Searching for Scalar Dark Matter

Asimina Arvanitaki Perimeter Institute

with Ken Van Tilburg Junwu Huang (2014) and Savas Dimopoulos (2015)

Theories of Light Scalars

• Moduli, Dilaton, Axions...

• Couples non-derivatively to the Standard Model

$$\mathcal{L} \supset d_i \frac{\phi}{M_{Pl}} \mathcal{O}_{SM}$$

$$\mathcal{O}_{SM} \equiv m_e e \bar{e}, \ m_q q \bar{q}, \ G_s^2, \ F_{EM}^2, \dots$$

Constraints on Light Scalars

• Mediates new interactions in matter

• Generates a fifth force in matter

Light Scalar Dark Matter

Light Scalar Dark Matter

Initial conditions set by inflation

Light Scalar Dark Matter Today

Oscillating Fundamental Constants

From the local oscillation of Dark Matter

Ex. for the electron mass:

$$d_{m_e} \frac{\phi}{M_P l} m_e e\bar{e}$$

$$\frac{\delta m_e}{m_e} \approx \frac{d_{m_e} \phi_o}{M_{Pl}} \cos(m_\phi t)$$

$$= 6 \times 10^{-13} \cos(m_{\phi} t) \frac{10^{-18} \text{ eV}}{m_{\phi}} \frac{d_{m_e}}{1}$$

Fractional variation set by square root of DM abundance

Need an extremely sensitive probe...

Light Scalar Dark Matter Detection

• Detecting Dark Matter with Atomic Clocks

• Detecting Dark Matter with Resonant-Mass Detectors

Keeping the DM time with Atomic Clocks

with Junwu Huang and Ken Van Tilburg (2014)

Oscillating Atomic and Nuclear Energy Splittings

Optical Splittings

$$\Delta E_{
m optical} \propto lpha_{EM}^2 m_e \sim {
m eV}$$

• Hyperfine Splittings

$$\Delta E_{\rm hyperfine} \propto \Delta E_{\rm optical} \alpha_{EM}^2 \left(\frac{m_e}{m_p}\right) \sim 10^{-6} \, {\rm eV}$$

Nuclear Splittings

 $\Delta E \ (m_p, \alpha_s, \alpha_{EM}) \sim 1 \ MeV$

DM appears as a signature in atomic (or nuclear) clocks

Atomic Clocks

• Kept tuned to an atomic energy level splitting

Current definition of a second:

the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom

• Have shown stability of 1 part in 10¹⁸

Compared to 1 part in 10¹³ expected by DM

• Have won several Nobel prizes in the past 20 years

How does and Atomic Clock Work?

Keep a laser tuned to a long-lived (> minutes) atomic transition

 $\tau_{\rm cycling}$ of order the lifetime

How do you take the measurements?

• Observe two clocks every $\tau_{cycling}$

• Calculate ratio of frequencies taking into account:

$$f_A = \alpha_{EM}^{\xi_A + 2} \left(\frac{m_e}{m_p}\right)^{\zeta_A} \qquad \qquad \frac{\delta f_A}{f_A} = (\xi_A + 2)\frac{\delta\alpha_{EM}}{\alpha_{EM}} + \zeta_A \frac{\delta m_e}{m_e} - \zeta_A \frac{\delta m_p}{m_p}$$

 Take Fourier transform to look for oscillations with period longer than τ_{cycling}

Atomic Clock DM searches are broadband searches

Table of atomic transitions used (or to be used)

$$\frac{\delta f_A}{f_A} = (\xi_A + 2)\frac{\delta\alpha_{EM}}{\alpha_{EM}} + \zeta_A \frac{\delta m_e}{m_e} - \zeta_A \frac{\delta m_p}{m_p}$$

