RANDOM MATRICES, INTEFACES AND HYDRODYNAMICS Singularities

P. Wiegmann

review of works with friends:

Anton Zabrodin, Eldad Bettelheim, Razvan Teodorescu, Seun Yeop Lee

June 26, 2015

<ロト < 団 ト < 巨 ト < 巨 ト 三 の Q () 1/38

List of Objects

- Random Matrix Models: Equilibrium Measure;
- Geometrical Growth Models;
- Orthogonal Polynomials: Distribution of zeros;
- Hydrodynamics Singularities;

Normal Random Matrices

Normal matrix $M \Leftrightarrow [M, M^{\dagger}] = 0 \Leftrightarrow$ diagonalizable by a unitary transform.

 $M = U^{-1} \operatorname{diag}(z_1, \ldots, z_N) U, \quad z_i - \operatorname{complex}$

The eigenvalues of $N \times N$ normal matrices with the probability distribution

$$\operatorname{Prob}(M)dM = \frac{1}{\mathcal{Z}}e^{-\frac{1}{\hbar}\operatorname{Tr}Q(M)}dM$$

distributes by the probability density

$$P(z_1,...,z_N) = \frac{1}{\mathcal{Z}} \left| \prod_{j$$

Q1. What is the distribution of eigenvalues for

$$\hbar \to 0$$
, $N \to \infty$, $t = \hbar N =$ fixed?

The answer depends on the potential *Q*.

2D Dyson's Diffusion

Brownian motion of a Normal Matrix

 $\dot{M} = M^{\dagger} + V'(M) +$ Brownian Motion

Eqenvalues (complex) perform 2D Dyson diffusion

$$\dot{z}_i = \sum_{i\neq j} \frac{\hbar}{\bar{z}_i - \bar{z}_j} + \bar{z}_i + V'(z_i) + \dot{\xi}_i, \quad \langle \xi_i(t)\bar{\xi}_j(t') \rangle = 4\delta_{ij}(t-t').$$

Probability $\frac{1}{2}e^{-\frac{1}{\hbar}\operatorname{Tr} Q(M)}$ is the Gibbs distribution of Dyson's diffusion.

Depending on V' there may or <u>not</u> may be Gibbs distribution.

Ginibre Ensemple and its deformations

$$P(z_1,...,z_N) = \frac{1}{\mathcal{Z}} \Big| \prod_{j < k}^n (z_j - z_k) \Big|^2 \exp\left(-\frac{1}{\hbar} \sum_{j=1}^N Q(z_j)\right),$$

A choice of Q(z) - **Gaussian** plus **harmonic** function when *V* is holomorphic.

Ginibre ensemble: $Q(z) = |z|^2$,

Deformed Ginibre ensemble:

 $Q(z) = |z|^2 + V(z) + \overline{V(z)},$ $\Delta Q = 4.$

> <ロト 4 団 ト 4 三 ト 4 三 ト 三 の Q () 5/38

Ginibre Ensemble

Support is the disk of the area $\pi\hbar N$

Equilibrium measure

Continuum limit:

$$\rho(z) = \frac{1}{N} \sum_{j=1}^{N} \delta(z - z_j)$$
$$\langle \rho \rangle = \frac{\Delta Q}{4 \operatorname{Area}} = \frac{1}{\operatorname{Area}} \quad \text{on the support of } \rho.$$

What is support of density?

It depends on the deformation holomorphic function V(z)

The eigenvalues are 2D Coulomb interacting electrons:

$$\frac{1}{Z_n} e^{-\frac{1}{\hbar} E(z_1, ..., z_N)}, \quad \frac{1}{\hbar} E(z_1, ... z_N) := \frac{1}{\hbar} \sum_{j=1}^N Q(z_j) - 2 \sum_{j < k} \log |z_j - z_k|.$$

Continuum limit: Defining $\rho(z) = \frac{1}{N} \sum_{j=1}^{N} \delta(z - z_j)$, we have

$$E(z_1,...,z_n) = \hbar N\left(\int_{\mathbb{C}} Q(z')\rho(z')d^2z' - \hbar N \iint_{\mathbb{C}^2} \rho(z)\rho(z')\log|z-z'|d^2z\,d^2z'\right).$$

the condition for the optimal configuration is obtained when

$$0 = Q(z) - \hbar N \int_{\mathbf{D}} \log |z - z'| \rho(z') d^2 z' \quad \text{on the support of } \rho.$$

Applying Laplace operator

$$ho(z) = rac{1}{\pi \hbar N} = rac{1}{ ext{Area}}$$
 on the support of ho .

