Light Sparticles in NMSSM + Gauge Mediation

Robert Ziegler (LPTHE)

GGI 2015: Gearing up for the LHC

Introduction

The legacy of LHC Run 1: A 125 GeV Higgs, no new physics

Don't give up yet: best candidate to protect weak scale is still low-energy SUSY

> Still room for light sparticles: explore non-minimal models

For heavy SUSY indirect tests important: explore non-minimal sflavor structures

Minimal Gauge Mediation

Very predictive (5 parameters)

Solves SUSY Flavor Problem (MFV)

 \checkmark

Higgs mass problematic (small A-terms) **need** $m_{\tilde{g}} \gtrsim 3 \,\text{TeV}$

How to increase Higgs mass?

• large radiative A_t

heavy gluino & squarks

• large boundary A_t

new couplings messenger - Q,U,H_u

• new tree-level Δm_h^2

D-terms, F-terms, mixing

How to increase Higgs mass?

• large radiative A_t

heavy gluino & squarks

• large boundary A_t

new couplings messenger - Q,U,H_u

• new tree-level Δm_h^2 D-terms, F-terms, mixing NMSSM

How to increase Higgs mass?

• large radiative A_t

heavy gluino & squarks

large boundary A_t

 new couplings messenger Q,U,H_u
 Part I

 new tree-level △m_h²

 D-terms, F-terms, mixing
 Part II

 NMSSM

Part I: Messenger-Matter couplings

messengers have same quantum number as Higgs

 $W_{yuk} = y_{ij}^u Q_i U_j H_u \qquad \longrightarrow \qquad \Delta W_{yuk} = \lambda_{ij}^u Q_i U_j \Phi_{H_u}^5$

get new contributions to A-terms and soft masses

$$A_t \sim \frac{\Lambda}{16\pi^2} \lambda_U \lambda_U^{\dagger} y_U \qquad \Delta m_{Q(U)}^2 \sim \frac{\Lambda^2}{256\pi^4} \left(\lambda_U \lambda_U^{\dagger} - g_3^2 \right) \lambda_U \lambda_U^{\dagger}$$

need to take care of flavor structure: $\lambda_U \neq \mathcal{O}(1)_{ij}$

...but plausible since also $y_U \neq \mathcal{O}(1)_{ij}$

Flavored Gauge Mediation

2 possibilities to relate new couplings to up-Yukawas

$$\Delta W = \lambda_{ij} Q_i U_j \Phi^5_{H_u}$$

aligned to Yukawas through explicit mixing (MFV) controlled by same underlying flavor model ("Flavored Gauge Mediation")

$$\lambda_{ij} = c \, y_{ij}^u$$

Evans, Ibe, Yanagida '11

Shadmi & Szabo '11

Abdullah, Galon, Shadmi, Shirman '12

In both cases SUSY spectrum controlled by single new parameter λ_{33}^u and easily in LHC reach

 $\lambda_{ij} \sim y_{ij}^u$

only flavor pheno different: FGM gives non-MFV sflavor

Low-energy Spectrum

Evans, Ibe, Yanagida '11,'12

Sflavor Structure in U(1) Flavor Model

Calibbi, Paradisi, RZ, '13

Estimate couplings in terms of masses and mixings through FN charges

$$(y_U)_{ij} = x_{ij} \epsilon^{q_i + u_j} \qquad \longrightarrow \quad (\lambda_U)_{ij} = y_{ij} \epsilon^{q_i + u_j}$$

Loop origin gives CKM suppression of flavor violation

 $\left(\tilde{m}_Q^2\right)_{ij} \sim \left(\lambda_U\right)_{ik} \left(\lambda_U\right)_{jk}^* \sim \epsilon^{q_i + q_j + 2u_3} \sim V_{i3} V_{j3}^* y_t^2$

Comparison

Parametric flavor suppression of $(\tilde{m}_Q^2)_{ij}$

Flavored GM + U(1)
$$\sim \left(\lambda_U \lambda_U^{\dagger}\right)_{ij} \sim \epsilon^{q_i + q_j + 2u_3} \sim V_{i3} V_{j3}^* y_t^2$$

Gravity Mediation + U(1) $\sim \epsilon^{q_i - q_j} \sim V_{i3}/V_{j3}$

SUSY Partial Compositeness $\sim \epsilon^{q_i + q_j} \sim V_{i3} V_{j3}^*$

Minimal Flavor Violation

$$\sim \left(y_U y_U^{\dagger}\right)_{ij} + \left(y_D y_D^{\dagger}\right)_{ij} \sim \frac{V_{i3} V_{j3}^* y_t^2}{V_{i3} V_{i3}^* y_t^2}$$

