

Dimer models: monomers, arctic curve and CFT

Nicolas Allegra (Groupe de physique statistique, IJL Nancy)

Critical phenomena on rectangle geometry

- Generalities about boundary conditions
- Critical free energy and CFT
- Correlation functions

2 Dimer models

- Free boson theory
- Free fermion theory
- Corner free energy and exponents

Arctic circle phenomena and curved Dirac field

- Arctic Circle
- Exact Calculations
- Asymptotic and field theory correspondence: toy model

Conclusions

Critical systems: Example of the Ising model

Critical systems: Example of the Ising model

Some interesting questions

- $\bullet\,$ Change of boundary conditions $\rightarrow\,$ change of the critical behavior
- Expression of the free energy at the critical point
- Magnetization profile at the critical point
- Spin/energy correlation exponents close to a surface or corner

Critical systems: Example of the Ising model

Some interesting questions

- $\bullet\,$ Change of boundary conditions $\rightarrow\,$ change of the critical behavior
- Expression of the free energy at the critical point
- Magnetization profile at the critical point
- Spin/energy correlation exponents close to a surface or corner

Boundary condition changing operators (bcc)

- (---) to (+++) or (Free) to (+++) or (---) to (Free)
- Ψ bcc primary operators of the c = 1/2 CFT
- Kac table $c=1/2
 ightarrow h_{bcc}=\{0,1/2,1/16\}$
- $\Psi_{+ {\it free}} = \sigma$ and $\Psi_{+-} = \epsilon$ with $h_{+ {\it free}} = 1/2$ and $h_{+-} = 1/16$

Boundary condition changing operators (bcc)

- (---) to (+++) or (Free) to (+++) or (---) to (Free)
- Ψ *bcc* primary operators of the c = 1/2 CFT
- Kac table $c = 1/2 \rightarrow h_{bcc} = \{0, 1/2, 1/16\}$
- $\Psi_{+free} = \sigma$ and $\Psi_{+-} = \epsilon$ with $h_{+free} = 1/2$ and $h_{+-} = 1/16$

Boundary condition changing operators (bcc)

- (---) to (+++) or (Free) to (+++) or (---) to (Free)
- Ψ *bcc* primary operators of the c=1/2 CFT
- Kac table $c = 1/2 \rightarrow h_{bcc} = \{0, 1/2, 1/16\}$
- $\Psi_{+free} = \sigma$ and $\Psi_{+-} = \epsilon$ with $h_{+free} = 1/2$ and $h_{+-} = 1/16$

Boundary condition changing operators (bcc)

- (---) to (+++) or (Free) to (+++) or (---) to (Free)
- Ψ *bcc* primary operators of the c=1/2 CFT

• Kac table
$$c=1/2
ightarrow h_{bcc}=\{0,1/2,1/16\}$$

• $\Psi_{+free} = \sigma$ and $\Psi_{+-} = \epsilon$ with $h_{+free} = 1/2$ and $h_{+-} = 1/16$

Boundary conformal field theory (Cardy '84)

Allegra

Boundary condition changing operators (bcc)

- (---) to (+++) or (Free) to (+++) or (---) to (Free)
- Ψ *bcc* primary operators of the c=1/2 CFT

• Kac table
$$c=1/2
ightarrow h_{bcc}=\{0,1/2,1/16\}$$

• $\Psi_{+ \textit{free}} = \sigma$ and $\Psi_{+-} = \epsilon$ with $h_{+\textit{free}} = 1/2$ and $h_{+-} = 1/16$

Boundary condition changing operators (bcc)

- (---) to (+++) or (Free) to (+++) or (---) to (Free)
- Ψ *bcc* primary operators of the c=1/2 CFT

• Kac table
$$c=1/2
ightarrow h_{bcc}=\{0,1/2,1/16\}$$

• $\Psi_{+ \textit{free}} = \sigma$ and $\Psi_{+-} = \epsilon$ with $h_{+ \textit{free}} = 1/2$ and $h_{+-} = 1/16$

$$\mathcal{F} = L^2 f_{\text{bulk}} + L f_{\text{surface}} + f_{\text{corner}}$$

$$\mathcal{F} = L^2 f_{\text{bulk}} + L f_{\text{surface}} + f_{\text{corner}}$$

$$\mathcal{F} = L^2 f_{\text{bulk}} + L f_{\text{surface}} + f_{\text{corner}}$$

$$\mathcal{F} = L^2 f_{\text{bulk}} + L f_{\text{surface}} + f_{\text{corner}}$$

Correlations and scaling dimensions (spin σ and energy ϵ)

$$\begin{aligned} \langle \sigma_b(0)\sigma_b(r)\rangle &\sim r^{-\mathbf{x}_b^{\sigma}-\mathbf{x}_b^{\sigma}} & \langle \epsilon_b(0)\epsilon_b(r)\rangle &\sim r^{-\mathbf{x}_b^{\sigma}-\mathbf{x}_b^{\sigma}} \\ \langle \sigma_b(0)\sigma_s(r)\rangle &\sim r^{-\mathbf{x}_b^{\sigma}-\mathbf{x}_s^{\sigma}} & \langle \epsilon_b(0)\epsilon_s(r)\rangle &\sim r^{-\mathbf{x}_b^{e}-\mathbf{x}_s^{e}} \\ \langle \sigma_b(0)\sigma_c(r)\rangle &\sim r^{-\mathbf{x}_b^{\sigma}-\mathbf{x}_c^{\sigma}} & \langle \epsilon_b(0)\epsilon_c(r)\rangle &\sim r^{-\mathbf{x}_b^{e}-\mathbf{x}_c^{e}} \end{aligned}$$

- x_b, x_s, x_c define bulk, surface and corner dimension of the operator
- x_c and x_s related by $x_c = (\pi/\theta) x_s$
- Valid for all the primary operators of the CFT

Correlations and scaling dimensions (spin σ and energy ϵ)

$$\begin{aligned} \langle \sigma_b(0)\sigma_b(r)\rangle &\sim r^{-\mathbf{x}_b^{\sigma}-\mathbf{x}_b^{\sigma}} & \langle \epsilon_b(0)\epsilon_b(r)\rangle &\sim r^{-\mathbf{x}_b^{\sigma}-\mathbf{x}_b^{\sigma}} \\ \langle \sigma_b(0)\sigma_{\mathbf{s}}(r)\rangle &\sim r^{-\mathbf{x}_b^{\sigma}-\mathbf{x}_{\mathbf{s}}^{\sigma}} & \langle \epsilon_b(0)\epsilon_{\mathbf{s}}(r)\rangle &\sim r^{-\mathbf{x}_b^{c}-\mathbf{x}_{\mathbf{s}}^{c}} \\ \langle \sigma_b(0)\sigma_{\mathbf{c}}(r)\rangle &\sim r^{-\mathbf{x}_b^{\sigma}-\mathbf{x}_{\mathbf{c}}^{\sigma}} & \langle \epsilon_b(0)\epsilon_{\mathbf{c}}(r)\rangle &\sim r^{-\mathbf{x}_b^{c}-\mathbf{x}_{\mathbf{c}}^{c}} \end{aligned}$$

