

( z, z̄) = ( , ) (2.36) Psizzbar

Now let us denote wf the complex coordinate of the center of the circle circumscribed
to the triangle f , the area of the triangle as a volume element

Area(f) = d2wf (2.37) AreaW

and the R(f)−2 factor as a “quantum area” Liouville factor

1

R(f)2 = e

�(wf ) (2.38) LiouvPhi

Then we can rewrite formally (by summing 2.34 over the faces) the scalar Kähler
product of two vector fields as an integral

� ⋅D ⋅ = ˆ d2w e

�(w) @z̄�z(w) @z z̄(w) (2.39) DasFP

This is very reminiscent of the conformal gauge fixing Fadeev-Popov operator intro-
duced by Polyakov in his famous 1981 paper. Remember that the functional integral

14

�(vertices) ! ⇧(faces)

r

rf,v =

@ log(Area(f))

@zv
=

1

zv” � zv
+

1

zv0 � zv
� @ log(Radius(f))

@zv
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If complex functions are identified with real vector fields

One gets

with

One can see the Kähler form as a discretized version of the 
Faddeev-Popov determinant in Polyakov’s formulation of two 
dimensional gravity and of non-crititical string theory !

Indeed...

with (again) Area(f) the algebraic area of the triangle f

Area(f) = 1

2i

((z
3

− z
1

)(z̄
2

− z̄
1

) − (z
2

− z
1

)(z̄
3

− z̄
1

)) (2.33)

This corresponds to the naive definition of the derivative of the function � pointwise
defined on the vertices zi of the triangulation T , and interpolated linearly inside each
triangle. Indeed, if � is linear over C, �(vi) = a + b zi + c z̄i, then ∇� = b and ∇� = c.
These operators ∇ and ∇ differs from the @ and ¯@ operators usually considered in the
theory of discrete analytic functions (as far as we know, it is not possible to define
standard discrete analyticity on generic Delaunay triangulations).

The scalar product of the local operator D(f) relative to a single triangle f between
two functions of CV(T ) takes the specific form

Proposition 2.2

� ⋅D(f) ⋅ = �
i,j vertices of f

�(vi)Di|(f) (vj) = Area(f)
R(f)2 ∇�(f) ∇ (f) (2.34) PhiDPsi

This formula is very suggestive. Remember that D = ∑f D(f) is a complex Kähler
form and can be viewed as a linear operator acting on the space of real vector fields
V (living on the vertices of T ). For this, it is enough to identify a complex function
 ∈ CV(T ) with a real vector field with real components in the coordinate z = x1 + ix2

( 1, 2) = (Re( ), Im( )) (2.35) Psixy

or in complex component notations

( z, z̄) = ( , ) (2.36) Psizzbar

Now let us denote wf the complex coordinate of the center of the circle circumscribed
to the triangle f , the area of the triangle as a volume element

Area(f) = d2wf (2.37) AreaW

and the R(f)−2 factor as a “quantum area” Liouville factor

1

R(f)2 = e

�(wf ) (2.38) LiouvPhi

Then we can rewrite formally (by summing 2.34 over the faces) the scalar Kähler
product of two vector fields as an integral
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�(w) @z̄�z(w) @z z̄(w) (2.39) DasFP

This is very reminiscent of the conformal gauge fixing Fadeev-Popov operator intro-
duced by Polyakov in his famous 1981 paper. Remember that the functional integral

14

� ·D(f) ·  ̄ =
X

f

Area(f)

R(f)2
r̄�(f) r ̄(f)

over 2-dimensional Riemanian metrics gab(z) is performed by choosing a conformal
gauge

gab(z) = �ab e

�(z) (2.40) ConfG

This gauge fixing introduces a Faddev-Popov determinant in the functional measureˆ D[gab] = ˆ D[�] det(∇FP) (2.41) GMeas

where ∇FP is the differential operator that maps vector fields Ca onto traceless sym-
metric tensors Bab via

