Gearing up for LHC 13, GGI, 18 September 2015

Composite heavy vector triples in the ATLAS di-boson excess and at future colliders

Andrea Thamm JGU Mainz

in collaboration with R. Torre and A. Wulzer based on arXiv: 1506.08688 and 1502.01701

Di-boson excess?

Di-boson excess?

Tagging efficiencies

- W-fat jet: 69.4 GeV < m < 95.4 GeV
- Z-fat jet: 79.8 GeV < m < 105.8 GeV

• efficiency of jet invariant mass cuts

$$\begin{bmatrix} \epsilon_{WW \to WW} & \epsilon_{WZ \to WW} \\ \epsilon_{WW \to WZ} & \epsilon_{WZ \to WZ} \\ \epsilon_{WW \to ZZ} & \epsilon_{WZ \to ZZ} \end{bmatrix} = \begin{bmatrix} 0.51 & 0.42 \\ 0.48 & 0.57 \\ 0.21 & 0.32 \end{bmatrix}$$

Excess events

 $S_{WW} - 4.2_{-2.0}$ $S_{ZZ} = 6.4^{+3.6}_{-2.4}$

combined fit only by ATLAS lack information on the correlation of the big systematic uncertainties

We extract the signal CS from a single channel and compare with the others

Signal cross section

Heavy vector triples

Heavy vector triples

- among the most well motivated particles
- appear in composite Higgs models but also in weakly coupled theories
- associated to the EW gauge symmetry
- consider a 3 of $SU(2)_L$

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \qquad V = (V^{+}, V^{-}, V^{0}) \\ + i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a} \\ + \frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c}$$

Coupling to SM Vectors

Coupling to SM fermions $J_F^{\mu \, a} = \sum_f \overline{f}_L \gamma^\mu \tau^a f_L$ f $V_\mu \quad W_\mu$ $c_F V \cdot J_F \rightarrow c_l V \cdot J_l + c_q V \cdot J_q + c_3 V \cdot J_3$

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \qquad V = (V^{+}, V^{-}, V^{0}) + i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a} + \frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c}$$

Coupling to SM Vectors

Coupling to SM fermions $J_F^{\mu \, a} = \sum_f \overline{f}_L \gamma^\mu \tau^a f_L$ f V_μ $c_F V \cdot J_F \rightarrow c_l V \cdot J_l + c_q V \cdot J_q + c_3 V \cdot J_3$

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \qquad V = (V^{+}, V^{-}, V^{0}) + i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a} + \frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c}$$

- Couplings among vectors
- do not contribute to V decays
- do not contribute to single production
- only effects through (usually small) VW mixing

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \qquad V = (V^{+}, V^{-}, V^{0})$$

+ $i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a}$
+ $\frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c}$

Weakly coupled model

Strongly coupled model

$$g_V$$
 typical strength of V interactions
 $g_V \sim g \sim 1$ $1 < g_V \le 4\pi$
 c_i dimensionless coefficients
 $c_H \sim -g^2/g_V^2$ and $c_F \sim 1$ $c_H \sim c_F \sim 1$

Production rates

• DY and VBF production

- can compute production rates analytically!
- easily rescale to different points in parameter space

Decay widths

relevant decay channels: di-lepton, di-quark, di-boson •

$$\begin{split} \Gamma_{V_{\pm} \to f\bar{f}'} &\simeq 2 \,\Gamma_{V_0 \to f\bar{f}} \simeq N_c[f] \,\left(\frac{g^2 c_F}{g_V}\right)^2 \frac{M_V}{96\pi} \,, \\ \Gamma_{V_0 \to W_L^+ W_L^-} &\simeq \Gamma_{V_{\pm} \to W_L^\pm Z_L} &\simeq \frac{g_V^2 c_H^2 M_V}{192\pi} \left[1 + \mathcal{O}(\zeta^2)\right] \\ \Gamma_{V_0 \to Z_L h} &\simeq \Gamma_{V_{\pm} \to W_L^\pm h} &\simeq \frac{g_V^2 c_H^2 M_V}{192\pi} \left[1 + \mathcal{O}(\zeta^2)\right] \end{split}$$