• x_b, x_s, x_c define bulk, surface and corner dimension of the operator

- $x_{m{c}}$ and $x_{m{s}}$ related by $x_{m{c}} = (\pi/ heta) x_{m{s}}$
- Valid for all the primary operators of the CFT

Correlations and scaling dimensions (spin σ and energy ϵ)

$$\begin{array}{ll} \langle \sigma_{b}(0)\sigma_{b}(r)\rangle \sim r^{-x_{b}^{\sigma}-x_{b}^{\sigma}} & \langle \epsilon_{b}(0)\epsilon_{b}(r)\rangle \sim r^{-x_{b}^{\sigma}-x_{b}^{\sigma}} \\ \langle \sigma_{b}(0)\sigma_{s}(r)\rangle \sim r^{-x_{b}^{\sigma}-x_{s}^{\sigma}} & \langle \epsilon_{b}(0)\epsilon_{s}(r)\rangle \sim r^{-x_{b}^{\rho}-x_{s}^{e}} \\ \langle \sigma_{b}(0)\sigma_{c}(r)\rangle \sim r^{-x_{b}^{\sigma}-x_{c}^{\sigma}} & \langle \epsilon_{b}(0)\epsilon_{c}(r)\rangle \sim r^{-x_{b}^{\rho}-x_{c}^{e}} \end{array}$$

• x_b, x_s, x_c define bulk, surface and corner dimension of the operator

ullet x_c and x_s related by $x_{m{c}}=(\pi/ heta)x_{m{c}}$

Valid for all the primary operators of the CFT

Correlations and scaling dimensions (spin σ and energy ϵ)

$$\begin{array}{ll} \langle \sigma_{b}(0)\sigma_{b}(r)\rangle \sim r^{-x}_{b}^{\sigma-x}_{s}^{\sigma} & \langle \epsilon_{b}(0)\epsilon_{b}(r)\rangle \sim r^{-x}_{b}^{b-x}_{s}^{b} \\ \langle \sigma_{b}(0)\sigma_{s}(r)\rangle \sim r^{-x}_{b}^{\sigma-x}_{s}^{\sigma} & \langle \epsilon_{b}(0)\epsilon_{s}(r)\rangle \sim r^{-x}_{b}^{b-x}_{s}^{c} \\ \langle \sigma_{b}(0)\sigma_{c}(r)\rangle \sim r^{-x}_{b}^{\sigma-x}_{c}^{\sigma} & \langle \epsilon_{b}(0)\epsilon_{c}(r)\rangle \sim r^{-x}_{b}^{b-x}_{c}^{c} \end{array}$$

- x_b, x_s, x_c define bulk, surface and corner dimension of the operator
- x_c and x_s related by $x_c = (\pi/\theta) x_s$

Valid for all the primary operators of the CFT

Correlations and scaling dimensions (spin σ and energy ϵ)

$$\begin{array}{ll} \langle \sigma_{b}(0)\sigma_{b}(r)\rangle \sim r^{-x}_{b}^{\sigma-x}_{s}^{\sigma} & \langle \epsilon_{b}(0)\epsilon_{b}(r)\rangle \sim r^{-x}_{b}^{b-x}_{s}^{b} \\ \langle \sigma_{b}(0)\sigma_{s}(r)\rangle \sim r^{-x}_{b}^{\sigma-x}_{s}^{\sigma} & \langle \epsilon_{b}(0)\epsilon_{s}(r)\rangle \sim r^{-x}_{b}^{b-x}_{s}^{c} \\ \langle \sigma_{b}(0)\sigma_{c}(r)\rangle \sim r^{-x}_{b}^{\sigma-x}_{c}^{\sigma} & \langle \epsilon_{b}(0)\epsilon_{c}(r)\rangle \sim r^{-x}_{b}^{b-x}_{c}^{c} \end{array}$$

- x_b, x_s, x_c define bulk, surface and corner dimension of the operator
- x_c and x_s related by $x_c = (\pi/\theta)x_s$
- Valid for all the primary operators of the CFT

Definition of the model

$$\mathcal{H} = -rac{t}{2}\sum_{ij}\eta_i A_{ij}\eta_j,$$

- Ising model with nilpotent variables ($\eta^2 = 0$) instead of spins ($\sigma^2 = 1$)
- A_{ij} Connectivity (Adjacent) matrix
- Partition function $\int \mathcal{D}\eta \exp{-\mathcal{H}} = \sqrt{\operatorname{perm}A}$

$\textbf{Combinatorial problem} \leftrightarrow \textbf{Physics problem}$

Selected chronology for dimer model on the square lattice (1937-2015)

- Model of absorption of dimer molecules on a 2d substract (Fowler and Rushbrooke '37)
- Partition function (Kasteleyn, Fisher and Temperley 1961)
- Solution by transfer matrix (Lieb '67)
- Correlation functions dimer-dimer and monomer-monomer (Fisher Stephenson, Hartwig '68)
- General correlation functions in terms of Ising correlations (Perk and Capel '77)
- Solution by Grassmann variables (Hayn Plechko '93)
- One monomer at the boundary by spanning tree mapping (Tzeng and Wu '02)
- Arbitrary number of monomers at the boundary (Priezzhev Ruelle '08)
- Arbitrary number of monomers anywhere (N.A and Fortin '14)

Other development: General monomer-dimer model (Heilmann and Lieb '70, Baxter '68) Quantum dimer model (Roshkar and Kivelson '88). Interacting dimer model (Alet et Al '05, Fradkin et Al '06)...

Kasteleyn pfaffian theory

Kasteleyn orientation

$$\mathcal{H} = -rac{t}{2}\sum_{ij}\mathsf{a}_i K_{ij}\mathsf{a}_j$$

- Ising model with Grassmann variables ($a^2 = 0$ and $\{a_i, a_j\} = 0$)
- K_{ij} Kasteleyn (weighted Adjacent) matrix
- Partition function $\int \mathcal{D}a \exp{-\mathcal{H}} = \sqrt{\det K}$

Modification of the orientation matrix K' induced by monomers

- \bullet Monomers on boundary \rightarrow K' is still a Kasteleyn Matrix
- \bullet Monomers creates changing-sign lines \rightarrow K' no more a Kasteleyn Matrix

Pfaffian perturbation theory (Fisher Stephenson 1963)

- $\operatorname{pf}^2(K') = \operatorname{pf}^2(K) \cdot \det(1 + K^{-1}E)$ where K' = K + E
- dimer-dimer correlation $\langle d(r)d(0)\rangle \sim r^{-2}$
- monomer-monomer correlation $\langle m(r)m(0)\rangle \sim r^{-1/2}$