Bratwurst

Take $V(z) = -c \log(z - a)$ such that $Q(z) = |z|^2 - 2c \log |z - a|$ (c > 0).

Growth

Change the size of the matrix

 $N \rightarrow N + n$

Area of Equilibrium measure changes $t \rightarrow t + \delta t$, $\delta t = \pi \hbar n$

Q: What is the velocity?

Growth process

Area $t := \pi N\hbar$ is identified with time.

Define the Newtonian potential U(z) by

$$U(z) = t \int_{\mathbf{D}} \log |z - w| \mathrm{d}^2 w$$

Equilibrium condition:

$$\pi Q(z) = U(z), \text{ inside } \mathbf{D},$$

$$\bar{z} = \partial_z U, \text{ inside } \mathbf{D},$$

$$\frac{d}{dt} \bar{z} = \text{velocity} = \partial_z \left[\frac{d}{dt} U(z) \right], \text{ on the boundary}$$

$$\frac{d}{dt} U(z) \text{ is a harmonic function outside } \mathbf{D},$$

$$\frac{d}{dt} U(z) = \log |z| + O(1), \quad z \to \infty,$$

$$\frac{d}{dt} U(z) = 0 \text{ on } \partial \mathbf{D},$$

Velocity of the boundary $= \frac{d}{dt}U(z)$ is the Harmonic Measure of **D**

: うくで 11/38 A probability for BM to arrive on an element of the boundary is a harmonic measure of the boundary:

Probability to land on ds:

$$\left|\frac{\mathrm{d}f}{\mathrm{d}z}\right| = |\nabla_n G(z,\infty)| ds, \quad z \in \partial D$$
$$-\Delta G(z,z') = \delta(z-z'), \quad G|_{z \in \partial D} = 0$$

f(z) is a univalent map from the exterior of the domain to the exterior of the unit circle

Geometrical (Laplacian) Growth

Hele-Shaw Problem

HS Hele-Shaw, inventor of the Hele-Shaw cell (and the variable-pitch propeller)

Physical setup 1898

- Navier-Stokes Equation: $\dot{v} + (v \cdot \nabla)v = \rho^{-1}\nabla p + \mu\Delta v$
- Small Reynolds number no inertia $0 = \rho^{-1} \nabla p + \mu \Delta v$
- incompresibility: $\rho = \text{const}, \quad \nabla \cdot v = 0;$

- 2D Geometry Poiseuille's law: $\Delta v \approx \partial_z^2 v \approx \frac{v}{d^2} \Rightarrow v = -\frac{d^2}{12v}p;$
- no viscosity on the boundary:
 ⇒ *p* = 0 on the boundary.

Darcy Law: $v = -\nabla p$, $\Delta p = 0$; $p|_{\partial D} = 0$; $p|_{\infty} = -\log |z|$

Experiment: Hele-Shaw cell, Fingering instability

FIGURE: Viscous incompressible fluid pushed out by inviscid incompressible fluid

Blow hard, otherwise the surface tension will take over.

Fingering Instability

FIGURE: Flame (no convection),

Serenga river (Russia), Lung vessels

Cusp-Singularities

FIGURE: Cusp: end of a smooth growth

Cusp-Singularities: Growing Deltoid

$$P(z_1,...,z_N) = \frac{1}{\mathcal{Z}} \Big| \prod_{j$$

Deformed Ginibre ensemble: $Q(z) = |z|^2 + t_3 z^3 + \overline{t_3 z^3}$

Hypotrochoid grows until it reaches a critical point.

Cusp-Singularities

Deformed Ginibre ensemble: $Q(z) = |z|^2 + V(z) + \overline{V(z)}$

Almost any deformation leads to a cusp singularity: $y^p \sim x^q$

The most generic is (2,3)- singularity

$$y^2 \sim x^3$$

Diffusion limited aggregation (DLA)

Fractal pattern with (numerically computed) dimension

 $D_H = 1.71004...$

Structure of this pattern is the main problem one the subject

Zeros of Complexified Orthogonal Polynomials

Unstable Diffusion

 $V = t_3 z^3$ - an example when the integral $\int e^{-\frac{1}{\hbar} \text{tr}Q} dM$ diverges, there is no Gibbs distribution:

$$\dot{z}_i = \sum_{i \neq j} \frac{\hbar}{\bar{z}_i - \bar{z}_j} + \bar{z}_i + V'(z_i) + \dot{\xi}_i, \quad \langle \xi_i(t)\bar{\xi}_j(t') \rangle = 4\delta_{ij}(t-t').$$

Particle escape. One keeps to pump particles to compensate escaping particles.