 $g_V c_H \simeq -g_V$, $g^2 c_F / g_V \simeq g^2 / g_V$

- excluded for masses < 1.5 TeV, unconstrained for larger g_V
- di-boson most stringent
- in excluded region G_F , m_Z not reproduced

Heavy vector triples in the di-boson excess

LHC bounds

- similar exclusions at low g_V , leptonic final state dominates
- very different for larger coupling
- weaker limits if decay to top partners open

[Greco, Liu: arXiv:1410.2883] [Chala, Juknevich, Perez, Santiago :arXiv:1411.1771]

LHC bounds

• compare with weakly coupled vectors

yellow: CMS $l^+\nu$ analysis dark blue: CMS $WZ \rightarrow 3l\nu$ light blue: CMS $WZ \rightarrow jj$ black: bounds from EWPT

strongly coupled vectors have weaker bounds

HVT signal cross section

• neutral and charged components contribute to the various selection regions

 $S_{WZ} = \mathcal{L} \times \mathcal{A} \times \left[(\sigma \times BR)_{V^{\pm}} BR_{WZ \to had} \epsilon_{WZ \to WZ} + (\sigma \times BR)_{V^{0}} BR_{WW \to had} \epsilon_{WW \to WZ} \right]$

• Once we fix the mass there is only one parameter g_V

Compatibility with other searches

Thamm, Torre, Wulzer, arXiv:1506.08688

Conclusion I

- perfectly agrees with some channels
- could maybe even explain some small excesses
- maybe slight tension in other channels
- maybe this is exactly what we expect?

Heavy vector triples at future colliders

Composite Higgs models at future colliders

Limit extrapolation

assume: excluded signal is only a function of

background rescales with parton luminosities

$$B(s, L, m_{\rho}) \propto L \cdot \sum_{\{i, j\}} \int d\hat{s} \frac{1}{\hat{s}} \frac{d\mathcal{L}_{ij}}{d\hat{s}} (\sqrt{\hat{s}}; \sqrt{s}) \left[\hat{s} \hat{\sigma}_{ij} \left(\hat{s} \right) \right]$$

identify relevant background process

Limit extrapolation - assumptions

- limit only driven by background for a cut-and-count experiment of events within narrow window
- shape analyses depend on background and signal kinematical distributions
- however, no large deviations expected

Limit extrapolation

current 8 TeV LHC limits and extrapolated bounds

Composite Higgs Model

• predicts direct and indirect effects

production of top partners

 (mass controls generation of Higgs
 potential and fine-tuning,
 very model dependent)
 [Matsedonskyi, Panico, Wulzer: 1409.0100]

 modification of Higgs couplings (predictable in a fairly modelindependent way)

$$a = g_{WWh} = \sqrt{1 - \xi}$$

• EWPT

(sensitive to effects only computable in specific models)

• Flavour

 $\xi = \frac{g_{\rho}^2}{m_{\rho}^2} v^2$

- for illustration focus on minimal composite Higgs model
- parameter space: m_{ρ}

 $g_{
ho}$

Minimal Composite Higgs

assume global symmetry: SO(5)/SO(4)breaking scale f > v

Higgs emerges as a pseudo-NG boson

[Contino, Nomura, Pomarol: hep-ph/0306259] [Agashe, Contino, Pomarol: hep-ph/0412089] [Agashe, Contino: hep-ph/0510164] [Contino, Da Rold, Pomarol: hep-ph/0612048] [Barbieri, Bellazzini, Rychkov, Varagnolo: hep-ph/ 0706.0432]