Allegra

Modification of the orientation matrix K' induced by monomers

- \bullet Monomers on boundary \rightarrow K' is still a Kasteleyn Matrix
- \bullet Monomers creates changing-sign lines \rightarrow K' no more a Kasteleyn Matrix

Pfaffian perturbation theory (Fisher Stephenson 1963)

• $\mathrm{pf}^2(K') = \mathrm{pf}^2(K).\mathrm{det}(1 + K^{-1}E)$ where K' = K + E

• dimer-dimer correlation $\langle d(r)d(0)\rangle \sim r^{-2}$

• monomer-monomer correlation $\langle m(r)m(0)
angle \sim r^{-1/2}$

Modification of the orientation matrix K' induced by monomers

- \bullet Monomers on boundary \rightarrow K' is still a Kasteleyn Matrix
- \bullet Monomers creates changing-sign lines \rightarrow K' no more a Kasteleyn Matrix

Pfaffian perturbation theory (Fisher Stephenson 1963)

- $\mathrm{pf}^2(K') = \mathrm{pf}^2(K).\mathrm{det}(1 + K^{-1}E)$ where K' = K + E
- dimer-dimer correlation $\langle d(r)d(0)
 angle \sim r^{-2}$
- monomer-monomer correlation $\langle m(r)m(0)
 angle \sim r^{-1/2}$

Modification of the orientation matrix K' induced by monomers

- \bullet Monomers on boundary \rightarrow K' is still a Kasteleyn Matrix
- \bullet Monomers creates changing-sign lines \rightarrow K' no more a Kasteleyn Matrix

Pfaffian perturbation theory (Fisher Stephenson 1963)

- $pf^2(K') = pf^2(K).det(1 + K^{-1}E)$ where K' = K + E
- dimer-dimer correlation $\langle d(r)d(0)\rangle \sim r^{-2}$
- monomer-monomer correlation $\langle m(r)m(0)
 angle \sim r^{-1/2}$

Grassmann variables and Berezin integration

Nilpotent and variables $\{\eta\}$ and Grassmann variables $\{\theta\}$

•	$[\eta_i, \eta_j] = 0,$	$\eta_i^2 = 0$	٠	$\{\theta_i, \theta_j\} = 0,$	$\theta_i^2 = 0$
•	$\int \mathrm{d}\eta = 0$		٩	$\int \mathrm{d}\theta = 0$	
•	$\int \mathrm{d}\eta.\eta = 1$		٠	$\int \mathrm{d}\theta.\theta = 1$	

Berezin Integration over Grassmann variables $\{\theta_i\}$

• Berezin Integration: if $f = f_1 + \theta_i f_2$ then $f_2 = \frac{\partial f}{\partial \theta_i}$ and

$$\int \mathrm{d}\theta_i f(\theta_i) = \frac{\partial f}{\partial \theta_i}$$

Gaussian Integration

$$\det(A) = \int \prod_{\alpha} d\theta_{\alpha} d\bar{\theta}_{\alpha} \exp\left(\sum_{\alpha\beta} \theta_{\alpha} A_{\alpha\beta} \bar{\theta}_{\beta}\right)$$
$$pf(A) = \int \prod_{\alpha} d\theta_{\alpha} \exp\left(\frac{1}{2} \sum_{\alpha\beta} \theta_{\alpha} A_{\alpha\beta} \theta_{\beta}\right)$$

Grassmann variables and Berezin integration

Nilpotent and variables $\{\eta\}$ and Grassmann variables $\{\theta\}$

•	$[\eta_i,\eta_j]=0,$	$\eta_i^2 = 0$	٠	$\{\theta_i, \theta_j\} = 0,$	$\theta_i^2 = 0$
•	$\int \mathrm{d}\eta = 0$		٠	$\int \mathrm{d}\theta = 0$	
•	$\int \mathrm{d}\eta.\eta = 1$		٠	$\int \mathrm{d} \theta . \theta = 1$	

Berezin Integration over Grassmann variables $\{\theta_i\}$

• Berezin Integration: if $f = f_1 + \theta_i f_2$ then $f_2 = \frac{\partial f}{\partial \theta_i}$ and

$$\int \mathrm{d}\theta_i f(\theta_i) = \frac{\partial f}{\partial \theta_i}$$

Gaussian Integration

$$\det(A) = \int \prod_{\alpha} d\theta_{\alpha} d\bar{\theta}_{\alpha} \exp\left(\sum_{\alpha\beta} \theta_{\alpha} A_{\alpha\beta} \bar{\theta}_{\beta}\right)$$
$$pf(A) = \int \prod_{\alpha} d\theta_{\alpha} \exp\left(\frac{1}{2}\sum_{\alpha\beta} \theta_{\alpha} A_{\alpha\beta} \theta_{\beta}\right)$$

Plechko partition function (using nilpotent variables)

Fermionization using Grassmann variables

$$1 + t_x \eta_{mn} \eta_{m+1n} = \int d\bar{a}_{mn} da_{mn} e^{a_{mn}\bar{a}_{mn}} (1 + a_{mn} \eta_{mn}) (1 + t_x \bar{a}_{mn} \eta_{m+1n})$$

$$= \operatorname{Tr}_{\{a,\bar{a}\}} A_{mn} \bar{A}_{m+1n}$$

$$\cdots + t_y \eta_{mn} \eta_{mn+1} = \int d\bar{b}_{mn} db_{mn} e^{b_{mn}\bar{b}_{mn}} (1 + b_{mn} \eta_{mn}) (1 + t_y \bar{b}_{mn} \eta_{mn+1})$$

$$= \operatorname{Tr}_{\{b,\bar{b}\}} B_{mn} \bar{B}_{mn+1}$$

Plechko partition function (using nilpotent variables)

Fermionization using Grassmann variables

$$1 + t_{x}\eta_{mn}\eta_{m+1n} = \int d\bar{a}_{mn}da_{mn}e^{a_{mn}\bar{a}_{mn}}(1 + a_{mn}\eta_{mn})(1 + t_{x}\bar{a}_{mn}\eta_{m+1n})$$

$$= \operatorname{Tr}_{\{a,\bar{a}\}}A_{mn}\bar{A}_{m+1n}$$

$$\cdots + t_{y}\eta_{mn}\eta_{mn+1} = \int d\bar{b}_{mn}db_{mn}e^{b_{mn}\bar{b}_{mn}}(1 + b_{mn}\eta_{mn})(1 + t_{y}\bar{b}_{mn}\eta_{mn+1})$$

