Logarithmic correlations in percolation and other geometrical critical phenomena

Jesper L. Jacobsen 1,2

¹Laboratoire de Physique Théorique, École Normale Supérieure, Paris

²Université Pierre et Marie Curie, Paris

Statistical Mechanics, Integrability and Combinatorics, Galileo Galilei Institute, 26 June 2015

Collaborators: Romain Couvreur (ENS), Hubert Saleur (Saclay), Romain Vasseur (Berkeley)

Logarithms in critical phenomeana

• Scale invariance \Rightarrow correlations are power-law or logarithmic

伺下 イヨト イヨ

Logarithms in critical phenomeana

- Scale invariance ⇒ correlations are power-law or logarithmic
- Two possibilities for logarithms:
 - Marginally irrelevant operator: Gives logs upon approach to fixed point theory.
 - Dilatation operator not diagonalisable: Logs directly in the fixed point theory.

A (10) A (10) A (10)

(2) Non-diagonalisable dilatation operator

- Happens when dimensions of two operators collide
- Resonance phenomenon produces a log from two power laws

- A - N

(2) Non-diagonalisable dilatation operator

- Happens when dimensions of two operators collide
- Resonance phenomenon produces a log from two power laws

Cf. Frobenius method for solving second-order differential equations. When the two roots of the indicial equation collide, a log is produced in one solution.

(2) Non-diagonalisable dilatation operator

- Happens when dimensions of two operators collide
- Resonance phenomenon produces a log from two power laws

Cf. Frobenius method for solving second-order differential equations. When the two roots of the indicial equation collide, a log is produced in one solution.

Where do such logarithms appear?

- CFT with c = 0 [Gurarie, Gurarie-Ludwig, Cardy, ...]
 - Percolation, self-avoiding polymers ($c \rightarrow 0$ catastrophe)
 - Quenched random systems (replica limit catastrophe)
- Logarithmic minimal models [Pearce-Rasmussen-Zuber, Read-Saleur]
- For any $d \le d_{uc}$, the upper critical dimension

Logarithms and non-unitarity [Cardy 1999]

Standard unitary CFT

Expand local density Φ(r) on sum of scaling operators φ(r)

$$\langle \Phi(r) \Phi(0)
angle \sim \sum_{ij} rac{{\cal A}_{ij}}{r^{\Delta_i + \Delta_j}}$$

- $A_{ij} \propto \delta_{ij}$ by conformal symmetry [Polyakov 1970]
- $A_{ii} \ge 0$ by reflection positivity
- Hence only power laws appear

Logarithms and non-unitarity [Cardy 1999]

Standard unitary CFT

Expand local density Φ(r) on sum of scaling operators φ(r)

$$\langle \Phi(r) \Phi(0)
angle \sim \sum_{ij} rac{{\cal A}_{ij}}{r^{\Delta_i + \Delta_j}}$$

- $A_{ij} \propto \delta_{ij}$ by conformal symmetry [Polyakov 1970]
- $A_{ii} \ge 0$ by reflection positivity
- Hence only power laws appear

The non-unitary case

- Cancellations may occur
- Suppose $A_{ii} \sim -A_{jj} \rightarrow \infty$ with $A_{ii}(\Delta_i \Delta_j)$ finite
- Then leading term is $r^{-2\Delta_i} \log r$

Geometrical models

Q-state Potts model

- Definition in terms of spins $\sigma_i = 1, 2, ..., Q$ $Z = \sum_{\{\sigma\}} \prod_{(ij)\in E} e^{K\delta_{\sigma_i,\sigma_j}}$
- Reformulation in terms of Fortuin-Kasteleyn clusters $z = \sum_{k=1}^{\infty} O_{k}^{k}(A) (a_{k}^{k} = 1) |A|$

$$Z = \sum_{A \subseteq E} Q^{k(A)} (e^{K} - 1)^{|A|}$$

Geometrical models

Q-state Potts model

• Definition in terms of spins $\sigma_i = 1, 2, ..., Q$ (colours)

$$Z = \sum_{\{\sigma\}} \prod_{(ij)\in E} e^{K\delta_{\sigma_i,\sigma_j}}$$

• Reformulation in terms of Fortuin-Kasteleyn clusters (black)

$$Z = \sum_{A \subseteq E} Q^{k(A)} (e^{K} - 1)^{|A|}$$

< 17 ▶

Geometrical models

Q-state Potts model

• Definition in terms of spins $\sigma_i = 1, 2, ..., Q$ (colours)

$$Z = \sum_{\{\sigma\}} \prod_{(ij)\in E} e^{K\delta_{\sigma_i,\sigma_j}}$$

• Reformulation in terms of Fortuin-Kasteleyn clusters (**black**)

$$Z = \sum_{A \subseteq E} Q^{k(A)} (e^K - 1)^{|A|}$$

- Here shown for Q = 3
- The limit $Q \rightarrow 1$ is percolation
- Surrounding loops (**grey**) satisfy the Temperley-Lieb algebra

Logarithmic correlation functions for $2 \le d \le d_{uc}$

Reminders

- 2 and 3-point functions in any d from global conformal invariance
- This is supposing only conformal invariance!
- Extra discrete symmetries must be taken into account as well
- Physical operators are irreducible under such symmetries [Cardy 1999]
 - O(*n*) symmetry for polymers $(n \rightarrow 0)$
 - S_n replica symmetry for systems with quenched disorder $(n \rightarrow 0)$