Species	Transition	λ (nm)	Short $\left(\frac{10^{-15}}{\sqrt{\text{Hz}}}\right)$	Long (10^{-18})	ζa	ξa
¹³³ Cs [21]	hyperfine	$3.3\cdot 10^7$	$2 \cdot 10^2$	360	1	2.83
¹⁹⁹ Hg ⁺ [15]	$5d^{10}6s {}^{2}S_{\frac{1}{2}} \leftrightarrow 5d^{9}6s^{2} {}^{2}D_{\frac{5}{2}}$	282	2.8	19	0	-3.19
¹⁷¹ Yb ⁺ [22]	$4f^{14}6s^{2}S_{\frac{1}{2}} \leftrightarrow 4f^{13}6s^{2}{}^{2}F_{\frac{7}{2}}$	467	2.0	71	0	-5.30
²⁷ Al ⁺ [23]	$3s^{2} {}^{1}S_{0} \leftrightarrow 3s3p {}^{3}P_{0}$	267	2.8	8.6	0	0.008
⁸⁸ Sr ⁺ [24]	$5s^{2}S_{\frac{1}{2}} \leftrightarrow 4d^{2}D_{\frac{5}{2}}$	674	16	25	0	0.43
¹⁷¹ Yb [12]	$6s^{2} {}^{1}S_{0} \leftrightarrow 6s6p {}^{3}P_{0}$	578	0.32	1.6	0	0.31
⁸⁷ Sr [13]	$5s^{2} {}^{1}S_{0} \leftrightarrow 5s5p {}^{3}P_{0}$	698	0.34	6.4	0	0.06
¹⁶² Dy [25]	$4f^{10}5d6s \leftrightarrow 4f^{9}5d^{2}6s$	$4.0\cdot 10^8$	$4.0 \cdot 10^6$	-	0	$8.5\cdot 10^6$
¹⁶⁴ Dy [25]	$4f^95d^26s \leftrightarrow 4f^{10}5d6s$	$1.3 \cdot 10^9$	$1.3 \cdot 10^7$	-	0	$-2.6 \cdot 10^{6}$
229m Th ³⁺ [26]	nuclear	$\sim 1.6\cdot 10^2$	~ 1	~ 1	-	$\sim 10^4$

Table of atomic transitions used (or to be used)

$$\frac{\delta f_A}{f_A} = (\xi_A + 2)\frac{\delta\alpha_{EM}}{\alpha_{EM}} + \zeta_A \frac{\delta m_e}{m_e} - \zeta_A \frac{\delta m_p}{m_p}$$

Species	Transition	λ (nm)	Short $\left(\frac{10^{-15}}{\sqrt{\text{Hz}}}\right)$	Long (10^{-18})	ζa	ξa
¹³³ Cs [21]	hyperfine	$3.3\cdot 10^7$	$2 \cdot 10^2$	360	1	2.83
¹⁹⁹ Hg ⁺ [15]	$5d^{10}6s^{2}S_{\frac{1}{2}} \leftrightarrow 5d^{9}6s^{2}{}^{2}D_{\frac{5}{2}}$	282	2.8	19	0	-3.19
¹⁷¹ Yb ⁺ [22]	$4f^{14}6s^{2}S_{\frac{1}{2}} \leftrightarrow 4f^{13}6s^{2}{}^{2}F_{\frac{7}{2}}$	467	2.0	71	0	-5.30
²⁷ Al ⁺ [23]	$3s^{2} {}^{1}S_{0} \leftrightarrow 3s3p {}^{3}P_{0}$	267	2.8	8.6	0	0.008
⁸⁸ Sr ⁺ [24]	$5s^{2}S_{\frac{1}{2}} \leftrightarrow 4d^{2}D_{\frac{5}{2}}$	674	16	25	0	0.43
¹⁷¹ Yb [12]	$6s^{2} {}^{1}S_{0} \leftrightarrow 6s6p {}^{3}P_{0}$	578	0.32	1.6	0	0.31
⁸⁷ Sr [13]	$5s^{2} {}^{1}S_{0} \leftrightarrow 5s5p {}^{3}P_{0}$	698	0.34	6.4	0	0.06
¹⁶² Dy [25]	$4f^{10}5d6s \leftrightarrow 4f^{9}5d^{2}6s$	$4.0 \cdot 10^8$	$4.0\cdot 10^6$, , , , , , , , , , , , , , , , , , ,	0	$8.5 \cdot 10^{6}$
¹⁶⁴ Dy [25]	$4f^95d^26s \leftrightarrow 4f^{10}5d6s$	$1.3 \cdot 10^9$	$1.3 \cdot 10^7$	and the state was well a second as you have be a second as the	0	$-2.6\cdot10^{6}$
^{229m} Th ³⁺ [26]	nuclear	$\sim 1.6\cdot 10^2$	~ 1	~1		$\sim 10^4$

Accidental cancellations in Dysprosium optical transitions are very sensitive to EM coupling variations

Table of atomic transitions used (or to be used)

$$\frac{\delta f_A}{f_A} = (\xi_A + 2)\frac{\delta \alpha_{EM}}{\alpha_{EM}} + \zeta_A \frac{\delta m_e}{m_e} - \zeta_A \frac{\delta m_p}{m_p}$$