$$= \operatorname{Tr}_{\{b,\bar{b}\}}B_{mn}\bar{B}_{mn+1}$$

Grassmann variables factorization

- Associativity $(\mathcal{O}_1\bar{\mathcal{O}}_2)(\mathcal{O}_2\bar{\mathcal{O}}_3)(\mathcal{O}_3\bar{\mathcal{O}}_4) = \mathcal{O}_1(\bar{\mathcal{O}}_2\mathcal{O}_2)(\bar{\mathcal{O}}_3\mathcal{O}_3)\bar{\mathcal{O}}_4$
- Mirror ordering $(\mathcal{O}_1\bar{\mathcal{O}}_1)(\mathcal{O}_2\bar{\mathcal{O}}_2)(\mathcal{O}_3\bar{\mathcal{O}}_3) = \mathcal{O}_1\mathcal{O}_2\mathcal{O}_3\bar{\mathcal{O}}_3\bar{\mathcal{O}}_2\bar{\mathcal{O}}_1$

$$\prod_{m,n}^{L} (A_{mn}\bar{A}_{m+1n})(B_{mn}\bar{B}_{mn+1}) = \prod_{n=1}^{\longrightarrow} (A_{1n}\bar{A}_{2n})(B_{1n}\bar{B}_{1n+1})(A_{2n}\bar{A}_{3n})(B_{2n}\bar{B}_{2n+1})\cdots$$

$$= \prod_{n=1}^{\longrightarrow} (A_{1n}\bar{A}_{2n})(A_{2n}\bar{A}_{3n})\cdots(B_{1n}B_{2n}\cdots\bar{B}_{2n+1}\bar{B}_{1n+1})$$

$$= \prod_{n=1}^{\longrightarrow} (B_{1n}(A_{1n}\bar{A}_{2n})B_{2n}(A_{2n}\bar{A}_{3n})\cdots\bar{B}_{2n+1}\bar{B}_{1n+1})$$

$$= \prod_{n=1}^{\longrightarrow} (\bar{B}_{Ln}\cdots\bar{B}_{2n}\bar{B}_{1n})(B_{1n}A_{1n}\bar{A}_{2n}B_{2n}A_{2n}\bar{A}_{3n}\cdots\bar{A}_{Ln}B_{Ln}A_{Ln})$$

Mirror symmetry

$$\mathcal{Q}_0 = \mathrm{Tr}_{\{a,\bar{a},b,\bar{b},\eta\}} \prod_n^{\longrightarrow} \Bigl(\prod_m^{\longleftarrow} \bar{B}_{mn} \prod_m^{\longrightarrow} \bar{A}_{mn} B_{mn} A_{mn} \Bigr).$$

Grassmann variables factorization

- Associativity $(\mathcal{O}_1\bar{\mathcal{O}}_2)(\mathcal{O}_2\bar{\mathcal{O}}_3)(\mathcal{O}_3\bar{\mathcal{O}}_4) = \mathcal{O}_1(\bar{\mathcal{O}}_2\mathcal{O}_2)(\bar{\mathcal{O}}_3\mathcal{O}_3)\bar{\mathcal{O}}_4$
- Mirror ordering $(\mathcal{O}_1\bar{\mathcal{O}}_1)(\mathcal{O}_2\bar{\mathcal{O}}_2)(\mathcal{O}_3\bar{\mathcal{O}}_3) = \mathcal{O}_1\mathcal{O}_2\mathcal{O}_3\bar{\mathcal{O}}_3\bar{\mathcal{O}}_2\bar{\mathcal{O}}_1$

$$\prod_{m,n}^{L} (A_{mn}\bar{A}_{m+1n})(B_{mn}\bar{B}_{mn+1}) = \prod_{n=1}^{\longrightarrow} (A_{1n}\bar{A}_{2n})(B_{1n}\bar{B}_{1n+1})(A_{2n}\bar{A}_{3n})(B_{2n}\bar{B}_{2n+1})\cdots$$

$$= \prod_{n=1}^{\longrightarrow} (A_{1n}\bar{A}_{2n})(A_{2n}\bar{A}_{3n})\cdots(B_{1n}B_{2n}\cdots\bar{B}_{2n+1}\bar{B}_{1n+1})$$

$$= \prod_{n=1}^{\longrightarrow} (B_{1n}(A_{1n}\bar{A}_{2n})B_{2n}(A_{2n}\bar{A}_{3n})\cdots\bar{B}_{2n+1}\bar{B}_{1n+1})$$

$$= \prod_{n=1}^{\longrightarrow} (\bar{B}_{Ln}\cdots\bar{B}_{2n}\bar{B}_{1n})(B_{1n}A_{1n}\bar{A}_{2n}B_{2n}A_{2n}\bar{A}_{3n}\cdots\bar{A}_{Ln}B_{Ln}A_{Ln})$$

Mirror symmetry

$$\mathcal{Q}_0 = \mathrm{Tr}_{\{a,\bar{a},b,\bar{b},\eta\}} \prod_n^{\longrightarrow} \Bigl(\prod_m^{\longleftarrow} \bar{B}_{mn} \prod_m^{\longrightarrow} \bar{A}_{mn} B_{mn} A_{mn} \Bigr).$$

Solution and fermion field theory

Grassmann partition function

$$\begin{aligned} \mathcal{Q}_{0} &= \int \mathcal{D}[a] \mathcal{D}[\bar{a}] \mathcal{D}[b] \mathcal{D}[\bar{b}] \prod_{m,n} \stackrel{\longrightarrow}{\longrightarrow} \mathcal{L}_{mn}[a, \bar{a}, b, \bar{b}] = \int \mathcal{D}[a] \mathcal{D}[\bar{a}] \mathcal{D}[b] \mathcal{D}[\bar{b}] \mathcal{D}[c] \exp \sum_{mn} c_{mn} \mathcal{L}_{mn} \\ &= \int \prod_{mn} \mathrm{d} c_{mn} \exp \sum_{mn} (t_{x} c_{mn} c_{m+1n} + i t_{y} c_{mn} c_{mn+1}) \\ &= \int \mathcal{D}[c] \exp \sum_{mn} \mathcal{S}_{0}[c_{mn}] \quad \rightarrow \text{ Kasteleyn solution} \end{aligned}$$

Field theory \rightarrow free fermions

$$\mathcal{S}_{\mathbf{0}}[\psi_{\alpha},\psi_{\beta}] = \frac{1}{2} \int \mathrm{d}x \mathrm{d}y \,\,\psi_{\alpha} M_{\alpha\beta} \psi_{\beta}$$

- $\psi_{\alpha,\beta}$ Complex fermions \in even/odd sub-lattice
- such that $\langle \psi_{\alpha}\psi_{\alpha}\rangle=\langle \psi_{\beta}\psi_{\beta}\rangle=0$
- $\langle \psi_{\alpha}(0)\psi_{\beta}(r)\rangle = M_{\alpha\beta}^{-1}(r)$

Grassmann formulation with monomer

Modification of the partition function induced by monomers insertion

$$\mathcal{Q}_{2n}(L) = \int \prod_{m,n}^{L} \mathrm{d}\eta_{mn} (1 + t_x \eta_{mn} \eta_{m+1n}) (1 + t_y \eta_{mn} \eta_{mn+1}) \prod_{\{r_i\}} \eta_{m_i, n_i}$$

