Prospects for Supersymmetry at 13 TeV: CMS perspective

Jim Olsen CMS Physics Co-Coordinator Princeton University

GGI 2015: Gearing up for 13 TeV 1/9/2015

First, some exotic fun...

CMS dielectron mass spectrum as of Aug. 22

CMS Experiment at LHC, CERN Data recorded: Sat Aug 22 04:13.48 2015 CEST Run/Event: 254833 / 1268846022 Lumi section: 846

And then we saw this:

Extremely clean event, MET very low and aligned with one of the electrons (the lower pT one)

Event Kinematic Details

	electron 0	electron 1
Ε _τ	1260 GeV	1280 GeV
η	-0.24	-1.31
φ	-2.74 rad	0.42 rad
charge	-1	+1
mass	2.91	TeV
cos ϑ* _{cs}	-0.4	49
у	- 0.	78

- for $\cos \theta^*_{cs}$, it is assumed that quark direction is along the boost of the di-electron system
- SM Drell-Yan events favour positive values of $\cos \theta_{cs}^*$

SM Background Expectations

mass range	SM Bkg Expection	electrons are required to satisfy E ₊ > 35 GeV		
>1 TeV	0.21	η < 1.4442 or 1.566 < η <2.5 pass high energy ele selection		
> 2 TeV	0.007			
> 2.5 TeV	0.002	in addition one electron must have n < 1.4442		

- the values of this table have been obtained from the mass spectrum distribution in CERN-CMS-PD-2015-037 and scaled to the luminosity of 65pb⁻¹, which is the luminosity of full 50ns dataset
 - to ensure a smooth distribution, the mass spectrum was fitted with the bkg function used by the RunI analysis (<u>10.1007/JHEP04(2015)025</u>)
- the mass spectrum is obtained directly from Monte Carlo simulated events
 - the Monte Carlo generators used are listed in the next slide
- the theoretical uncertainties on the background estimate are expected to be the dominant uncertainties on background estimate

Monte Carlo Generators used for Background Expectation

- SM Drell-Yan:
 - MadGraph5_aMCatNLO hadronised with PYTHIA 8
- ttbar, tW :
 - POWHEG hadronised with PYTHIA 8
- jets:
 - PYTHIA 8
- WW, WZ, ZZ :
 - PYTHIA 8
- W+jets:

MadGraph5_aMCatNLO hadronised with PYTHIA 8

Now on to supersymmetry...

Run 1 searches came up empty, ...

m_{II} [GeV]

Moving forward in Run 2

- To make progress in Run 2 we need new experimental and theoretical ideas (unless SUSY is just out of cross section reach and we only need more data, but this is the less interesting option for this discussion)
 - Previously unexplored or not fully explored phase space
 - New tools: experimental signatures and methods
 - New classes of models
- Experiment:
 - New ideas in selecting events (MVAs, mini-isolation)
 - Target previously hidden regions of phase space
 - VBF and ISR for compressed spectra
 - New experimental tags (e.g., Higgs125)
 - New decay topologies (e.g., long-lived sparticles)
 - Boosted topologies

Targeting Compressed Spectra: ISR

Targeting Compressed Spectra: VBF

SUS-14-017 (NEW!)

Extending new tags: h(125) + razor

Trying to catch SUSY with a SM Higgs

• Either in hhGG or $hW\chi\chi$

Broad inclusive search

- Trying to cast a wide net
- Two photons + >= 1 jet
- Look for b tags and classify events

SUS-14-017 (NEW!) $H(\gamma\gamma)$ Razor Search Results

Statistics dominated -> will benefit a lot from Run 2 data

Stop Blind Spots

mr~m₂₀: stop decay products are soft, difficult to trigger on, low efficiency (e.g. with highpT monojet-like ISR jet)

mī-mīo ~ mW: the events look like WW production (large SM background)

m∓-m_{ĩ0} ~ mt: the events look like tt (large SM background)

...through gluino decays

M. Pierini – CERN seminar, Oct. 2014

42 reinterpreting stop bounds in SUS-13-004

Long-lived Searches

Both analyses give useful information to recast their results

Q.Python

15

SUSY 2015

Prospects for Long-lived Searches

16

- The final states of the two analyses will be covered in single paper
- Many extensions can be done at 13 TeV
 - Same sign leptons

Significant improvement in the muon acceptance has been achieved for Run2


```
SUS-14-007
```

Highly Boosted SUSY: razor search

Targeting heavy stops and/or phase space where m(G) – m(stop) is large

First 13 TeV Performance

Commissioning the performance of key observables used in SUSY searches with the first 13 TeV data

> CMS Collaboration August 2015

Using 42±5 pb⁻¹ of data from July's 50 ns running period, we commission the ingredients for the SUSY search program: measure trigger efficiencies, check MC modeling of the shapes*

of key observables, and test background estimation methods.