Species	Transition	λ (nm)	Short $\left(\frac{10^{-15}}{\sqrt{\text{Hz}}}\right)$	Long (10^{-18})	ζa	ξa
¹³³ Cs [21]	hyperfine	$3.3 \cdot 10^7$	$2 \cdot 10^2$	360	1	2.83
¹⁹⁹ Hg ⁺ [15]	$5d^{10}6s {}^{2}S_{\frac{1}{2}} \leftrightarrow 5d^{9}6s^{2} {}^{2}D_{\frac{5}{2}}$	282	2.8	19	0	-3.19
¹⁷¹ Yb ⁺ [22]	$4f^{14}6s^{2}S_{\frac{1}{2}} \leftrightarrow 4f^{13}6s^{2}{}^{2}F_{\frac{7}{2}}$	467	2.0	71	0	-5.30
²⁷ Al ⁺ [23]	$3s^{2} {}^{1}S_{0} \leftrightarrow 3s3p {}^{3}P_{0}$	267	2.8	8.6	0	0.008
⁸⁸ Sr ⁺ [24]	$5s^{2}S_{\frac{1}{2}} \leftrightarrow 4d^{2}D_{\frac{5}{2}}$	674	16	25	0	0.43
¹⁷¹ Yb [12]	$6s^{2} {}^{1}S_{0} \leftrightarrow 6s6p {}^{3}P_{0}$	578	0.32	1.6	0	0.31
⁸⁷ Sr [13]	$5s^{2} {}^{1}S_{0} \leftrightarrow 5s5p {}^{3}P_{0}$	698	0.34	6.4	0	0.06
¹⁶² Dy [25]	$\rm 4f^{10}5d6s\leftrightarrow 4f^{9}5d^{2}6s$	$4.0\cdot 10^8$	$4.0 \cdot 10^6$	-	0	$8.5\cdot 10^6$
¹⁶⁴ Dy [25]	$\rm 4f^95d^26s \leftrightarrow 4f^{10}5d6s$	$1.3\cdot 10^9$	$1.3 \cdot 10^7$	-	0	$-2.6\cdot10^{6}$
^{229m} Th ³⁺ [26]	nuclear	$\sim 1.6 \cdot 10^2$	~ 1	~1	-	$\sim 10^4$

Thorium nuclear transition cancellations increase sensitivity to EM coupling and quark mass coupling variations Not measured yet...

What type of comparisons can we do?

• Hyperfine to Optical transitions

• Sensitive to m_e , m_q , and α_s (less to α_{EM})

• Optical to Optical transitions

• Nuclear to Optical transitions

• Sensitive to m_e , α_{EM} , m_q , and α_s

Hyperfine to Optical Transition Comparison

Current Sensitivity to me variations

Reduced sensitivity to variations of the EM coupling

Optical to Optical Comparison

Current sensitivity to α_{EM} variations

The Dysprosium Clock Comparison

sensitivity to α_{EM} variations

Ken Van Tilburg and the Budker group (2015)

Analysis performed with existing data

What are possible future improvements?

- Optical clock improvements by four orders of magnitude
 - Using more than one atom
 - Using entangled atoms

• The thorium clock under development: Nuclear-Optical Clock comparison

Nuclear to Optical Clock Comparison

Keeping the DM time with Atomic Clocks

• Several orders of magnitude improvement possible now compared to 5th force and EP violation searches

• Nuclear clocks if ever built will give several orders of magnitude improvement in the reach

The Sound of Dark Matter

with Ken Van Tilburg and Savas Dimopoulos (2015)

Oscillating interatomic distances

• The Bohr radius changes with DM

•
$$r_B \sim (\alpha m_e)^{-1}$$

 $\frac{\delta r_B}{r_B} = -\left(\frac{\delta \alpha_{EM}}{\alpha_{EM}} + \frac{\delta m_e}{m_e}\right)$

• The size of solids changes with DM

•
$$L \sim N (\alpha m_e)^{-1}$$

$$\frac{\delta L}{L} = -\left(\frac{\delta \alpha_{EM}}{\alpha_{EM}} + \frac{\delta m_e}{m_e}\right)$$

For a single atom $\delta r_B \sim 10^{-30}$ m Need macroscopic objects to get a detectable signal

The simple harmonic oscillator

of mass M, resonant frequency $\boldsymbol{\omega}$ and equilibrium length L

 $M\left[\ddot{x} + \frac{\omega}{Q}\dot{x} + \omega^2 \left(x - L\right)\right] = F_{\rm th} + F_{\rm ext}$

If the equilibrium size changes with time (with D=x-L):

$$L = L_o \left(1 + \frac{\delta L}{L_o} \cos(m_{\phi} t) \right)$$

$$M\left[\ddot{D} + \frac{\omega}{Q}\dot{D} + \omega^2 D\right] \simeq -M\ddot{L} + F_{\rm th} + F_{\rm ext}$$