$$\begin{split} \mathcal{L} &= \frac{1}{2} \left(\partial_{\mu} h \right)^2 - V(h) + \frac{v^2}{4} \text{Tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} + b_3 \frac{h^3}{v^3} + \dots \right) \\ &\quad V(h) = \frac{1}{2} m_h^2 h^2 + d_3 \left(\frac{m_h^2}{2v} \right) h^3 + d_4 \left(\frac{m_h^2}{8v^2} \right) h^4 + \dots \\ &\quad a = \sqrt{1 - \xi} \\ &\quad b = 1 - 2\xi \\ &\quad b_3 = -\frac{4}{3} \xi \sqrt{1 - \xi} \\ &\quad d_3^{(4)} = \sqrt{1 - \xi} \end{split} \quad \text{where} \quad \xi = \frac{v^2}{f^2} \\ &\quad \text{Higgs couplings receive corrections of order } \xi \end{split}$$

Indirect measurements

Indirect measurements

Collider	Energy	Luminosity	$\xi \ [1\sigma]$
LHC	$14\mathrm{TeV}$	$300 {\rm fb}^{-1}$	$6.6 - 11.4 \times 10^{-2}$
LHC	$14\mathrm{TeV}$	$3 \mathrm{ab}^{-1}$	$4-10\times 10^{-2}$
ILC	$250 \mathrm{GeV}$ + $500 \mathrm{GeV}$	$250 {\rm fb}^{-1}$ $500 {\rm fb}^{-1}$	$4.8-7.8 imes 10^{-3}$
CLIC	$350{ m GeV} + 1.4{ m TeV} + 3.0{ m TeV}$	$500 {\rm fb}^{-1}$ $1.5 {\rm ab}^{-1}$ $2 {\rm ab}^{-1}$	2.2×10^{-3}
TLEP	$240{ m GeV}$ + $350{ m GeV}$	10 ab^{-1} 2.6 ab^{-1}	2×10^{-3}

[CMS-NOTE-2012-006] [ATL-PHYS-PUB-2013-014] [Dawson et. al.1310.8361] [CLIC 1307.5288]

Results in (m_{ρ}, g_{ρ})

95% C.L.

- theoretically excluded $\xi \leq 1$
- LHC8 at 8 TeV with 20 fb⁻¹
 LHC at 14 TeV with 300 fb⁻¹
 HL-LHC at 14 TeV with 3 ab⁻¹
- di-leptons more sensitive for small g_{ρ}
- di-boson more sensitive for large g_{ρ}
- increase in \sqrt{s} : improves mass reach
- increase in L: improves g_{ρ} reach
- resonances too broad for large g_{ρ}

[[]Thamm, Torre, Wulzer: 1502.01701]

Results in (m_{ρ}, g_{ρ})

- theoretically excluded $\xi \leq 1$
- LHC8 at 8 TeV with 20 fb⁻¹
 HL-LHC at 14 TeV with 3 ab⁻¹
- direct: more effective for small g_{ρ} ineffective for large g_{ρ}
- indirect: more effective for large g_{ρ}

[Thamm, Torre, Wulzer: 1502.01701]

Results in (m_{ρ}, ξ)

- theoretically excluded $1 \le g_{\rho} \le 4\pi$
- LHC8 at 8 TeV with 20 fb⁻¹
 LHC at 14 TeV with 300 fb⁻¹
 HL-LHC at 14 TeV with 3 ab⁻¹

[Thamm, Torre, Wulzer: 1502.01701]

Results in (m_{ρ}, ξ)

- theoretically excluded $1 \le g_{\rho} \le 4\pi$
- LHC8 at 8 TeV with 20 fb⁻¹
 HL-LHC at 14 TeV with 3 ab⁻¹

[Thamm, Torre, Wulzer: 1502.01701]

Conclusions

- CH is a very compelling framework
- many ways to look for it:
 direct: vector resonance and top partners
 indirect: coupling modifications
- excess: maybe exactly what a resonance at the edge of discovery should look like?
- learn a lot from LHC RunII
- ... and if not, then at a future collider!