- $L_{mn} \rightarrow L_{mn} + h_i$
- Change of sign from r_i to the boundary $m_i = L$

Partition function with monomers

Partition function of the dimer model with 2n monomers

$$Q_{2n} = \int \mathcal{D}[c] \mathcal{D}[h] \exp\left(S_0 + \sum_{\{r_i\}} c_{m_i n_i} h_i + 2t_y \sum_{\{r_i\}} \sum_{m=m_i+1}^{L} (-1)^{m+1} c_{mn_i-1} c_{mn_i}\right).$$

- \bullet "Free fermion" action \mathcal{S}_0
- "Grassmann Magnetic field"
- "Topological defect line"

Pfaffian formulation

$$\mathcal{Q}_{2n} = \mathrm{pf}(W)\mathrm{pf}(C)$$

•
$$W^{\mu\nu}_{\alpha\beta} = \delta_{\alpha\beta} M^{\mu\nu}_{\alpha} + V^{\mu\nu}_{\alpha\beta}$$

•
$$\dim(W) = L^2 \times L^2$$
, $\dim(C) = 2n \times 2n$

Partition function with monomers

Partition function of the dimer model with 2n monomers

$$Q_{2n} = \int \mathcal{D}[c] \mathcal{D}[h] \exp\left(S_0 + \sum_{\{r_i\}} c_{m_i n_i} h_i + 2t_y \sum_{\{r_i\}} \sum_{m=m_i+1}^{L} (-1)^{m+1} c_{mn_i-1} c_{mn_i}\right).$$

- \bullet "Free fermion" action \mathcal{S}_0
- "Grassmann Magnetic field"
- "Topological defect line"

Pfaffian formulation

$$\mathcal{Q}_{2n} = \mathrm{pf}(W)\mathrm{pf}(C)$$

- $W^{\mu\nu}_{\alpha\beta} = \delta_{\alpha\beta} M^{\mu\nu}_{\alpha} + V^{\mu\nu}_{\alpha\beta}$
- $\dim(W) = L^2 \times L^2$, $\dim(C) = 2n \times 2n$

W =

Boundary monomers \rightarrow free fermion theory

Partition function of 2n boundary monomers and exact 2n-point correlations

• If
$$\{r_i\} \in \partial \mathcal{B} \to W = M$$

$$\mathcal{Q}_{2n} = \mathcal{Q}_0.\mathrm{pf}(\mathcal{C}) \quad rac{\mathcal{Q}_{2n}}{\mathcal{Q}_0} = \langle c_1 c_2 ... c_{2n} \rangle_0 = \mathrm{pf}(\mathcal{C}) \quad \mathrm{where} \quad |\mathrm{pf}(\mathcal{C})| < 1$$

• Exemple: 4-point correlations and Wick decomposition

2-point function and Majorana Fermions

$$C_{ij} = \frac{4\left[(-1)^{n_i} - (-1)^{n_j}\right]}{(L+1)^2} \sum_{p,q=1}^{L/2} \frac{i^{1+n_i+n_j} t_y \cos\frac{\pi q}{L+1} \sin^2\frac{\pi p}{L+1}}{t_x^2 \cos^2\frac{\pi p}{L+1} + t_y^2 \cos^2\frac{\pi q}{L+1}} \sin\frac{\pi q n_i}{L+1} \sin\frac{\pi q n_j}{L+1}$$

• Asymptotically $\langle c_i c_j \rangle_0 \sim \frac{-2}{\pi d_{ij}}$ if $n_i, n_j \notin$ same sublattice

• 2 Complex chiral free fermions $\langle \psi(x)\psi^{\dagger}(y)\rangle=-\frac{2}{\pi(x-y)}$ and $\langle \psi(x)\psi(y)\rangle=0$

Boundary monomers \rightarrow free fermion theory

Partition function of 2n boundary monomers and exact 2n-point correlations

• If $\{r_i\} \in \partial \mathcal{B} \to W = M$

$$\mathcal{Q}_{2n} = \mathcal{Q}_0.\mathrm{pf}(\mathcal{C}) \qquad rac{\mathcal{Q}_{2n}}{\mathcal{Q}_0} = \langle c_1 c_2 ... c_{2n} \rangle_0 = \mathrm{pf}(\mathcal{C}) \quad \mathrm{where} \quad |\mathrm{pf}(\mathcal{C})| < 1$$

• Exemple: 4-point correlations and Wick decomposition

Cauchy determinant and superposition principle

• Asymptotically
$$C_{ij} = rac{2}{\pi |z_i - w_j|} \ (z_i/w_i \in \mathsf{odd/even sublattice})$$
 then

$$\left\langle c_1 c_2 \dots c_n \right\rangle_0 = \left(\frac{-2}{\pi}\right)^n \det\left(\frac{1}{z_i - w_j}\right) = \frac{\prod_{i < j} (z_i - z_j) \prod_{k < l} (w_k - w_l)}{\prod_{p < q} (z_p - w_q)}$$

• Coulomb Gase: same/opposite sublattice = same/opposite charge

Bulk monomers = interacting theory

Partition function of 2n monomers and 2n-point correlations

• If $\{r_i\} \notin \partial \mathcal{B} \to \mathcal{Q}_{2n} \mathcal{Q}_0^{-1} = \operatorname{pf}(WM^{-1}).\operatorname{pf}(\mathcal{C}) = \langle c_1 c_2 ... c_{2n} \rangle_I$

$$\langle c_1 c_2 \dots c_{2n} \rangle_I = \left\langle \prod_{\{r_i\}} c_i \exp\left(2t_y \sum_{m=m_i+1}^{L} (-1)^{m+1} c_{mn_i-1} c_{mn_i}\right) \right\rangle_0$$

• Asymptotically
$$\langle c_i c_j \rangle_I = \mathcal{Q}(r_i, r_j) \mathcal{Q}_0^{-1} \sim d_{ij}^{-1/2}$$

r

Partition function with monomers

Partition function of the dimer model with 2n monomers

$$\mathcal{Q}_{2n} = \int \mathcal{D}[c,h] \exp\left(\mathcal{S}_0 + \sum_{\{r_i\}} c_{m_i n_i} h_i + 2t_y \sum_{\{r_i\}} \sum_{m=m_i+1}^{L} (-1)^{m+1} c_{mn_i-1} c_{mn_i}\right).$$

- c = 1 Free fermion action \mathcal{S}_0
- Grassmann Magnetic field
- Topological defect line

Pfaffian formulation

$$\mathcal{Q}_{2n} = \mathrm{pf}(W)\mathrm{pf}(C)$$

•
$$W^{\mu\nu}_{\alpha\beta} = \delta_{\alpha\beta} M^{\mu\nu}_{\alpha} + V^{\mu\nu}_{\alpha\beta}$$