Reminders

- 2 and 3-point functions in any d from global conformal invariance
- This is supposing only conformal invariance!
- Extra discrete symmetries must be taken into account as well
- Physical operators are irreducible under such symmetries [Cardy 1999]
 - O(*n*) symmetry for polymers $(n \rightarrow 0)$
 - S_n replica symmetry for systems with quenched disorder $(n \rightarrow 0)$

Correlators in bulk percolation in any dimension

- 2 and 3-point functions in bulk percolation
- Limit $Q \rightarrow 1$ of Potts model with S_Q symmetry
- Structure for any d; but universal prefactors only for d = 2

・ロト ・ 四ト ・ ヨト ・ ヨト

Symmetry classification of operators

• N-spin operators irreducible under S_Q and S_N symmetries

3 > 4 3

Symmetry classification of operators

• N-spin operators irreducible under S_Q and S_N symmetries

Operators acting on one spin

• Most general one-spin operator: $\mathcal{O}(r_i) \equiv \mathcal{O}(\sigma_i) = \sum_{a=1}^{Q} \mathcal{O}_a \delta_{a,\sigma_i}$

• Dimensions of representations: $(Q) = (1) \oplus (Q - 1)$

- Identity operator $1 = \sum_{a} \delta_{a,\sigma_i}$
- Order parameter $\varphi_a(\sigma_i)$ satisfies the constraint $\sum_a \varphi_a(\sigma_i) = 0$

< ロ > < 同 > < 回 > < 回 >

Operators acting symmetrically on two spins

• $Q \times Q$ matrices $\mathcal{O}(r_i) \equiv \mathcal{O}(\sigma_i, \sigma_j) = \sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{ab} \delta_{a,\sigma_i} \delta_{b,\sigma_j}$

• The *Q* operators with $\sigma_i = \sigma_j$ decompose as before: (1) \oplus (*Q* – 1)

• Other
$$\frac{Q(Q-1)}{2}$$
 operators with $\sigma_i \neq \sigma_j$: (1) + (Q - 1) + $\left(\frac{Q(Q-3)}{2}\right)$

Operators acting symmetrically on two spins

• $Q \times Q$ matrices $\mathcal{O}(r_i) \equiv \mathcal{O}(\sigma_i, \sigma_j) = \sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{ab} \delta_{a,\sigma_i} \delta_{b,\sigma_j}$

• The *Q* operators with $\sigma_i = \sigma_j$ decompose as before: (1) \oplus (*Q* – 1)

• Other
$$\frac{Q(Q-1)}{2}$$
 operators with $\sigma_i \neq \sigma_j$: $(1) + (Q-1) + \left(\frac{Q(Q-3)}{2}\right)$

Easy representation theory exercise

$$E = \delta_{\sigma_i \neq \sigma_j} = 1 - \delta_{\sigma_i, \sigma_j}$$

$$\phi_a = \delta_{\sigma_i \neq \sigma_j} \left(\varphi_a(\sigma_i) + \varphi_a(\sigma_j) \right)$$

$$\hat{\psi}_{ab} = \delta_{\sigma_i, a} \delta_{\sigma_j, b} + \delta_{\sigma_i, b} \delta_{\sigma_j, a} - \frac{1}{Q - 2} \left(\phi_a + \phi_b \right) - \frac{2}{Q(Q - 1)} E$$

Operators acting symmetrically on two spins

• $Q \times Q$ matrices $\mathcal{O}(r_i) \equiv \mathcal{O}(\sigma_i, \sigma_j) = \sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{ab} \delta_{a,\sigma_i} \delta_{b,\sigma_j}$

• The *Q* operators with $\sigma_i = \sigma_j$ decompose as before: (1) \oplus (*Q* – 1)

• Other
$$\frac{Q(Q-1)}{2}$$
 operators with $\sigma_i \neq \sigma_j$: (1) + (Q - 1) + $\left(\frac{Q(Q-3)}{2}\right)$

Easy representation theory exercise

$$E = \delta_{\sigma_i \neq \sigma_j} = 1 - \delta_{\sigma_i, \sigma_j}$$

$$\phi_a = \delta_{\sigma_i \neq \sigma_j} \left(\varphi_a(\sigma_i) + \varphi_a(\sigma_j) \right)$$

$$\hat{\psi}_{ab} = \delta_{\sigma_i, a} \delta_{\sigma_j, b} + \delta_{\sigma_i, b} \delta_{\sigma_j, a} - \frac{1}{Q - 2} \left(\phi_a + \phi_b \right) - \frac{2}{Q(Q - 1)} E$$

- Scalar *E* (energy), vector φ_a (order parameter) and tensor $\hat{\psi}_{ab}$
- Highest-rank tensor obtained from symmetrised combinations of δ 's by subtracting suitable multiples of lower-rank tensors

• Constraint
$$\sum_{a=1}^{Q} \phi_a = 0$$
 and $\sum_{a(\neq b)} \hat{\psi}_{ab} = 0$