Bab = (∇FPC)ab =DaCb +DbCa − gabDcC
c (2.42) FPD

In the conformal gauge and in complex coordinates one has C = (Cz, C z̄) and

(∇FPC)zz = e

−� @z̄C
z , (∇FPC)z̄z̄ = e

−� @zC
z̄ , (∇FPC)zz̄ = (∇FPC)z̄z = 0 (2.43) FPDz

The determinant is usually computed by introducing a ghost-antighost system

c = (cz, cz̄) = (c, c̄) , b = (bzz, bz̄z̄) = (b,¯b) (2.44) bcsystem

and writing

det(∇FP) = ˆ D[c,b] exp�ˆ d2z e

� (bzz(∇c)zz + bz̄z̄(∇c)z̄z̄)� (2.45) FPdetbc

In the standard approach one treats separately the holomorphic (b, c) and anti-
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One recognize the Kähler form D that appears in 2.39. Therefore the Kähler operator
D defined on the Delaunay triangulation T is in fact a correct discretization of the
conformal gauge Fadeev-Popov operator of 2 dimensional gravity

D = ∇FP (2.47) DisFP

while the field �(f) defined by 2.38 in term of the radii of the triangles

�(f) = −2 log(R(f)) (2.48)

and which lives on the vertices of the Voronoy lattice, dual to the Delaunay triangula-
tion T , is an attractive discretization of the Liouville field of the continuous formulation.

2.7 Relation with planar maps
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Back to the functional integral over 2d Riemannian metrics, in the 
conformal gauge

with Faddeev-Popov ghost systems

Integrating over the b’s (the ghosts) only gives

The D operator is nothing but a discretised FP determinant

This suggest to identify the scalar function on faces

with a ‘‘discretized’’ Liouville field on the Voronoï lattice ...

over 2-dimensional Riemanian metrics gab(z) is performed by choosing a conformal
gauge

gab(z) = �ab e

�(z) (2.40) ConfG

This gauge fixing introduces a Faddev-Popov determinant in the functional measureˆ D[gab] = ˆ D[�] det(∇FP) (2.41) GMeas

where ∇FP is the differential operator that maps vector fields Ca onto traceless sym-
metric tensors Bab via

Bab = (∇FPC)ab =DaCb +DbCa − gabDcC
c (2.42) FPD

In the conformal gauge and in complex coordinates one has C = (Cz, C z̄) and

(∇FPC)zz = e

−� @z̄C
z , (∇FPC)z̄z̄ = e

−� @zC
z̄ , (∇FPC)zz̄ = (∇FPC)z̄z = 0 (2.43) FPDz

The determinant is usually computed by introducing a ghost-antighost system

c = (cz, cz̄) = (c, c̄) , b = (bzz, bz̄z̄) = (b,¯b) (2.44) bcsystem

and writing

det(∇FP) = ˆ D[c,b] exp�ˆ d2z e

� (bzz(∇c)zz + bz̄z̄(∇c)z̄z̄)� (2.45) FPdetbc

In the standard approach one treats separately the holomorphic (b, c) and anti-
holomorphic (¯b, c̄) ghost fields. Each of them is a conformal field theory and contribute
by a central charge c = −13 to the conformal anomaly. One may however integrate over
the anti-ghosts b = (b,¯b), keeping only the ghosts c = (c, c̄). One then obtain

det(∇FP) = ˆ D[c] exp�ˆ d2z e

� @zc
z̄ @z̄c

z� (2.46) FPdetc

One recognize the Kähler form D that appears in 2.39. Therefore the Kähler operator
D defined on the Delaunay triangulation T is in fact a correct discretization of the
conformal gauge Fadeev-Popov operator of 2 dimensional gravity

D = ∇FP (2.47) DisFP

while the field �(f) defined by 2.38 in term of the radii of the triangles

�(f) = −2 log(R(f)) (2.48)

and which lives on the vertices of the Voronoy lattice, dual to the Delaunay triangula-
tion T , is an attractive discretization of the Liouville field of the continuous formulation.