Bi-orthogonal polynomials and growth process

The measure for the subset of the eigenvalues, $z_1, ..., z_k$, $(k \leq n)$, is given by

$$P(z_1,...,z_N) = \frac{1}{\mathcal{Z}} \Big| \prod_{j$$

Bi-orthogonal polynomials $p_j = z^j + ...$

$$h_j \delta_{ij} = \int_{\mathbb{C}} p_i(z) \overline{p_j(z)} \mathbf{e}^{-\frac{1}{\hbar}Q(z)} \mathbf{d}^2 z.$$

Polynomial

$$p_n(z) = \langle \prod_j (z-z_j) \rangle = \int \prod_j (z-z_j) P(z_1, \dots, z_N) d^2 z_1 \dots d^2 z_N$$

Q: What is the asymptotic distribution of the roots of $p_n(z)$ for $n \to \infty$, $\hbar \to 0$?

Christoffel - Darboux formula

Density

$$\rho_N(z) = \frac{1}{N} \langle \sum_j \delta(z - z_j) \rangle = \int P(z; z_2, \dots, z_N) d^2 z_2 \dots d^2 z_N$$

Christoffel - Darboux formula

$$\rho_{N+1} - \rho_N(z) = |\Psi_N(z)|^2$$

where

$$\Psi_n(z) = h_n^{-1/2} e^{\frac{1}{\hbar} \left(-\frac{1}{2}|z|^2 + V(z)\right)} p_n(z)$$

are weighted orthogonal polynomials

$$\delta_{nm} = \int \Psi_n(z) \overline{\Psi_m(z)} \mathrm{d}^2 z$$

 $|\Psi_n|^2$ can be seen as a velocity of growth.

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 今 Q (や 23/38

Asymptotes of Orthogonal Polynomials solve the growth problem solve

Important result: At a properly defined $n \to \infty$

 $|\Psi_n(z)|^2$ is localized on $\partial \mathbf{D}$ and proportional to the width of the infinitesimal strip:

 $z \in \partial D$: $|\Psi_n(z)|^2 |dz| \sim |f'(z)dz| \approx$ Harmonic measure

The simplest example: Circle

The difference between the consecutive kernels $|\Psi_n(z)|^2$ is localized on $\partial \mathbf{D}$ and proportional to the width of the infinitesimal strip.

Another example: Bratwurst

Take $V(z) = -c \log(z - a)$ such that $Q(z) = |z|^2 - 2c \log |z - a|$ (c > 0).

The plots of $p_n(z)\overline{p_n(z)}e^{-NQ(z)}$ for various times.

Zeros of Orthogonal Polynomials

• Szego theorem:

Zeros of Orthogonal Polynomials with real coefficients defined on $\mathbb R$ are distributed on $\mathbb R.$

• Zeros of Orthogonal Polynomials with real coefficients defined on C are distributed on C.

Figure: Deltoid: $Q(z) = |z|^2 + t_3 z^3 + \overline{t_3 z^3}$

Balayage

A minimal body (an open curve) which produces the same Newton potential as a domain *D* - *mother body* - Γ

$$\iint_{D} \log |z - w| d^2 w = \oint_{\Gamma} \log |z - w| \sigma(w) |dw|$$

$$z \in \Gamma$$
: $S(z)dz = \sigma(z)|dz|$

A graph Γ:

$$\Omega = \int^z S(z') \mathrm{d}z'$$

Level lines of Ω :

$$\operatorname{Re}\Omega(z)|_{\Gamma} = 0$$
, $\operatorname{Re}\Omega(z)|_{z \to \Gamma} > 0$;

are branch cuts drawn such that jump of S(z) is imaginary.