Example for Q = 4

$$E = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$2\phi_1 = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & -1 \\ 1 & -1 & 0 & -1 \\ 1 & -1 & -1 & 0 \end{bmatrix} 2\phi_2 = \begin{bmatrix} 0 & 1 & -1 & -1 \\ -1 & 1 & 0 & 1 & -1 \\ -1 & 1 & -1 & 0 \end{bmatrix}$$

$$2\phi_3 = \begin{bmatrix} 0 & -1 & 1 & -1 \\ -1 & 0 & 1 & -1 \\ 1 & 1 & 0 & 1 \\ -1 & -1 & 1 & 0 \end{bmatrix} 2\phi_4 = \begin{bmatrix} 0 & -1 & -1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & -1 & 0 & 1 \end{bmatrix}$$

$$6\hat{\psi}_{12} = \begin{bmatrix} 0 & 2 & -1 & -1 \\ 2 & 0 & -1 & -1 \\ -1 & -1 & 0 & 2 \\ -1 & -1 & 2 & 0 \end{bmatrix} 6\hat{\psi}_{13} = \begin{bmatrix} 0 & -1 & 2 & -1 \\ -2 & -1 & 0 & -1 & 2 \\ 2 & -1 & 0 & -1 & 2 \\ -1 & 2 & -1 & 0 \end{bmatrix} 6\hat{\psi}_{14} = \begin{bmatrix} 0 & -1 & -1 & 2 \\ -1 & 0 & 2 & -1 \\ -1 & 2 & 0 & -1 \\ 2 & -1 & -1 & 0 \end{bmatrix} 6\hat{\psi}_{23} = \begin{bmatrix} 0 & -1 & -1 & 2 \\ -1 & 2 & 0 & -1 \\ -1 & 2 & 0 & -1 \\ -1 & 2 & 0 & -1 \end{bmatrix} 6\hat{\psi}_{24} = \begin{bmatrix} 0 & -1 & 2 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & 2 & -1 & 0 \end{bmatrix} 6\hat{\psi}_{34} = \begin{bmatrix} 0 & 2 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & 2 & -1 & 0 \end{bmatrix} 6\hat{\psi}_{34} = \begin{bmatrix} 0 & 2 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 2 & 0 \end{bmatrix}$$

Jesper L. Jacobsen (LPTENS)

GGI, 26 June 2015 9 / 26

- Rank-*k* tensor corresponds to k = 0, 1, ..., N boxes in second row

General decomposition of symmetric N-spin operators

- N = 2 spins: $\square \square \square \oplus \square \oplus \square \oplus \square$
- Rank-*k* tensor corresponds to k = 0, 1, ..., N boxes in second row

General decomposition of any N-spin operator

- Require all spins to be different (or take *N* = #different spins)
- Any Young diagram with Q boxes, of which Q N in first row
- Boxes beyond the first row determine the S_N symmetry of spins

General setup

Vector space

Basis elements:

$$(\mathbf{E}_{\mathbf{a}})_{\sigma} \equiv (\mathbf{E}_{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_N})_{\sigma_1, \sigma_2, \dots, \sigma_N} = \delta_{\mathbf{a}_1, \sigma_1} \delta_{\mathbf{a}_2, \sigma_2} \cdots \delta_{\mathbf{a}_N, \sigma_N}$$

• Action of $p \in S_Q$: $pE_{a_1,a_2,...,a_N} = E_{p(a_1),p(a_2),...,p(a_N)}$

• Action of $\tilde{p} \in S_N$: $\tilde{p}E_{a_1,a_2,...,a_N} = E_{a_{\tilde{p}(1)},a_{\tilde{p}(2)},...,a_{\tilde{p}(N)}}$

General setup

Vector space

Basis elements:

$$(\mathbf{E}_{\mathbf{a}})_{\sigma} \equiv (\mathbf{E}_{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_N})_{\sigma_1, \sigma_2, \dots, \sigma_N} = \delta_{\mathbf{a}_1, \sigma_1} \delta_{\mathbf{a}_2, \sigma_2} \cdots \delta_{\mathbf{a}_N, \sigma_N}$$

• Action of
$$p \in S_Q$$
: $pE_{a_1,a_2,...,a_N} = E_{p(a_1),p(a_2),...,p(a_N)}$

• Action of
$$ilde{p} \in S_N$$
: $ilde{p} E_{a_1,a_2,...,a_N} = E_{a_{ ilde{p}(1)},a_{ ilde{p}(2)},...,a_{ ilde{p}(N)}}$

Tensors acting on N spins

- Representation of S_Q corresponding to Young diagram λ_Q
- Let n be number of boxes in λ_Q, not counting the first row
- Symmetry of *N* spins specified by $\lambda_N \in S_N$
- Wanted tensors: $t_{a_1,a_2,...,a_n}^{\lambda_Q,\lambda_N} = \frac{1}{N} e_{\lambda_Q}^{(a)} \tilde{e}_{\lambda_N}^{(a)} E_{a_1,...,a_n,b_1,...,b_{N-n}}$ where $e_{\lambda_Q}^{(a)}$ and $\tilde{e}_{\lambda_N}^{(a)}$ are Young symmetrisers.