Backup

Limit extrapolation

Input: experimental bounds on $\sigma \times BR$ at $\sqrt{s_0} = 8 \text{ TeV}$ with $L_0 \simeq 20 \text{ fb}^{-1}$ for various search channels

 $\frac{\Delta \hat{s}}{m_{\rho}^2} = 10\%$

- extrapolate limits to different proton-proton collider at \sqrt{s} and L
- driven by number of background events in a small invariant mass window around the resonance peak

$$B(s, L, m_{\rho}) = B(s_0, L_0, m_{\rho})$$
output
same limit on number of signal events

• excluded cross section at the equivalent mass

$$[\sigma \times BR](s, L; m_{\rho}) = \frac{L_0}{L} \cdot [\sigma \times BR](s_0, L_0; m_{\rho}^0)$$

Limit extrapolation - equivalent mass

• extraction of equivalent mass

$$B(s, L, m_{\rho}) = B(s_0, L_0, m_{\rho}^0)$$

• number of background events within window $\hat{s} \in [m_{\rho}^2 - \Delta \hat{s}/2, m_{\rho}^2 + \Delta \hat{s}/2]$

$$B(s, L, m_{\rho}) \propto L \cdot \sum_{\{i, j\}} \int d\hat{s} \frac{1}{\hat{s}} \frac{d\mathcal{L}_{ij}}{d\hat{s}} (\sqrt{\hat{s}}; \sqrt{s}) \left[\hat{s} \hat{\sigma}_{ij} \left(\hat{s} \right) \right]_{\text{par}}$$

partonic cross-section contributing to background

• partonic cross section: SM process much above SM masses

$$[\hat{s}\hat{\sigma}_{ij}(\hat{s})] \simeq c_{ij} \longrightarrow$$
 constant

• parton luminosities constant within small integration limit

$$B(s, L, m_{\rho}) \propto \frac{\Delta \hat{s}}{m_{\rho}^2} \cdot L \cdot \sum_{\{i, j\}} c_{ij} \frac{d\mathcal{L}_{ij}}{d\hat{s}} (m_{\rho}; \sqrt{s})$$

• equating backgrounds

$$\sum_{\{i,j\}} c_{ij} \frac{d\mathcal{L}_{ij}}{d\hat{s}} (m_{\rho}; \sqrt{s}) = \frac{L_0}{L} \sum_{\{i,j\}} c_{ij} \frac{d\mathcal{L}_{ij}}{d\hat{s}} (m_{\rho}^0; \sqrt{s_0})$$

Limit extrapolation - equivalent mass

$$\sum_{\{i,j\}} c_{ij} \frac{d\mathcal{L}_{ij}}{d\hat{s}} (m_{\rho}; \sqrt{s}) = \frac{L_0}{L} \sum_{\{i,j\}} c_{ij} \frac{d\mathcal{L}_{ij}}{d\hat{s}} (m_{\rho}^0; \sqrt{s_0})$$

- need relevant background process and parton luminosities
- sum drops for single partonic initial state
- otherwise linear combination of parton luminosities weighted by c_{ij}

Limit extrapolation - equivalent mass

• Subtlety at low masses:

lowest mass point of 8 TeV limit determined by sensitivity of specific analysis

- arbitrary lowest equivalent mass depending on luminosity
- smoothly raise luminosity of future collider
- extrapolated limit is the strongest at each mass
- low-mass limit conservative, not optimal

EWPT

- set some of strongest constraints on CH models
- incalculable UV contributions can relax constraints

[Grojean, Matsedonskyi, Panico: 1306.4655]

- α and β constants of order 1
- define $\chi^2(\xi, m_\rho, \alpha, \beta)$ and marginalise

EWPT

- define $\chi^2(\xi, m_\rho, \alpha, \beta)$ and marginalise
- to avoid unnatural cancellations

$$\delta_{\chi^2} = \frac{\chi^2(\xi, m_\rho, \alpha = 0, \beta = 0)}{\chi^2(\xi, m_\rho, \alpha, \beta)}$$

40

Present

 $-\alpha = \beta = 0$

– ILC

----- $\delta_{\chi^2} < 5$

30

20

 $m_{
ho}$

- TLEP