		1 1			
	MFV	PC	U(1)	$\operatorname{FGM}_{U,D} + U(1)$	$\mathrm{FGM}_U + U(1)$
$(\delta^u_{LL})_{ij}$	$V_{i3}V_{j3}^*y_b^2$	$(\epsilon_3^q)^2 V_{i3} V_{j3}^*$	$\frac{V_{i3}}{V_{j3}} _{i\leq j}$	$V_{i3}V_{j3}^*y_t^2$	$V_{i3}V_{j3}^*y_t^2$
$(\delta^d_{LL})_{ij}$	$V_{3i}^* V_{3j} y_t^2$	$(\epsilon_3^q)^2 V_{i3} V_{j3}^*$	$\frac{V_{i3}}{V_{j3}} _{i\leq j}$	$V_{3i}^*V_{3j}y_t^2$	$V_{3i}^*V_{3j}y_t^2$
$(\delta^u_{RR})_{ij}$	$y_i^U y_j^U V_{i3} V_{j3}^* y_b^2$	$\frac{y_{i}^{U}y_{j}^{U}}{V_{i3}V_{j3}^{*}}\frac{(\epsilon_{3}^{u})^{2}}{y_{t}^{2}}$	$\frac{y_i^U V_{j3}}{y_j^U V_{i3}} \big _{i \le j}$	$\frac{y_i^U y_j^U}{V_{i3}V_{j3}^*}$	$\frac{y_i^U y_j^U}{V_{i3}V_{j3}^*}$
$(\delta^d_{RR})_{ij}$	$y_i^D y_j^D V_{3i}^* V_{3j} y_t^2$	$\frac{y_{i}^{D}y_{j}^{D}}{V_{i3}V_{j3}^{*}}\frac{(\epsilon_{3}^{u})^{2}}{y_{t}^{2}}$	$\frac{y_i^D V_{j3}}{y_j^D V_{i3}}\big _{i \le j}$	$\frac{y_i^D y_j^D}{V_{i3}V_{j3}^*}$	$y_i^D y_j^D V_{3i}^* V_{3j} y_t^2$
$(\delta^u_{LR})_{ij}$	$y_j^U V_{i3} V_{j3}^* y_b^2$	$y_j^U rac{V_{i3}}{V_{j3}^*}$	$y_j^U rac{V_{i3}}{V_{j3}^*}$	$\begin{array}{c} y_{j}^{U}V_{i3}V_{j3}^{*}y_{t}^{2} \!+\! y_{i}^{U}\frac{y_{i}^{U}y_{j}^{U}}{V_{i3}V_{j3}^{*}} \\ y_{j}^{U}\frac{V_{i3}}{V_{j3}^{*}}y_{t}^{6} \end{array}$	$\begin{array}{c} y_{j}^{U}V_{i3}V_{j3}^{*}y_{t}^{2} \!+\! y_{i}^{U}\frac{y_{i}^{U}y_{j}^{U}}{V_{i3}V_{j3}^{*}} \\ y_{j}^{U}\frac{V_{i3}}{V_{j3}^{*}}y_{t}^{6} \end{array}$
$(\delta^d_{LR})_{ij}$	$y_j^D V_{3i}^* V_{3j} y_t^2$	$y_j^D \frac{V_{i3}}{V_{j3}^*}$	$y_j^D \frac{V_{i3}}{V_{j3}^*}$	$\begin{array}{c} y_{j}^{D}V_{3i}^{*}V_{3j}y_{t}^{2} \!+\! y_{i}^{D}\frac{y_{i}^{D}y_{j}^{D}}{V_{i3}V_{j3}^{*}} \\ y_{j}^{D}\frac{V_{3i}^{*}}{V_{3j}}y_{t}^{4}y_{b}^{2} \end{array}$	$y_j^D V_{3i}^* V_{3j} y_t^2$

Flavor violation similar to SUSY Partial Compositeness (dominantly in LR sector)

How to increase Higgs mass?