•
$$\dim(W) = L^2 \times L^2$$
, $\dim(C) = 2n \times 2n$

Partition function with monomers

Partition function of the dimer model with 2n monomers

$$\mathcal{Q}_{2n} = \int \mathcal{D}[c,h] \exp\left(S_0 + \sum_{\{r_i\}} c_{m_i n_i} h_i + 2t_y \sum_{\{r_i\}} \sum_{m=m_i+1}^{L} (-1)^{m+1} c_{mn_i-1} c_{mn_i}\right).$$

- c = 1 Free fermion action S_0
- Grassmann Magnetic field
- Topological defect line

Pfaffian formulation

$$\mathcal{Q}_{2n} = \mathrm{pf}(W)\mathrm{pf}(C)$$

• $W^{\mu\nu}_{\alpha\beta} = \delta_{\alpha\beta} M^{\mu\nu}_{\alpha} + V^{\mu\nu}_{\alpha\beta}$

•
$$\dim(W) = L^2 \times L^2$$
, $\dim(C) = 2n \times 2n$

 \rightarrow

W =

Bosonic formulation of the dimer model

-2	-1	-2	-1	-2
-3	-4	-3	0	1
-2	-1	-2	-1	2
1	0	-3	0	1
2	-1	-2	-1	-2

0	1	0	1	0	1	0
-1	-2	-1	-2	-1	-2	- 1
0	-3	-4	-3	0	1	0
-1	-2	-1	-2	-1	2	-1
0	1	0	-3	0	1	0
-1	2	-1	-2	$^{-1}$	-2	-1
0	1	0	1	0	1	0

c = 1 Free boson theory

- Action: $\mathcal{S}[\phi] = \frac{g}{2} \int dx dy (\nabla \phi)^2$ where g stiffness
- Vertex operators: $V_{e,m}(z) =: e^{ie\phi + im\psi}$: where $\partial_i \psi = \epsilon_{ij} \partial_j \phi$
- Scaling dimensions: $x_g(e, m) = \frac{e^2}{4\pi g} + \pi g m^2$
- Comparison with exact KFT results fixes $g=1/4\pi$

occ operators

- Change of boundary conditions in each corner $h_{bcc} = \frac{g}{2\pi} \Delta \phi_b^2 = 1/32$
- Crucial for the extrapolation of the central charge

Now we can look at the corner free energy !

Bosonic formulation of the dimer model

-2	-1	-2	-1	-2
-3	-4	-3	0	1
-2	-1	-2	-1	2
1	0	-3	0	1
2	$^{-1}$	-2	-1	$^{-2}$

0	1	0	1	0	1	0
-1	-2	-1	-2	-1	-2	$^{-1}$
0	-3	-4	-3	0	1	0
-1	-2	-1	-2	-1	2	-1
0	1	0	-3	0	1	0
-1	2	$^{-1}$	-2	-1	-2	$^{-1}$
0	1	0	1	0	1	0

c = 1 Free boson theory

- Action: $\mathcal{S}[\phi] = \frac{g}{2} \int dx dy (\nabla \phi)^2$ where g stiffness
- Vertex operators: $V_{e,m}(z) =: e^{ie\phi + im\psi}$: where $\partial_i \psi = \epsilon_{ij} \partial_j \phi$
- Scaling dimensions: $x_g(e, m) = \frac{e^2}{4\pi g} + \pi g m^2$
- Comparison with exact KFT results fixes $g=1/4\pi$

bcc operators

- Change of boundary conditions in each corner $h_{bcc}=\frac{g}{2\pi}\Delta\phi_b^2=1/32$
- Crucial for the extrapolation of the central charge

Now we can look at the corner free energy !

Even size dimer model \rightarrow Kasteleyn theory

$$Q_0 = \sqrt{\det K} = \prod_{p,q=1}^{L} \left[4\cos^2 \frac{\pi p}{L+1} + 4\cos^2 \frac{\pi q}{L+1} \right]$$

- Asymptotic of Q_0 gives $f_{corner} = 0$
- $4\left[\frac{\pi}{\theta}h_{bcc} + \frac{c}{24}\left(\frac{\theta}{\pi} \frac{\pi}{\theta}\right)\right] = 0$ with 4 bcc operators with $h_{bcc} = 1/32 \rightarrow c = 1$

Even size dimer model \rightarrow Kasteleyn theory

$$Q_0 = \sqrt{\det K} = \prod_{p,q=1}^{L} \left[4\cos^2 \frac{\pi p}{L+1} + 4\cos^2 \frac{\pi q}{L+1} \right]$$

• Asymptotic of
$$Q_0$$
 gives $f_{corner} = 0$

• $4\left[\frac{\pi}{\theta}h_{bcc} + \frac{c}{24}\left(\frac{\theta}{\pi} - \frac{\pi}{\theta}\right)\right] = 0$ with 4 bcc operators with $h_{bcc} = 1/32 \rightarrow c = 1$

Even size dimer model \rightarrow Kasteleyn theory

$$Q_0 = \sqrt{\det \kappa} = \prod_{p,q=1}^{L} \left[4\cos^2 \frac{\pi p}{L+1} + 4\cos^2 \frac{\pi q}{L+1} \right]$$

• Asymptotic of Q_0 gives $f_{corner} = 0$

• $4\left[\frac{\pi}{\theta}h_{bcc} + \frac{c}{24}\left(\frac{\theta}{\pi} - \frac{\pi}{\theta}\right)\right] = 0$ with 4 bcc operators with $h_{bcc} = 1/32 \rightarrow c = 1$

Even size dimer model \rightarrow Kasteleyn theory

$$Q_0 = \sqrt{\det \kappa} = \prod_{p,q=1}^{L} \left[4\cos^2 \frac{\pi p}{L+1} + 4\cos^2 \frac{\pi q}{L+1} \right]$$

- Asymptotic of Q_0 gives $f_{corner} = 0$
- $4\left[\frac{\pi}{\theta}h_{bcc} + \frac{c}{24}\left(\frac{\theta}{\pi} \frac{\pi}{\theta}\right)\right] = 0$ with 4 bcc operators with $h_{bcc} = 1/32 \rightarrow c = 1$

Odd size lattice with one monomer at the boundary (Tzeng-Wu)

$$Q_{1} = \prod_{p,q=1}^{L-1} \left[4\cos^{2}\frac{\pi p}{L+1} + 4\cos^{2}\frac{\pi q}{L+1} \right]$$

- Boundary monomers induce change of boundary conditions
- Same analysis on a odd size lattice (with one monomer) gives $f_{
 m corner} = 1/2 \log L$
- Cardy Peschel formula with 3 bcc operators with $h_{bcc}=1/32$ and one with $h_{bcc}=9/32$ $\rightarrow c=1$

A similar analysis can be done in a c = -2 formalism

Odd size lattice with one monomer at the boundary (Tzeng-Wu)

$$Q_{1} = \prod_{p,q=1}^{L-1} \left[4\cos^{2}\frac{\pi p}{L+1} + 4\cos^{2}\frac{\pi q}{L+1} \right]$$