Details described in DPS CMS DP-2015/035

* MC normalized to data for shape comparisons

Trigger efficiencies: HT, MET

HT800 trigger provides common sample for high mass hadronic gluino search HT350 MET100 trigger targets lower mass, e.g., compressed models

Measure rates and efficiencies with 50 ns data.

 H_T^{miss} = vector sum of AK4 jets.

Trigger efficiencies: dilepton

Dilepton searches use a combination of pure dilepton and dilepton+HT triggers. Measure rates and efficiencies with 50 ns data.

All-hadronic search in H_T and H_T^{miss} SUS-13-012/12-024

Inclusive search at high H_T and H_T^{miss} in bins of N_{iet} and N_b .

An important background is W or top with missed leptons. Measure this bkgd in single μ control sample, as a function of kinematics. Measure the hard-to-model W p_T and use well known W decay properties from MC.

All-hadronic search in \mathbf{H}_{T} and \mathbf{H}_{T}^{miss}

Inclusive search at high H_T and H_T^{miss} in bins of N_i and N_b .

Another important background is W or top with hadronic τ decays. Measure with muon control sample by emulating τ jet from muon.

All-hadronic search using $\ensuremath{M_{T2}}$

SUS-13-019

Inclusive search with M_{T2} in bins of H_T , N_{jet} and N_b . $M_{T2} = sTransverse$ mass, designed for final states w/ 2 missing particles

All-hadronic search using M_{T2}

Control regions to study $Z \rightarrow vv$ background. Estimate with photon sample, multiplied by Z/γ ratio. Check modeling of MT2 variable in $Z \rightarrow \ell \ell$ and γ samples.

All-hadronic search using AlphaT

Inclusive search with α_T in bins of H_T , H_T^{miss} , N_j and N_b . AlphaT is a QCD killer, leaving a top and EWK dominated background.

SUS-12-028

All-hadronic search using AlphaT

- Inclusive search with α_T in bins of H_T , H_T^{miss} , N_j and N_h .
- Background measured with MC transfer factors from single lepton sample. Validate modeling in key variables using **single muon control sample**.

All-hadronic search using AlphaT

Inclusive search with α_T in bins of H_T , H_T^{miss} , N_i and N_b .

Signal region with HT > 225 GeV and >= 1 b tag

Search using Razor variables

The razor variables M_R and R provide a broad peak for signal and QCD suppression, respectively. Top & EWK bkgs fall ~ exponentially. Check performance of sideband fit and MC modeling in W and top control samples.

33

ttbar control region

Single lepton search using $\Delta \phi$ **(lepton,W)** ^{SUS-13-007}

Requiring $\Delta\phi(\text{lepton,W})>1$ suppresses single lepton W and top decays. Cutting on $L_T = \text{scalar sum of } E_T^{\text{miss}}$ and lepton p_T allows lower E_T^{miss} .

Validate variables in W and top control samples with first data.

Single lepton search using sum of jet's mass

Study using M_J = sum of large-R jets (R=1.2) together with M_T . M_T cut leaves mostly dilepton top; search in bins of E_T^{miss} , N_b , N_{jet} where a M_J tail beyond $2m_t$ arises mostly from ISR.

Study contributions to M_J in Z+jets sample and ttbar samples

Same sign dilepton search

Low background search, with contributions from rare SM (e.g., ttW), "fake" leptons (e.g., b decay), and electron charge mis-identification.

Measure the lepton fake rate as a function of kinematics using observables such as isolation.

Same sign dilepton search

Low background search, with contributions from rare SM (e.g., ttW), "fake" leptons (e.g., b decay), and electron charge mis-identification.

Charge misidentification for electrons is expected to be small. Measure it with $Z \rightarrow ee$ events.