• large radiative A_t

heavy gluino & squarks

large boundary A_t

 new couplings messenger Q,U,H_u
 Part I

 new tree-level Δm²_h

 D-terms, F-terms, mixing
 Part II
 NMSSM

Part II: Raise tree-level Higgs with mixing

$$\begin{pmatrix} m_h^2 & m_{hs}^2 \\ m_{hs}^2 & m_s^2 \end{pmatrix} \xrightarrow{m_h^2 > m_s^2} m_{h_2}^2 \approx m_h^2 + \frac{m_{hs}^4}{m_h^2}$$

can realize in NMSSM $\Delta W = \lambda S H_u H_d + \frac{\kappa}{3} S^3$

mixing angles constrained by LEP and LHC

maximal contribution to Higgs mass for $m_{h_1} \approx 94 \,\text{GeV} \qquad \cos \theta \approx 0.88$

Badziak, Olechowski, Pokorski '13

Embedding into GMSB

Can one realize this scenario in Gauge Mediation?

(besides predictivity motivated by μ -B_{μ} problem of GMSB)

MSSM + GM:
$$\mu \sim a \frac{\Lambda}{16\pi^2}$$
 $B_{\mu} \sim a \frac{\Lambda^2}{16\pi^2} \sim 16\pi^2 \mu^2$
NMSSM + GM: $\mu \sim \langle S \rangle \sim m_{soft}$ $B_{\mu} \sim \langle F_S \rangle \sim m_{soft}^2 \sim \mu^2$

...not in minimal Gauge Mediation because singlet soft terms too small

Dine, Nelson '93 de Gouvea, Friedland, Murayama '13

The DGS Model

Simplest Model: Minimal GM with two pairs of messengers and direct couplings to singlet

Delgado, Giudice, Slavich '07

 $W_{\text{DGS}} = S \left(\xi_D \bar{\Phi}_1^D \Phi_2^D + \xi_T \bar{\Phi}_1^T \Phi_2^T \right) \qquad \xi_D(M_{\text{GUT}}) = \xi_T(M_{\text{GUT}}) \equiv \xi$ $A_\lambda \sim A_\kappa \sim \tilde{m} \, \xi^2 \qquad \qquad \tilde{m}_S^2 \sim \tilde{m}^2 \, \xi^2 \left(\xi^2 + \kappa^2 + g^2 \right)$ $\tilde{m} \equiv 1/(16\pi^2) \, F/M \approx m_{\tilde{g}}/2$

4 parameters: λ , \tilde{m} , ξ , M[correct EWSB fixes κ]

DGS Parameter Space

Only 3 regions with sizable Higgs mass $m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + m_{h,\text{mix}}^2 + m_{h,\text{loop}}^2$ bounded by M_Z^2 (perturbativity up M_{GUT})

The Push-Up Region

"...even in these regions the lightest Higgs mass is not larger than the maximal value attainable in the usual GMSB."

Delgado, Giudice, Slavich '07

MSSM + mixing region exists but hard to find

Look for maximal singlet-Higgs mixing

Allanach, Badziak, Hugonie, RZ '15

Maximize tree-level Higgs contribution from mixing

determines 3/4 parameters, only messenger scale free (determines gravitino phenomenology) $m_{h_1} \approx 94 \,\mathrm{GeV} \quad \cos\theta \approx 0.88$ $m_{h_2} \approx 125 \,\mathrm{GeV}$

$$\lambda, \xi \qquad \tilde{m} \qquad M$$

$$\sim 10^{-2} \qquad \sim 1 \,\mathrm{TeV}$$

Higgs mass still drives lower bounds on sparticles, but can be close to direct exclusion bounds