Some examples

N = 2 spins in representation $\lambda_Q = [Q - 2, 2]$

• Recall:
$$\hat{\psi}_{ab} = \delta_{\sigma_i,a}\delta_{\sigma_j,b} + \delta_{\sigma_i,b}\delta_{\sigma_j,a} - \frac{1}{Q-2}(\phi_a + \phi_b) - \frac{2}{Q(Q-1)}E$$

- Obtained by imposing $\sum_{a\neq b} \hat{\psi}_{ab} = 0$. Correct, but a bit *ad hoc*.
- In the general setup we find (with present notation):

$$t_{ab}^{[Q-2,2],[2]} = E_{ab} + E_{ba} - \frac{1}{Q-2} \left(t_a^{[Q-1,1],[2]} + t_b^{[Q-1,1],[2]} \right) + \frac{2}{(Q-1)(Q-2)} t^{[Q],[2]}$$

∃ ► < ∃ ►</p>

< 17 ▶

Some examples

N = 2 spins in representation $\lambda_Q = [Q - 2, 2]$

• Recall:
$$\hat{\psi}_{ab} = \delta_{\sigma_i,a}\delta_{\sigma_j,b} + \delta_{\sigma_i,b}\delta_{\sigma_j,a} - \frac{1}{Q-2}(\phi_a + \phi_b) - \frac{2}{Q(Q-1)}E$$

- Obtained by imposing $\sum_{a\neq b} \hat{\psi}_{ab} = 0$. Correct, but a bit *ad hoc*.
- In the general setup we find (with present notation):

$$t_{ab}^{[Q-2,2],[2]} = E_{ab} + E_{ba} - \frac{1}{Q-2} \left(t_a^{[Q-1,1],[2]} + t_b^{[Q-1,1],[2]} \right) \\ + \frac{2}{(Q-1)(Q-2)} t^{[Q],[2]}$$

Conclusions this far

- Subtracted tensors have same λ_N representation
- But λ_Q representations, stripped of the first row, are *smaller*

Jesper L. Jacobsen (LPTENS)

Logarithmic correlations

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

N = 3 spins in representation $\lambda_Q = [Q - 3, 2, 1]$

$$\begin{aligned} t_{abc}^{[Q-3,2,1],[2,1]} &= E_{abc} + E_{bac} - E_{cba} - E_{cab} \\ &- \frac{1}{2(Q-1)} \left(2t_{ab} - t_{ca} - t_{cb} \right)^{[Q-2,2],[2,1]} \\ &- \frac{1}{4(Q-3)} \left(2t_{ac} + 2t_{bc} \right)^{[Q-2,1,1],[2,1]} \\ &- \frac{1}{Q(Q-2)} \left(2t_c - t_a - t_b \right)^{[Q-1,1],[2,1]} \end{aligned}$$

Jesper L. Jacobsen (LPTENS)

GGI, 26 June 2015 13 / 26

æ

N = 3 spins in representation $\lambda_Q = [Q - 3, 2, 1]$

$$t_{abc}^{[Q-3,2,1],[2,1]} = E_{abc} + E_{bac} - E_{cba} - E_{cab}$$

- $\frac{1}{2(Q-1)} (2t_{ab} - t_{ca} - t_{cb})^{[Q-2,2],[2,1]}$
- $\frac{1}{4(Q-3)} (2t_{ac} + 2t_{bc})^{[Q-2,1,1],[2,1]}$
- $\frac{1}{Q(Q-2)} (2t_c - t_a - t_b)^{[Q-1,1],[2,1]}$

Confirms the general picture

Note that we cannot eliminate > 1 box in any given column.

This can be understood from the antisymmetrisation.

< 回 > < 三 > < 三 >

$$\begin{split} t_{a_{1},\dots,a_{n}}^{\lambda_{Q},\lambda_{N}} &= e_{\lambda_{Q}}^{(a)} \tilde{e}_{\lambda_{N}}^{(a)} \sum_{i_{k} \neq a_{m}} E_{a_{1},\dots,a_{n},i_{1},\dots,i_{N-n}} - \sum_{\lambda_{Q}' \subset \lambda_{Q}} \frac{1}{A_{\lambda_{Q}'}(Q)} e_{\lambda_{Q}}^{(a)} t_{a(\lambda_{Q}')}^{\lambda_{Q}',\lambda_{N}} \\ \lambda_{Q} &= (\lambda_{0},\lambda_{1},\dots,\lambda_{p}) \\ \lambda_{Q}' &= (\lambda_{0}',\lambda_{1}',\dots,\lambda_{p}') \\ A_{\lambda_{Q}'}(Q) &\propto \prod_{i=1}^{p} \frac{(Q-n+i-1-\lambda_{i}')!}{(Q-n+i-1-\lambda_{i})!} \end{split}$$

2

イロト イヨト イヨト イヨト

$$\begin{aligned} t_{a_{1},\ldots,a_{n}}^{\lambda_{Q},\lambda_{N}} &= e_{\lambda_{Q}}^{(a)} \tilde{e}_{\lambda_{N}}^{(a)} \sum_{i_{k} \neq a_{m}} E_{a_{1},\ldots,a_{n},i_{1},\ldots,i_{N-n}} - \sum_{\lambda_{Q}' \subset \lambda_{Q}} \frac{1}{A_{\lambda_{Q}'}(Q)} e_{\lambda_{Q}}^{(a)} t_{a(\lambda_{Q}')}^{\lambda_{Q}',\lambda_{N}} \\ \lambda_{Q} &= (\lambda_{0},\lambda_{1},\ldots,\lambda_{p}) \\ \lambda_{Q}' &= (\lambda_{0}',\lambda_{1}',\ldots,\lambda_{p}') \\ A_{\lambda_{Q}'}(Q) &\propto \prod_{i=1}^{p} \frac{(Q-n+i-1-\lambda_{i}')!}{(Q-n+i-1-\lambda_{i})!} \end{aligned}$$

Poles for Q = 0, 1, 2, ...

• What does this mean, and how do we cure these divergences?