Diphoton + **E**_T^{miss} search

Search for General Gauge Mediation models where $\tilde{\chi}_1^0 \to \tilde{G}\gamma$ leads to $\gamma\gamma E_T^{\text{miss}}$ +jets signature.

Fake E_{T}^{miss} resolution affected by p_T of diEM system. Measure it in $Z \rightarrow ee$ and fake-fake samples. Reweighting the diEM p_T of these samples to a signal sample provides E_{T}^{miss} prediction for that sample

Prospects for 300 and 3000 fb⁻¹

Muon System

- Replace DT & CSC FE/BE electronics
- Complete RPC coverage in region
- $1.5 < \eta < 2.4$ (new GEM/RPC technology)
- Muon-tagging 2.4 < η < 3

Phase 2 Upgrades

Replace Tracker

- Radiation tolerant higher granularity - less material -better p_T resolution
- Extended η region up to η ~ 3.8
- Tracks trigger at L1

Barrel EM calorimeter

- Replace FE/BE electronics
- Lower operating temperature

Replace endcap Calorimeters

- Radiation tolerant high granularity
- 3D capability

Trigger/HLT/DAQ

- Track information at L1
- L1-Trigger ~ 750 kHz
- HLT output ~7.5 kHz

Extended tracker coverage ($\eta \sim 3.8$) – PU mitigation Extended muon coverage ($\eta \sim 3$) – higher acceptance Trigger upgrade: track trigger @ L1, increased bandwidth (7.5 kHz @ HLT) High granularity endcap calorimeter – PU mitigation, VBF acceptance, q/g discrimination

L. Silvestris – LISHEP 2015

Benchmark Models

- CMS studied 5 benchmark models satisfying:
 - The model should not be already excluded by existing SUSY & BSM higgs searches, and be consistent with existing measurements of the 125 GeV higgs, relic density, etc.
 - The model should contain production and decay channels that could be discovered with up to 300 fb⁻¹
 - To study how a discovery could be characterized @ HL-LHC
 - The model should be theoretically well motivated
 - Natural SUSY inspired models (NM's) and co-annihilation models motivated by dark matter

Discovery Scenarios

Analysis Luminosity (fb ⁻¹) Model MM1 NM2 NM3 STC all-hadronic (H_T - H_T^{miss}) search 300 - - - 3000 all-hadronic (M_{T2}) search 300 - - - all-hadronic \tilde{b}_1 search 300 - - - - all-hadronic \tilde{b}_1 search 300 - - - - all-hadronic \tilde{b}_1 search 300 - - - - 1-lepton \tilde{t}_1 search 300 - - - - -		xperimental SUSY models									
Signature (fb^{-1}) NM1 NM2 NM3 STC all-hadronic $(H_T - H_T^{miss})$ search 300 3000 1000		Model				Luminosity	Analysis	signatura			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STOC	STC	NM3	NM2	NM1	(fb^{-1})	-	Signature			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						300	-hadronic ($H_{\rm T}$ - $H_{\rm T}^{\rm miss}$) search	a			
all-hadronic (M_{T2}) search 300 3000 all-hadronic \tilde{b}_1 search 300 1-lepton \tilde{t}_1 search 300 all-hadronic \tilde{b}_1 searc						3000					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						300	all-hadronic (M _{T2}) search				
all-hadronic \tilde{b}_1 search 300 3000 1-lepton \tilde{t}_1 search 300 000						3000					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						300	all-hadronic \tilde{b}_1 search				
1-lepton \tilde{t}_1 search 300						3000		V			
2000						300	1-lepton \tilde{t}_1 search				
3000						3000					
monojet \tilde{t}_1 search 300						300	monojet \tilde{t}_1 search				
3000						3000					
$m_{\ell^+\ell^-}$ kinematic edge 300 dom						300	$m_{\ell^+\ell^-}$ kinematic edge				
3000						3000		_			
multilepton + b-tag search 300						300	multilepton + b-tag search	_			
3000						3000					
multilepton search 300 de						300	multilepton search	_			
3000						3000		_			
ewkino WH search 300						300	ewkino WH search				
3000						3000					

Discovery Reach

Backup

Co-annihilation Models: stau (STC)

https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsSUS14012/STC_slha.txt 48

Co-annihilation Models: stop (STOC)

https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsSUS14012/STOC_slha.txt 49