Benchmarks

		P1	P2	P3	P4	P5
	\tilde{m}	$7.5 \cdot 10^2$	$8.7 \cdot 10^2$	$9.3 \cdot 10^2$	$5.9\cdot 10^2$	$9.3 \cdot 10^2$
	M	$1.4 \cdot 10^6$	$2.8 \cdot 10^6$	$3.3 \cdot 10^7$	$8.3\cdot10^{14}$	$3.4\cdot10^{14}$
	λ	$1.0 \cdot 10^{-2}$	$9.3 \cdot 10^{-3}$	$6.7 \cdot 10^{-3}$	$9.2 \cdot 10^{-3}$	$6.9 \cdot 10^{-3}$
	ξ	$1.2 \cdot 10^{-2}$	$1.1\cdot 10^{-2}$	$1.3 \cdot 10^{-2}$	$3.2\cdot 10^{-2}$	$2.0 \cdot 10^{-2}$
	$\tan\beta$	25	28	24	26	21
	m_{h_1}	92	93	98	94	94
	m_{h_2}	122.1	123.4	122.9	122.1	125.0
	m_{a_1}	26	26	28	40	32
	$m_{ ilde{N}_1}$	101	102	106	104	104
	$m_{ ilde{N}_2}$	322	377	400	251	379
	$m_{ ilde{e}_1}$	303	358	406	449	676
	$m_{ ilde{ au}_1}$	284	333	376	432	637
	$m_{ ilde{g}}$	1.73	1.98	2.09	1.37	2.06
	$m_{\tilde{u}_R}$	1.79	2.06	2.15	1.36	2.07
г ¬	$m_{\tilde{t}_1}$	1.64	1.87	1.90	1.06	1.63
$\lfloor m \rfloor$	$c au_{ ilde{N}_1}$	$6.4 \cdot 10^{-2}$	0.34	48	$1.9\cdot 10^{16}$	$6.0\cdot 10^{15}$
	$\sigma^{13{ m TeV}}_{ ilde q ilde q}$	9.35	2.99	1.98	59.7	2.63
[<i>C 1</i>]	$\sigma^{ m 13TeV}_{ ilde{q} ilde{g}}$	11.9	3.30	2.01	91.1	2.48
	$\sigma_{ m strong}^{ m 13TeV}$	25.2	7.28	4.58	190	5.95
[]0]	$\sigma_{ m strong}^{ m 8TeV}$	0.51	0.07	0.03	10.1	0.05
	$\sigma_{ m EW}^{ m 13TeV}$	27	12	7.5	6.7	5.6
	$\sigma_{ m EW}^{ m 8 TeV}$	5.5	2.1	1.2	1.3	0.7

- reduced Higgs signal strengths $\mu \sim 0.75$
- light pseudoscalar ~ 25 GeV
- singlino NLSP ~ 100 GeV displaced decays/stable
- stau/bino NNLSP ~ 300 GeV
- singlino essentially decoupled SUSY decays through NNLSP

Signals depend on NNLSP nature and singlino decay length

GeV

LHC Phenomenology

Allanach, Badziak, Cottin, Desai, Hugonie, RZ in progress

	P1	P2	P3	P4	P5
NNLSP	stau	stau	stau	bino	bino
$m_{\tilde{g}}$	1.73	1.98	2.09	1.37	2.06
$m_{ ilde{u}_R}$	1.79	2.06	2.15	1.36	2.07
$m_{\tilde{t}_1}$	1.64	1.87	1.90	1.06	1.63
$\sigma_{\rm strong}^{13 { m TeV}}[fb]$	25	7.3	4.6	190	6.0
$\sigma_{ m strong}^{ m 8TeV}[fb]$	0.51	0.07	0.03	10.1	0.05
$c au_{ ilde{N}_1}[m]$	$6.4 \cdot 10^{-2}$	0.34	48	$\sim \infty$	$\sim \infty$
search	$multi-\ell + MET$	multi- ℓ + MET	multi- ℓ + MET	jets + MET	jets + MET
$\sigma/\sigma_{95\%}^{ m excl}$	0.08	0.36	0.04	0.93	0.03

- All benchmarks allowed by run1
- Displaced singlino vertex dramatically reduces sensitivity
- Dedicated DV searches not effective due to 2nd DVs from b-jets

Summary

- A 125 GeV Higgs in Minimal Gauge Mediation requires colored sparticles out of LHC reach: motivates extensions of minimal model
- Flavored messenger matter-couplings generate large A-terms: leads to rich (but viable) flavor phenomenology that allows to test flavor models
- Minimal model for NMSSM + Gauge Mediation allows for light sparticles thanks to Higgs-singlet mixing: very predictive framework with new collider signatures from displaced singlino decays into b-jets

High-energy Soft Terms (on top of MGM)

• Non-zero squark A-terms

$$A_U = -\frac{\Lambda}{16\pi^2} \left(\lambda_U \lambda_U^{\dagger} y_U + 2 y_U \lambda_U^{\dagger} \lambda_U \right) \qquad A_D = -\frac{\Lambda}{16\pi^2} \lambda_U \lambda_U^{\dagger} y_D$$

• New contribs to 2-loop squark masses

$$\Delta m_{Q(U)}^2 \sim \frac{\Lambda^2}{256\pi^4} \left(\lambda_U \lambda_U^{\dagger} - g_3^2 \right) \lambda_U \lambda_U^{\dagger} \qquad \Delta m_D^2 \sim \frac{\Lambda^2}{256\pi^4} y_D^{\dagger} \lambda_U \lambda_U^{\dagger} y_D$$

Only 1 new parameter relevant for spectrum

Flavor constraints

Most constraints automatically satisfied for $\tilde{m} \sim 1 \,\mathrm{TeV}$