- Boundary monomers induce change of boundary conditions
- ullet Same analysis on a odd size lattice (with one monomer) gives $f_{
 m corner}=1/2\log L$
- Cardy Peschel formula with 3 bcc operators with $h_{bcc}=1/32$ and one with $h_{bcc}=9/32$ $\rightarrow c=1$

A similar analysis can be done in a c = -2 formalism

Odd size lattice with one monomer at the boundary (Tzeng-Wu)

$$Q_{1} = \prod_{p,q=1}^{L-1} \left[4\cos^{2}\frac{\pi p}{L+1} + 4\cos^{2}\frac{\pi q}{L+1} \right]$$

Boundary monomers induce change of boundary conditions

• Same analysis on a odd size lattice (with one monomer) gives $f_{
m corner} = 1/2\log L$

• Cardy Peschel formula with 3 bcc operators with $h_{bcc} = 1/32$ and one with $h_{bcc} = 9/32$ $\rightarrow c = 1$

A similar analysis can be done in a c = -2 formalism

Odd size lattice with one monomer at the boundary (Tzeng-Wu)

$$Q_{1} = \prod_{p,q=1}^{L-1} \left[4\cos^{2}\frac{\pi p}{L+1} + 4\cos^{2}\frac{\pi q}{L+1} \right]$$

- Boundary monomers induce change of boundary conditions
- Same analysis on a odd size lattice (with one monomer) gives $f_{\rm corner} = 1/2 \log L$

• Cardy Peschel formula with 3 bcc operators with $h_{bcc} = 1/32$ and one with $h_{bcc} = 9/32$ $\rightarrow c = 1$

A similar analysis can be done in a c = -2 formalism !

Odd size lattice with one monomer at the boundary (Tzeng-Wu)

$$Q_{1} = \prod_{p,q=1}^{L-1} \left[4\cos^{2}\frac{\pi p}{L+1} + 4\cos^{2}\frac{\pi q}{L+1} \right]$$

- Boundary monomers induce change of boundary conditions
- Same analysis on a odd size lattice (with one monomer) gives $f_{\rm corner} = 1/2 \log L$
- Cardy Peschel formula with 3 bcc operators with $h_{bcc}=1/32$ and one with $h_{bcc}=9/32$ $\rightarrow c=1$

A similar analysis can be done in a c = -2 formalism !

Critical exponents (bulk surface and corner)

Monomer and dimer scaling dimensions

scaling dimension $(g_{\rm free} = 1/4\pi)$	bulk	surface	corner
$x^{(d)}$	1	1	2
$x^{(m)}$	1/4	1/2	1/2 or 3/2

- The monomer corner scaling dimension is not unique (Why ? IDK)
- In perfect agreement with the height mapping formulation
- Relation between corner and surface dimensions $x_c = \frac{\pi}{A} x_s$ satisfied

Dimer on the Aztec diamond

Aztec diamond dimer

- Highly constrained configurations
- $\bullet\,$ Highly excited boundaries $\to\,$ Non conformal boundaries
- $\bullet\,$ Bipartite planar lattice $\rightarrow\,$ Kasteleyn still holds $\rightarrow\,$ free fermion
- $\mathcal{S}[\phi] = \frac{g(x,y)}{2} \int dx dy (\nabla \phi)^2$

Arctic circle !!!

Main math results

- Mapping to non-intersecting paths $\rightarrow Z = 2^{n(n+1)/2}$ (Why so simple ?)
- Gaussian fluctuations (bulk \sim square lattice)
- $\bullet~\mbox{Boundary fluctuations} \rightarrow \mbox{corner growth process} \rightarrow \mbox{GUE ensemble}$

Arctic circle phenomenon in the dimer model

- ullet 2d statistical problem ightarrow 1d quantum chain in imaginary time
- \bullet Transfer matrix $\mathcal{T} \to \mathsf{Quantum}$ hamiltonian $\mathcal{H} = -\log \mathcal{T}$
- $\bullet\,$ Particular initial and final state $|\psi_{0}\rangle \rightarrow$ Domain wall initial state

Strategy

- Step I \rightarrow Compute fermion correlators exactly on the lattice
- Step II \rightarrow Manage to study the scaling behavior (x/R and y/R fixed, $R \rightarrow \infty$)
- ullet Step III ightarrow Make a correspondance to correlators in a Dirac field theory

Arctic circle phenomenon in the dimer model

- ullet 2d statistical problem ightarrow 1d quantum chain in imaginary time
- \bullet Transfer matrix $\mathcal{T} \to \mathsf{Quantum}$ hamiltonian $\mathcal{H} = -\log \mathcal{T}$
- $\bullet\,$ Particular initial and final state $|\psi_{0}\rangle \rightarrow$ Domain wall initial state

Strategy

- $\bullet~Step~I \rightarrow$ Compute fermion correlators exactly on the lattice
- Step II \rightarrow Manage to study the scaling behavior (x/R and y/R fixed, $R \rightarrow \infty$)
- $\bullet~{\rm Step}~{\rm III} \to {\rm Make}$ a correspondance to correlators in a Dirac field theory

What kind of model can we tackle ?

Single band models (XX chain and hexagonal dimers)

$$H = \int rac{\mathrm{d}k}{2\pi} arepsilon(k) c^{\dagger}(k) c(k)$$

Two bands models (6-vertex and square dimers)

$$H = \int \frac{\mathrm{d}k}{2\pi} \varepsilon_{+}(k) a^{\dagger}(k) a(k) + \varepsilon_{-}(k) b^{\dagger}(k) b(k)$$
⁽²⁾

(1)

Exact calculation on the lattice

Single Band expression

• we are dealing with a **free fermion** problem, so every correlator can be reduced to a combination of **two-point functions** thanks to Wick's theorem. Therefore, the quantity of interest is the propagator

$$\left\langle c^{\dagger}(x,y)c(x',y')\right\rangle \equiv \begin{cases} \frac{\langle \psi|e^{-(R-y)H}c_{x}^{\dagger}e^{-(y-y')H}c_{x'}e^{-(R+y')H}|\psi\rangle}{\langle \psi|e^{-2RH}|\psi\rangle} & (y > y') \\ -\frac{\langle \psi|e^{-(R-y')H}c_{x'}e^{-(y'-y)H}c_{x}^{\dagger}e^{-(R+y)H}|\psi\rangle}{\langle \psi|e^{-2RH}|\psi\rangle} & (y < y') \end{cases}$$