Balayage reduces the domain to a curve $\boldsymbol{\Gamma}$

Zeros of Orthogonal Polynomials

Important result:

A locus of zeros of Orthogonal Polynomials is identical to balayage

$$\Psi \sim f'(z) \sum_{\text{all branches of } \Omega} (\text{Stokes coefficients})_k e^{-\frac{1}{\hbar}\Omega_k(z)}$$

A graph of zeros is identical to level lines of Ω

 $\operatorname{Re}\Omega(z)|_{\Gamma} = 0$, $\operatorname{Re}\Omega(z)|_{z \to \Gamma} > 0$;

イロト イポト イモト イモト 三日

29/38

Boutroux Curves

Definition:

 $(\bar{z}, S(z))$: Real Riemann surface $d\Omega = S(z)dz$ Re $\oint_{B-cycles} d\Omega = 0$ – all periods are imaginary

number of conditions - number of parameters = g - there is no general proof that these curves exist.

Important result:

Zeros of Orthogonal Polynomials are distributed along levels of Boutroux curves

A graph Γ : Re $\Omega(z)|_{\Gamma} = 0$, Re $\Omega(z)|_{z \to \Gamma} > 0$;

Summary: Geometrical aspects of Random Matrix ensemble

- Given a holomorphic function V(z) construct a domain D whose exterior Cauchy transform $\frac{1}{\pi} \int \frac{d^2w}{z-w} = V'$. Domain D is the support of the equilibrium measure;
- Weighted polynomial $|\Psi_N| = e^{-\frac{1}{2\hbar}Q}p_N$ achieves the maximum on the boundary of the domain.

Its height is a harmonic measure of the domain.

- Harmonic measure |f'| gives the evolution of the domain with increasing $t = \pi \hbar N$;
- Balayage of the domain is the support of zeros of orthogonal polynomials
- Balayage is a Boutroux curve

Evolution of the cusp

$$y(x,t) = -4 (x - u(t)) \left(x + \frac{1}{2}u(x)\right)^2,$$

$$u(t) = -2(t - t_c)^{1/2}$$

$$y(x) \text{ - is a degenerate elliptic Boutroux curve}$$

- a pinched torus.

After the singularity - the curve becomes non-degenerate!

$$y^2 = (x - e_1(t)) (x - e_2(t)) (x - e_3(t))$$

Unique Elliptic Boutroux Curve

$$y^2 = (x - e_1(t)) (x - e_2(t)) (x - e_3(t))$$

found by Krichever, Gamsa, Rodnisco, David (early 90s).

Branch points are transcedental obtained through solution of algebraic equation involving elliptic integrals.

34/38

More about Boutroux curves: How to plant and grow trees

- Start with a polynomial $V'(x) = t_g x^g + \dots$ of a degree g
- Determine a degenerate hyper elliptic Boutroux curve

$$y = \sqrt{x - e(t)} \prod_{k=1}^{g} (x - d_k(t))$$

such that a positive part of Laurent expansion is $\sqrt{x}V'(\sqrt{x})$

$$y = \sqrt{x} \left(\underbrace{x^{g} + t_{g-1} x^{g-1} + \ldots}_{\text{fixed} + \dots} + \underbrace{\frac{t_{\text{ime}}}{x}}_{\text{fixed} + \dots} + \underbrace{\frac{c_{\text{apacity}}}{x^2}}_{\text{fixed} + \text{negative powers}} \right)$$

• Run *t* keeping positive part fixed. Negative powers follow. Pinched cycles begin to open. Level graph branches. When all double points open the process stabilizes;

Numerical plot of first two generations

36/38

Capacity C(t) is the measure of the size of the pattern, *t* is its mass

$$y = \sqrt{x}V' + \underbrace{\frac{t}{\sqrt{x}}}_{\sqrt{x}} + \underbrace{\frac{capacity}{C(t)}}_{\sqrt{x^3}} + negative powers$$

At every genus transition - branch of the tree capacity jumps by universal (transcendental) value

$$\eta = \frac{C_{\text{after branching}}}{\dot{C}_{\text{before branching}}} = 0.91522030388$$

- Conjecture: Capacity grows with the mass as $C \sim t^{1/D_H}$, where D_H is the fractal dimension of the pattern
- Conjecture: D_H is a simple function of η ;

• Conjecture:
$$\frac{1}{D_H} - \frac{1}{2} = 1 - \eta \Rightarrow D_H = \underbrace{1.71004}_{\text{numerical digits in DLA}} \underbrace{56918}_{\text{order of the last of t$$

Do viscous shocks exist in fluids?

Mahech Bandi (OIST)

observed suggestive structures in miscible fluids where 2D pattern evolves into 1D patterns