The simple harmonic oscillator

of mass M, resonant frequency $\boldsymbol{\omega}$ and equilibrium length L

 $M\left[\ddot{x} + \frac{\omega}{Q}\dot{x} + \omega^2 \left(x - L\right)\right] = F_{\rm th} + F_{\rm ext}$

If the equilibrium size changes with time (with D=x-L):

$$L = L_o \left(1 + \frac{\delta L}{L_o} \cos(m_\phi t) \right)$$

$$M\left[\ddot{D} + \frac{\omega}{Q}\dot{D} + \omega^2 D\right] \simeq -M\ddot{L} + F_{\rm th} + F_{\rm ext}$$

Driving force from change in the equilibrium position

The Simple Harmonic Oscillator

Dark Matter Driving Force:

$$F_{DM} = -M\omega^2 L_o h$$

with

$$h = -\left(\frac{\delta\alpha_{EM}}{\alpha_{EM}} + \frac{\delta m_e}{m_e}\right)$$

Just like a scalar gravitational wave of same strain

Can use resonant-mass detectors to enhance and measure the acoustic waves produced the signal

Resonant-Mass Detectors

• In the 1960's: The Weber Bar

Strain sensitivity h~10⁻¹⁷

• Today: AURIGA, NAUTILUS, MiniGrail

Strain sensitivity h~10⁻²³

Resonant-Mass Detectors

Resonant frequency set by size and speed of sound in the material
 For sizes ~ 1 m resonant frequency of ~1 kHz

- Can take advantage of higher acoustic modes
 - Increases the bandwidth covered by a single device

Resonant-Mass Detectors

• Ultimate sensitivity limited by thermal noise

$$h_{\min} \sim \sqrt{\frac{4T}{M\omega_n^3 J_n^2 Q_n}}$$

Improves with higher quality factor object size and (effective) mass J_n : mode overlap with DM signal -drops like n^{-2}

- Can cover frequencies from 1 kHz all the way to 1 GHz
 - Need to worry about bandwidth coverage

The Sun and The Earth as Resonant-Mass Detectors

• Earth's acoustic mode with frequency (20 min)⁻¹ and Q~7500

Strain sensitivity h~10⁻¹⁷

• Sun's acoustic modes with frequency ~1 mHz and Q~1000

• Can potentially use other astrophysical objects

Good only for setting bounds

What can be done with current resonant-mass

- AURIGA: Ten years of data taking available
- Quartz: Experiment by M. Tobar using $Q > 10^{10}$ piezoelectrics
- Earth: Using a single monopole seismic mode observed over several months

What can be done in the future?

Need to increase bandwidth

• Dual Mass detectors

• Copper-Silicon alloy sphere: variations of few percent in sound speed between 4 — 100 K

• Use temperature to scan resonant frequency

The scanning resonant-mass detector

 Use Fabry-Perot cavity to pick up displacement as small as 10⁻¹⁹ m/(Hz)^{1/2}

Change operating temperature between 4-100 K at 2 mK increments

• Pick up ALL modes at once: continuous coverage above 10kHz

What can be done in the future?

• Probe even the theoretically biased regime of natural couplings and masses 2

Ex.
$$\frac{\delta m_e}{m_e} < 10^{-20} \left(\frac{10 \text{ TeV}}{\Lambda}\right)^2$$

What about naturalness?

 $\log_{10}[f_{\phi}/\text{Hz}]$ -8 -6 -20 2 8 10 6 -44 5F d_{m_e} 5F d_e 0 quartz (ex.) EP d_{m_e} EP d_e Cu–Si sphere (fut.) Earth $\log_{10} |d_i|$ mic. - opt. dme (ex.) AURIGA (ex.) -5 WN Dy d_e natural dme natural de DUAL (fut.) opt.-opt. de (ex.) -10 de (fut. -opt. nuc -22 -20 -18 -16 -14 -12 -10 -8 -6 24 -4 $\log_{10}[m_{\phi}/\text{eV}]$ Quark mass coupling relative to Gravity -4 -2-8 -6 6 8 10 0 2 4 0 5F natural dm EP mic.-opt. (ex.) $\log_{10} |d_{\hat{m}}|$ -5 -10nuc.-opt. (fut.) -15 24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 $\log_{10}[m_{\phi}/\text{eV}]$

Electron charge or mass coupling relative to Gravity

Summary

• Several orders of magnitude improvement in searches for moduli Dark Matter

• Based on existing and well-established techniques

• There are several more possibilities in particular pushing to higher frequencies

This is only scratching the surface...

The High Energy Frontier

The Length Scales in the Universe

80% of the energy scale left to explore