2.7 Relation with planar maps
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1. Continuum and discrete 2D gravity: what remains 
to be understood?

2. Circle packings and circle patterns

3. Delaunay circle patterns and planar maps

4. A measure over planar triangulations

5. Spanning 3-trees representation

6. Kähler geometry over triangulation space and 3D 
hyperbolic geometry

7. Discretized Faddev-Popov operator and Polyakov’s 
2D gravity

8. Local uniform bounds and the continuum limit
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Up to now, existence results at finite N (number of points)

We are interested in the continuum, large N limit.

First step, get bounds as a function of N.

Theorem 1: Delaunay triangulations extremize the Kähler 
volume measure.
If T Delaunay and T’ not Delaunay with same vertices {z}

Proof: Use the Lawson Flip Algorithm to go from T’ to T and
show that the measure always increases during a flip.

DT (z)\{1,2,3} > DT 0(z)\{1,2,3}

show that the measure always increases during a flip.

Figure 5: E↵ect of a flip at one step of the LFA.

2.3 Growth of the measure

For N 2 N, the quantity that we consider is:

A

N

=

Z

CN

N+3Y

v=4

d

2

z

v

D
T

D
N
(z)\{1,2,3} (2.6)

and we look at the behaviour when one passes from A

N+1

to A

N

. We have to integrate
over z

N+4

to delete this variable from the integrand of A
N+1

and to have an expression
seeming like A

N

.

2.3.1 From A

N+1

to A

N

The main idea is to perform the integration over z

N+4

face by face. Let us consider
the points z

i

, i = 1, . . . , N + 3 fixed, so that only z

N+4

= z varies.
Z

C
d

2

zD
T

D
N+1

(z)\{1,2,3} =
X

f2F(T

D
N )

Z

R(f)

d

2

zD
T

D
N+1

(z)\{1,2,3} (2.7)

Here, we decompose the integral in the sum over the disjoint regions R(f) depending
on the face. Their union is the whole complex plane. One can consider for instance,
as a viable set of R(f), the faces themselves. Then, for z 2 R(f), f = (abc) 2 F(TD

N

),
we have D

T

D
N+1

(z)\{1,2,3} � D
TN,f

(z)\{1,2,3} from the maximality property, with T

N,f

the

triangulation of the N + 4 points made of TD

N

, and of the edges (z, a), (z, b), (z, c).
Note that if R(f) = f , T

N,f

is not necessarily equal to T

D

N+1

. A counter-example is
given in figure 6.
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Consider the total integral over N(+3) points

Theorem 2: The sequence is growing as

Proof: Compare integrands when adding/removing a point, using 
theorem 1 and proper decomposition of the plane into some 
kind of ‘‘conformal Delaunay triangulation’’

AN =

Z

CN

N+3Y

v=4

d2zvDTD
N
(z)\{1,2,3}

AN+1 � (N + 1)
⇡2

8
AN
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for probability measures, not only integrals
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Corollary: The partition function defined by the series

has a finite non-zero radius of convergence

and a critical point on the real axis, which is expected to 
correspond to continuum 2D gravity in the scaling limit

|g| < gc

g/gc = e�µRa2

a ! 0

Z(g) =
X

N

AN/N ! gN

F. David,  June 26, 2015 GGI, Firenze, Italy
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• We have an explicit quasi-conformal embedding of planar 
«dressed admissible» 2-dimensional maps onto the complex 
plane

• This point process is well defined for finite number of points

• It has many interesting properties (conformal invariance)

• It is what is expected from continuum 2d quantum gravity

• But we would like to be able to characterise its ‘‘continuum 
limit’’, namely the limit when the density of points become 
infinite, and the corresponding statistical system

• This is more difficult... renormalization group methods needed 
(work in progress)

• Any help and ideas from mathematicians is welcome

• Thank you for your interest!
F. David,  June 26, 2015 GGI, Firenze, Italy
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