Jesper L. Jacobsen (LPTENS)

3

イロト イ理ト イヨト イヨト

Geometrical interpretation in terms of FK clusters

One-spin results

$$\langle l(r)l(0)
angle = 1,$$

 $\langle \varphi_a(r)\varphi_b(0)
angle = rac{1}{Q}\left(\delta_{a,b} - rac{1}{Q}
ight)\mathbb{P}\left(igcar{l}
ight)$

Jesper L. Jacobsen (LPTENS)

3 > 4 3

< 17 ▶

One-spin results

$$egin{aligned} &\langle l(r)l(0)
angle =1\,, \ &\langle arphi_{a}(r)arphi_{b}(0)
angle =rac{1}{Q}\left(\delta_{a,b}-rac{1}{Q}
ight)\mathbb{P}\left(igin{bmatrix} {igin{aligned} {igin{aligned} {eta} \\ {eta}$$

- In general we do not know exactly (even in d = 2) the probability $\mathbb{P}\left(\bigcup \right)$ that the two spins belong to the same FK cluster.
- But its large-distance asymptotics is predicted from CFT.

Two-spin results

2

イロト イヨト イヨト イヨト

Two-spin results

Remark on notation

Operators are symmetric, so $\mathbb{P}(\mathfrak{ll})$ is short-hand for $\mathbb{P}(\mathfrak{ll}) + \mathbb{P}(\mathfrak{X})$, etc. E.g. $\left\langle t_{ab}^{[Q-2,1,1],[1,1]} t_{cd}^{[Q-2,1,1],[1,1]} \right\rangle$ would be proportional to $\mathbb{P}(\mathfrak{ll}) - \mathbb{P}(\mathfrak{X})$.

Jesper L. Jacobsen (LPTENS)

ヘロン 人間 とくほ とくほ とう

Classification of d > 2 Potts operators in by S_Q and S_N

•
$$\left\langle t_a^{\lambda_Q^1,\lambda_N^1} t_b^{\lambda_Q^2,\lambda_N^2} \right\rangle = 0$$
 if $\lambda_Q^1 \neq \lambda_Q^2$.

- Akin to symmetry classification of quasi-primaries in d > 2 CFT.
- Highest-rank (k = N) tensor makes N clusters propagate.

< ロ > < 同 > < 回 > < 回 >

Classification of d > 2 Potts operators in by S_Q and S_N

•
$$\left\langle t_a^{\lambda_Q^1,\lambda_N^1} t_b^{\lambda_Q^2,\lambda_N^2} \right\rangle = 0$$
 if $\lambda_Q^1 \neq \lambda_Q^2$.

- Akin to symmetry classification of quasi-primaries in *d* > 2 CFT.
- Highest-rank (k = N) tensor makes N clusters propagate.

Interpretation as Kac operators $\varphi_{r,s}$ in d = 2 bulk CFT

•
$$t_{a_1,...,a_N}^{[Q-N,N],[N]} = \varphi_{0,N} \otimes \varphi_{0,N}$$
 for $N \ge 2$ symmetric clusters

- Also known as 2*N*-leg watermelon operator (cf. Coulomb gas)
- $t_a^{[Q-1,1],[1]} = \varphi_{1/2,0} \otimes \varphi_{-1/2,0}$ for one cluster (which can wrap)

Classification of d > 2 Potts operators in by S_Q and S_N

•
$$\left\langle t_a^{\lambda_Q^1,\lambda_N^1} t_b^{\lambda_Q^2,\lambda_N^2} \right\rangle = 0$$
 if $\lambda_Q^1 \neq \lambda_Q^2$.

- Akin to symmetry classification of quasi-primaries in *d* > 2 CFT.
- Highest-rank (k = N) tensor makes N clusters propagate.

Interpretation as Kac operators $\varphi_{r,s}$ in d = 2 bulk CFT

- $t_a^{[Q-1,1],[1]} = \varphi_{1/2,0} \otimes \varphi_{-1/2,0}$ for one cluster (which can wrap)
- $t_{a_1,a_2}^{[Q-2,1,1],[1,1]} = \varphi_{1/2,2} \otimes \varphi_{-1/2,2}$ for two antisymmetric clusters
- $t_{a_1,a_2,a_3}^{[Q-3,2,1],[2,1]} = \varphi_{1/3,3} \otimes \varphi_{-1/3,3}$ for three [2, 1] clusters

Classification of d > 2 Potts operators in by S_Q and S_N

•
$$\left\langle t_a^{\lambda_Q^1,\lambda_N^1} t_b^{\lambda_Q^2,\lambda_N^2} \right\rangle = 0$$
 if $\lambda_Q^1 \neq \lambda_Q^2$.

- Akin to symmetry classification of quasi-primaries in *d* > 2 CFT.
- Highest-rank (k = N) tensor makes N clusters propagate.

Interpretation as Kac operators $\varphi_{r,s}$ in d = 2 bulk CFT

•
$$t_{a_1,...,a_N}^{[Q-N,N],[N]} = \varphi_{0,N} \otimes \varphi_{0,N}$$
 for $N \ge 2$ symmetric clusters

- Also known as 2N-leg watermelon operator (cf. Coulomb gas)
- $t_a^{[Q-1,1],[1]} = \varphi_{1/2,0} \otimes \varphi_{-1/2,0}$ for one cluster (which can wrap)
- $t_{a_1,a_2}^{[Q-2,1,1],[1,1]} = \varphi_{1/2,2} \otimes \varphi_{-1/2,2}$ for two antisymmetric clusters
- $t_{a_1,a_2,a_3}^{[Q-3,2,1],[2,1]} = \varphi_{1/3,3} \otimes \varphi_{-1/3,3}$ for three [2, 1] clusters
- Makes sense within Jones-Temperley-Lieb representation theory.