• going to momentum space, and using methods that are familiar from bosonization, one gets the **key technical result**

$$\left\langle c^{\dagger}(k,y)c(k',y')\right\rangle \equiv \frac{e^{iR(\tilde{\varepsilon}(k)-\tilde{\varepsilon}(k'))}e^{-(y\varepsilon(k)-y'\varepsilon(k'))}}{2i\sin\left(\frac{k-k'}{2}-i0^{+}\right)}$$
(3)

where $\varepsilon(k)$ is the dispersion relation and $\tilde{\varepsilon}(k)$ is its Hilbert transform,

$$\tilde{\varepsilon}(k) \equiv \text{p.v.} \int_{-\pi}^{\pi} \frac{dk'}{2\pi} \varepsilon(k') \cot\left(\frac{k-k'}{2}\right)$$

Dimer models: monomers, arctic curve and C

1d electron gas in one slide

Hamiltonian in k space

$$H=\int rac{\mathrm{d}k}{2\pi}arepsilon(k)m{c}^{\dagger}(k)m{c}(k)$$

The low-energy theory is defined in terms of creation and annihilation operators in the vicinity of the Fermi points

Slow fields ψ_R and ψ_L

 ψ_L and $\psi_R
ightarrow (1+1d)$ Dirac field theory

$$\mathcal{L} = i\bar{\Psi}(\gamma^0\partial_t - v\gamma^1\partial_x\Psi)$$

with Ψ Dirac spinor with ψ_L and ψ_R component

Allegra

1d electron gas in one slide

Hamiltonian in k space

$$H=\int rac{\mathrm{d}k}{2\pi}arepsilon(k)m{c}^{\dagger}(k)m{c}(k)$$

The low-energy theory is defined in terms of creation and annihilation operators in the vicinity of the Fermi points

Slow fields ψ_R and ψ_L

 ψ_L and $\psi_R
ightarrow (1+1d)$ Dirac field theory

$$\mathcal{L} = i \bar{\Psi} (\gamma^0 \partial_t - v \gamma^1 \partial_x \Psi)$$

with Ψ Dirac spinor with ψ_L and ψ_R component.

Allegra

Asymptotic analysis: General framework

Scaling regime $(x/R \text{ and } y/R \text{ fixed}, R \to \infty)$

$$\left\langle c^{\dagger}(x,y)c(x',y')\right\rangle = \frac{e^{-\frac{1}{2}[\sigma(x,y)+\sigma(x',y')]}}{2\pi i} \left[\frac{e^{-i[\varphi(x,y)-\varphi(x',y')]}}{2\sin\left(\frac{z(x,y)-z(x',y')}{2}\right)} - \frac{e^{i[\varphi^{*}(x,y)-\varphi^{*}(x',y')]}}{2\sin\left(\frac{z^{*}(x,y)-z^{*}(x',y')}{2}\right)}\right]$$

Propagators of Dirac field $\Psi^{\dagger} = \left(\psi^{\dagger} \ \overline{\psi}^{\dagger}\right)$

$$\left\langle \psi^{\dagger}(x,y)\psi(x',y')\right\rangle = e^{-\frac{1}{2}[\sigma(x,y)+\sigma(x',y')]} \frac{e^{-i[\varphi(x,y)-\varphi(x',y')]}}{2\sin\left(\frac{z(x,y)-z(x',y')}{2}\right)}$$

+ Gauge transformation $\Psi(x, y) \rightarrow e^{i \operatorname{Re}\varphi(x, y)\gamma^{5}} e^{-\operatorname{Im}\varphi(x, y)} \Psi(x, y)$ et $\Psi^{\dagger}(x, y) \rightarrow \Psi^{\dagger}(x, y) e^{-i \operatorname{Re}\varphi(x, y)\gamma^{5}} e^{\operatorname{Im}\varphi(x, y)}$

This is familiar to boundary CFT expert ightarrow correlators on a strip+non flat metric

Asymptotic analysis: General framework

Scaling regime $(x/R \text{ and } y/R \text{ fixed}, R \to \infty)$

$$\left\langle c^{\dagger}(x,y)c(x',y')\right\rangle = \frac{e^{-\frac{1}{2}[\sigma(x,y)+\sigma(x',y')]}}{2\pi i} \left[\frac{e^{-i[\varphi(x,y)-\varphi(x',y')]}}{2\sin\left(\frac{z(x,y)-z(x',y')}{2}\right)} - \frac{e^{i[\varphi^{*}(x,y)-\varphi^{*}(x',y')]}}{2\sin\left(\frac{z^{*}(x,y)-z^{*}(x',y')}{2}\right)}\right]$$

Propagators of Dirac field $\Psi^{\dagger} \,=\, \left(\psi^{\dagger}\; \overline{\psi}^{\dagger}
ight)$

$$\left\langle \psi^{\dagger}(x,y)\psi(x',y')\right\rangle = e^{-\frac{1}{2}[\sigma(x,y)+\sigma(x',y')]} \frac{e^{-i[\varphi(x,y)-\varphi(x',y')]}}{2\sin\left(\frac{z(x,y)-z(x',y')}{2}\right)}$$

+ Gauge transformation $\Psi(x, y) \rightarrow e^{i \operatorname{Re}\varphi(x, y)\gamma^{5}} e^{-\operatorname{Im}\varphi(x, y)} \Psi(x, y)$ et $\Psi^{\dagger}(x, y) \rightarrow \Psi^{\dagger}(x, y) e^{-i \operatorname{Re}\varphi(x, y)\gamma^{5}} e^{\operatorname{Im}\varphi(x, y)}$

This is familiar to boundary CFT expert \rightarrow correlators on a strip+non flat metric

Dirac action on a 2d curved metric

Curved Dirac field

$$S = \frac{1}{2\pi} \int d^2 x \sqrt{\det g} \, e^{\mu}_{a} \left[\frac{i}{2} \overline{\Psi} \gamma^{a} \partial_{\mu}^{\leftrightarrow} \Psi \right] \,. \tag{4}$$

Here e_a^{μ} is the tetrad, and $(d^2x\sqrt{\det g})$ is the volume element. The spin connection drops out of the two-dimensional Dirac action. We are free to chose the coordinate system, and it is natural to take the coordinates x^1, x^2 such that

$$\begin{cases} x^{z} = x^{1} + ix^{2} = z(x, y) \\ x^{\bar{z}} = x^{1} - ix^{2} = z^{*}(x, y) \end{cases}$$

In this coordinate system, we take the following tetrad:

$$e^{\mu}_{a} = e^{-\sigma} \delta_{a\mu}$$

where σ is the function $\sigma(x, y)$ that appeared previously; note that the metric is simply

$$ds^{2} = e^{2\sigma} \left[(dx^{1})^{2} + (dx^{2})^{2} \right] \, .$$

Exemple: Metric for the XX chain (dimer, 6vertex..much more complicated)

$$e^{\sigma(x,y)} = \sqrt{R^2 - x^2 - y^2}$$

Perspectives: In progress or not

Interesting questions

- Connection with the bosonic theory ?
- Study of boundary correlations ?
- Explore the field theory more carefully, partition function ?
- Can we tell something interesting about the real time quench ?
- What remains true in the interacting case and what is wrong ?