Continuum limit: Making sense of $\hat{\psi}_{ab} = t_{ab}^{[Q-2,2],[2]}$

Energy operator $\varepsilon_i = E - \langle E \rangle$, with $E = \delta_{\sigma_i \neq \sigma_{i+1}}$ invariant

$$\langle \varepsilon(r)\varepsilon(0)
angle = (Q-1)\widetilde{A}(Q)r^{-2\Delta_{\varepsilon}(Q)},$$

- All correlators of ε_i vanish at Q = 1 (true already on the lattice)
- In 2D: exponent $\Delta_{\varepsilon}(Q) = d \nu^{-1}$ known exactly

< 口 > < 同 > < 回 > < 回 > < 回 > <

Continuum limit: Making sense of $\hat{\psi}_{ab} = t_{ab}^{[Q-2,2],[2]}$

Energy operator $\varepsilon_i = E - \langle E \rangle$, with $E = \delta_{\sigma_i \neq \sigma_{i+1}}$ invariant

$$\langle \varepsilon(r)\varepsilon(0)
angle = (Q-1)\tilde{A}(Q)r^{-2\Delta_{\varepsilon}(Q)},$$

• All correlators of ε_i vanish at Q = 1 (true already on the lattice)

• In 2D: exponent $\Delta_{\varepsilon}(Q) = d - \nu^{-1}$ known exactly

Two-cluster operator $\hat{\psi}_{ab}(\sigma_i, \sigma_{i+1})$

$$\langle \hat{\psi}_{ab}(r)\hat{\psi}_{cd}(0)
angle = rac{2A(Q)}{Q^2} \left(\delta_{ac}\delta_{bd} + \delta_{ad}\delta_{bc} - rac{1}{Q-2} \left(\delta_{ac} + \delta_{ad} + \delta_{bc} + \delta_{bd}
ight) + rac{2}{(Q-1)(Q-2)}
ight) imes rac{r^{-2\Delta_2(Q)}}{CFT \text{ part}},$$

• In 2D: exponent $\Delta_2 = \frac{(4+g)(3g-4)}{8g}$ known from Coulomb gas

ヘロン 人間 とくほ とくほ とう

Percolation limit $Q \rightarrow 1$

Avoiding the $Q \rightarrow 1$ catastrophe

• The "scalar" part of $\langle \hat{\psi}_{ab}(r) \hat{\psi}_{cd}(0)
angle$ diverges

• But
$$\Delta_2 = \Delta_{arepsilon} = rac{5}{4}$$
 at $Q =$ 1 in 2D

• And actually $\Leftrightarrow~d^{F}_{
m red~bonds}=
u^{-1}$ for all 2 $\leq d\leq d_{
m u.c.}$ [Coniglio 1982]

• So we can cure the divergence by mixing the two operators: $\hat{2}$

$$\tilde{\psi}_{ab}(r) = \hat{\psi}_{ab}(r) + \frac{2}{Q(Q-1)}\varepsilon(r).$$

Percolation limit $Q \rightarrow 1$

Avoiding the $Q \rightarrow 1$ catastrophe

• The "scalar" part of $\langle \hat{\psi}_{ab}(r) \hat{\psi}_{cd}(0)
angle$ diverges

• But
$$\Delta_2 = \Delta_arepsilon = rac{5}{4}$$
 at $Q =$ 1 in 2D

• And actually $\Leftrightarrow~d^{F}_{
m red~bonds}=
u^{-1}$ for all 2 $\leq d\leq d_{
m u.c.}$ [Coniglio 1982]

• So we can cure the divergence by mixing the two operators: $\tilde{\psi}_{ab}(r) = \hat{\psi}_{ab}(r) + \frac{2}{Q(Q-1)}\varepsilon(r).$

Using $\langle \hat{\psi}_{ab} \varepsilon \rangle = 0$, we find a finite limit at Q = 1

$$egin{aligned} &\langle ilde{\psi}_{ab}(r) ilde{\psi}_{cd}(0)
angle &= 2A(1)r^{-5/2}\left(\delta_{ac}+\delta_{ad}+\delta_{bc}+\delta_{bc}+\delta_{ac}\delta_{bd}+\delta_{ad}\delta_{bc}
ight) \ &+ 4A(1)rac{2\sqrt{3}}{\pi}r^{-5/2} imes\log r, \end{aligned}$$

where we assumed that $A(1) = \tilde{A}(1)$.

Where does the log come from?

$$\frac{1}{Q-1} \left(r^{-2\Delta_{\varepsilon}(Q)} - r^{-2\Delta_{2}(Q)} \right) \sim 2 \left. \frac{\mathrm{d}(\Delta_{2} - \Delta_{\varepsilon})}{\mathrm{d}Q} \right|_{Q=1} r^{-5/2} \log r$$

We need 2D only to compute this derivative (universal prefactor)

3 > 4 3

Where does the log come from?

$$\frac{1}{Q-1} \left(r^{-2\Delta_{\varepsilon}(Q)} - r^{-2\Delta_{2}(Q)} \right) \sim 2 \left. \frac{\mathrm{d}(\Delta_{2} - \Delta_{\varepsilon})}{\mathrm{d}Q} \right|_{Q=1} r^{-5/2} \log r$$

We need 2D only to compute this derivative (universal prefactor)

Geometrical interpretation of this logarithmic correlator?

- Idea: Translate the spin expressions into FK cluster formulation
- In addition to the above results, it follows from the representation theory that
 - $\langle \varepsilon \hat{\psi}_{ab} \rangle = \langle \varepsilon \phi_a \rangle = \langle \hat{\psi}_{ab} \phi_c \rangle = 0$, and also $\langle \hat{\psi}_{ab} \rangle = \langle \phi_a \rangle = \langle \varepsilon \rangle = 0$.
- All correlators take a simple form in terms of FK clusters

A B A A B A

Recall that:

$$\langle \hat{\psi}_{ab}(\sigma_{i_1},\sigma_{i_1+1})\hat{\psi}_{cd}(\sigma_{i_2},\sigma_{i_2+1})\rangle \propto \mathbb{P}_2(r=r_1-r_2).$$

$$\mathbb{P}_{2}(r_{1} - r_{2}) = \begin{bmatrix} (i_{1}, i_{1} + 1) \notin \text{ same cluster} \\ (i_{2}, i_{2} + 1) \notin \text{ same cluster} \\ \text{two clusters } 1 \rightarrow 2 \end{bmatrix}$$

This probability should thus behave as $r^{-2\Delta_2}$

.

• Recall also the divergence-curing combination

$$\tilde{\psi}_{ab}(r_i) \equiv \tilde{\psi}_{ab}(\sigma_i, \sigma_{i+1}) = \hat{\psi}_{ab}(\sigma_i, \sigma_{i+1}) + \frac{2}{Q(Q-1)}\varepsilon(\sigma_i, \sigma_{i+1})$$

Recall also the divergence-curing combination

$$\tilde{\psi}_{ab}(r_i) \equiv \tilde{\psi}_{ab}(\sigma_i, \sigma_{i+1}) = \hat{\psi}_{ab}(\sigma_i, \sigma_{i+1}) + \frac{2}{Q(Q-1)}\varepsilon(\sigma_i, \sigma_{i+1})$$

• Expression in terms of simple percolation probabilities $\mathbb{P}_2 = \mathbb{P}\left(\left(\bigcup_{i=1}^{i} \right), \mathbb{P}_1 = \mathbb{P}\left(\left(\bigcup_{i=1}^{i} \right), \mathbb{P}_0 = \mathbb{P}\left(\bigcup_{i=1}^{i=1} \right), \text{ and } \mathbb{P}_{\neq} \equiv \mathbb{P}(\sigma_i \neq \sigma_{i+1})$ Recall also the divergence-curing combination

$$\tilde{\psi}_{ab}(r_i) \equiv \tilde{\psi}_{ab}(\sigma_i, \sigma_{i+1}) = \hat{\psi}_{ab}(\sigma_i, \sigma_{i+1}) + \frac{2}{Q(Q-1)}\varepsilon(\sigma_i, \sigma_{i+1})$$

• Expression in terms of simple percolation probabilities $\mathbb{P}_2 = \mathbb{P}\left(\bigcup_{i=1}^{I}\right), \mathbb{P}_1 = \mathbb{P}\left(\bigcup_{i=1}^{I}\right), \mathbb{P}_0 = \mathbb{P}\left(\bigcup_{i=1}^{I}\right), \text{ and } \mathbb{P}_{\neq} \equiv \mathbb{P}(\sigma_i \neq \sigma_{i+1})$

Exact two-point function of $\tilde{\psi}_{ab}$ at Q = 1

$$\begin{split} \langle \tilde{\psi}_{ab}(r_1)\tilde{\psi}_{cd}(r_2)\rangle &= 2\left(\delta_{ac}+\delta_{ad}+\delta_{bc}+\delta_{bd}+\delta_{ac}\delta_{bd}+\delta_{ad}\delta_{bc}\right)\times \mathbb{P}_2(r) \\ &+ 4\left[\mathbb{P}_0(r)+\mathbb{P}_1(r)-2\mathbb{P}_2(r)-\mathbb{P}_{\neq}^2\right]. \end{split}$$

Exact two-point function of $\tilde{\psi}_{ab}$ at $\mathbf{Q} = \mathbf{1}$

$$\begin{split} \langle \tilde{\psi}_{ab}(r_1)\tilde{\psi}_{cd}(r_2)\rangle &= 2\left(\delta_{ac}+\delta_{ad}+\delta_{bc}+\delta_{bd}+\delta_{ac}\delta_{bd}+\delta_{ad}\delta_{bc}\right)\times \mathbb{P}_2(r) \\ &+ 4\left[\mathbb{P}_0(r)+\mathbb{P}_1(r)-2\mathbb{P}_2(r)-\mathbb{P}_{\neq}^2\right]. \end{split}$$

(4) (5) (4) (5)

< 17 ▶

Exact two-point function of $\tilde{\psi}_{ab}$ at $\mathbf{Q} = \mathbf{1}$

$$\begin{split} \langle \tilde{\psi}_{ab}(r_1)\tilde{\psi}_{cd}(r_2)\rangle &= 2\left(\delta_{ac}+\delta_{ad}+\delta_{bc}+\delta_{bd}+\delta_{ac}\delta_{bd}+\delta_{ad}\delta_{bc}\right)\times \mathbb{P}_2(r) \\ &+ 4\left[\mathbb{P}_0(r)+\mathbb{P}_1(r)-2\mathbb{P}_2(r)-\mathbb{P}_{\neq}^2\right]. \end{split}$$

Reminder: CFT expression

$$\begin{split} \langle \tilde{\psi}_{ab}(r)\tilde{\psi}_{cd}(0)\rangle &= 2A(1)r^{-5/2}\left(\delta_{ac}+\delta_{ad}+\delta_{bc}+\delta_{bd}+\delta_{ac}\delta_{bd}+\delta_{ad}\delta_{bc}\right) \\ &+ 4A(1)\frac{2\sqrt{3}}{\pi}r^{-5/2}\times\log r, \end{split}$$

Jesper L. Jacobsen (LPTENS)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Comparison with the CFT expression yields geometrical interpretation $F(r) \equiv \frac{\mathbb{P}_0(r) + \mathbb{P}_1(r) - \mathbb{P}_{\neq}^2}{\mathbb{P}_2(r)} \sim \underbrace{\frac{2\sqrt{3}}{\pi}}_{\text{universal}} \log r,$

< 17 ▶

Comparison with the CFT expression yields geometrical interpretation $F(r) \equiv \frac{\mathbb{P}_0(r) + \mathbb{P}_1(r) - \mathbb{P}_{\neq}^2}{\mathbb{P}_2(r)} \sim \underbrace{\frac{2\sqrt{3}}{\pi}}_{\text{universal}} \log r,$

Jesper L. Jacobsen (LPTENS)

Logarithmic observables in Potts model for 2 ≤ d ≤ d_{uc} Occurs for all Q = 0, 1, 2, ...

- Prediction of logarithmic structure for any d
- Universal prefactor given by derivative of critical exponents
 - Hence only explicit values in d = 2
- Logarithmic dependence can be checked numerically
- Classification of all (S_Q, S_N) operators (cf. Young diagrams)
- Even in d = 2, new Kac operators with fractional labels

不同 トイモトイモ

- Logarithmic observables in Potts model for $2 \le d \le d_{uc}$
 - Occurs for all *Q* = 0, 1, 2, . . .
- Prediction of logarithmic structure for any d
- Universal prefactor given by derivative of critical exponents
 Hence only explicit values in *d* = 2
- Logarithmic dependence can be checked numerically
- Classification of all (S_Q, S_N) operators (cf. Young diagrams)
- Even in d = 2, new Kac operators with fractional labels

不同 トイモトイモ

- Logarithmic observables in Potts model for $2 \le d \le d_{uc}$
 - Occurs for all *Q* = 0, 1, 2, . . .
- Prediction of logarithmic structure for any d
- Universal prefactor given by derivative of critical exponents
 - Hence only explicit values in d = 2
- Logarithmic dependence can be checked numerically
- Classification of all (S_Q, S_N) operators (cf. Young diagrams)
- Even in d = 2, new Kac operators with fractional labels

- Logarithmic observables in Potts model for $2 \le d \le d_{uc}$
 - Occurs for all *Q* = 0, 1, 2, . . .
- Prediction of logarithmic structure for any d
- Universal prefactor given by derivative of critical exponents
 - Hence only explicit values in *d* = 2
- Logarithmic dependence can be checked numerically
- Classification of all (S_Q, S_N) operators (cf. Young diagrams)
- Even in d = 2, new Kac operators with fractional labels

- Logarithmic observables in Potts model for $2 \le d \le d_{uc}$
 - Occurs for all *Q* = 0, 1, 2, . . .
- Prediction of logarithmic structure for any d
- Universal prefactor given by derivative of critical exponents
 - Hence only explicit values in *d* = 2
- Logarithmic dependence can be checked numerically
- Classification of all (S_Q, S_N) operators (cf. Young diagrams)
- Even in d = 2, new Kac operators with fractional labels

- Logarithmic observables in Potts model for $2 \le d \le d_{uc}$
 - Occurs for all *Q* = 0, 1, 2, . . .
- Prediction of logarithmic structure for any d
- Universal prefactor given by derivative of critical exponents
 - Hence only explicit values in *d* = 2
- Logarithmic dependence can be checked numerically
- Classification of all (S_Q, S_N) operators (cf. Young diagrams)
- Even in d = 2, new Kac operators with fractional labels

Thank you!

Firenze è come un albero fiorito che in piazza dei Signori ha tronco e fronde, ma le radici forze nuove apportano dalle convalli limpide e feconde! E Firenze germoglia ed alle stelle salgon palagi saldi e torri snelle!

∃ ▶ ∢ ∃

Thank you!

Firenze è come un albero fiorito che in piazza dei Signori ha tronco e fronde, ma le radici forze nuove apportano dalle convalli limpide e feconde! E Firenze germoglia ed alle stelle salgon palagi saldi e torri snelle!

L'Arno, prima di correre alla foce, canta baciando piazza Santa Croce, e il suo canto è sì dolce e sì sonoro che a lui son scesi i ruscelletti in coro! Così scendanvi dotti in arti e scienze a far più ricca e splendida Firenze!

Thank you!

Firenze è come un albero fiorito che in piazza dei Signori ha tronco e fronde, ma le radici forze nuove apportano dalle convalli limpide e feconde! E Firenze germoglia ed alle stelle salgon palagi saldi e torri snelle!

L'Arno, prima di correre alla foce, canta baciando piazza Santa Croce, e il suo canto è sì dolce e sì sonoro che a lui son scesi i ruscelletti in coro! Così scendanvi dotti in arti e scienze a far più ricca e splendida Firenze!

So may experts in arts and sciences descend here to make Florence richer and more splendid!