THE COANNIHILATION CODEX

Felix Yu JGU Mainz

with Michael Baker, Joachim Brod, Sonia El Hedri, Anna Kaminska, Joachim Kopp, Jia Liu, Andrea Thamm, Maikel de Vries, Xiao-Ping Wang, José Zurita (Johannes Gutenberg University, Mainz) [arXiv:1510.xxxxx]

Gearing up for the LHC, Gallileo Gallilei Institute for Theoretical Physics September 28, 2015

Introduction and Motivation

- Dark matter is a fundamental puzzle
- Many traditional particle probes, but no discovery
 - Direct detection (LUX, CDMS, Xenon1T)
 - Indirect detection (FERMI, AMS-02)
 - Colliders (ATLAS, CMS)
- Direct knowledge of particle nature of dark matter is very limited
 - Cold, non-baryonic, colorless, EM neutral
 - Relic density $\Omega h^2 = 0.1198 \pm 0.0026$

Planck [1502.01589]

Introduction and Motivation

- Goal: Use known DM properties as a basis for constructing minimal dark sectors
 - DM particle is colorless and EM neutral
 - Relic density constraint motivates the belief that DM annihilates to SM particles
- Characterize all possible two-to-two DM (co)annihilation processes as simplified models
- Establish a complete framework for LHC signatures that test how DM obtains its relic density
 - Nature's choice for DM guaranteed to be realized in our framework given our assumptions

Outline

- Establishing the framework
 - Assumptions, methodology
- Simplified models
 - Hybrid, s-channel mediator, t-channel mediator tables
- Cosmological probes
- LHC signature classes
- Case study: Model ST11
 - s-channel leptoquark mediator
 - Relic density, LHC strategies for mediator and coannihilation partner
- Conclusions and future outlook

The Framework: Assumptions

- Our assumptions forming the basis of our simplified model framework are
 - 1. DM is colorless, EM neutral
 - 2. DM is a thermal relic
 - 3. The (co)annihilation diagram is two-to-two
 - 4. Interaction vertices are realized via tree-level Lagrangian terms
 - 5. New particles have spin 0, ½, or 1, and spin-1 particles are massive gauge bosons of a new gauge group
 - 6. All gauge bosons obey minimal coupling

Building the Codex

- DM transforms as (1, N, β), with hypercharge β s.t. one component is EM neutral
- Iterate over SM₁ SM₂ pairings to define possible set of coannihilation partners X
- Resolve each DM, X, SM₁ and SM₂ set with an schannel M_s or t-channel mediator M_t

Arrows denote gauge representation convention 6

Refining the Codex

- X = DM reproduces pair annihilation simplified models
- Accidental Z₂ parity (X, DM, M_t odd, M_s and SM fields even) protects against DM decay and role reversal between simplified models

- Can study s-channel and t-channel models separately

Arrows denote gauge representation convention 7

Refining the Codex

- (Up to) three new fields DM, X, and M are defined by SM gauge quantum numbers
 - Additional global or gauge symmetries will further restrict models and allowed interactions
 - Horizontal symmetries can also be included
 - Flavor structure of couplings and global SM numbers treated on case-by-case basis
- Minimal coupling provision reduces number of possible simplified models
 - If SM gauge bosons are coannihilation products SM_1 or SM_2 , then becomes a **hybrid** simplified model

The Coannihilation Codex

 Define simplified models by new model content and interaction vertices that realize the two-to-two DM (co)annihilation diagram

Category (# of models)	New fields	New couplings
Hybrid (7)	DM, X	DM-X-SM ₃
s-channel (49)	DM, X, M _s	DM-X-M _s M _s -SM ₁ -SM ₂
t-channel (105)	DM, X, M _t	$DM-M_t-SM_1$ M_t-X-SM_2

The Coannihilation Codex: Hybrid

Note

DM = (1,

 Hybrid models have both s-channel and t-channel twoto-two coannihilation diagrams, given X and DM are not pure SM gauge singlets

	ID	Х	$\alpha + \beta$	SM partner	Extensions
	H1	$(1 N \alpha)$	0	$B, W_i^{N \ge 2}$	SU1, SU3, TU1, TU4–TU8
	H2	$(1, N, \alpha)$	-2	ℓ_R	SU6, SU8, TU10, TU11
	H3	$(1 N + 1 \alpha)$	1	H^{\dagger}	SU10, TU18–TU23
	H4	$(1, N \perp 1, \alpha)$	-1	L_L	SU11, TU16, TU17
	H5	$(3 N \alpha)$	$(3 N \alpha)$ $\frac{4}{3}$		ST3, ST5, TT3, TT4
	H6	$(3,\mathbf{N},\alpha)$	$-\frac{2}{3}$	d_R	ST7, ST9, TT10, TT11
	H7	$(3, N \pm 1, \alpha)$	$\frac{1}{3}$	Q_L	ST14, TT28–TT31
	X	1^{SM_2}		G X	\sim SM ₃ DM \sim SM
	\sum_{s}		X	D	
Ν, β)	DM'	$\mathbf{V}_{\mathrm{SM}_1}$ DN	(b)	SM_3 DM	(c) $DM SM$

- X and M_s have same color charge
- Organize models into tables according to color charges of X and $\rm M_{\rm s}$
 - "SU" (s-channel, uncolored): 17
 - "ST" (s-channel, color triplet): 20
 - "SO" (s-channel, color octet): 5
 - "SE" (s-channel, 'exotic' [i.e. color rep. not realized in SM]): 7
- Some are "Extensions" of hybrid models

– "SU" models

ID	Х	$\alpha + \beta$	M_s	Spin	$(SM_1 SM_2)$	$X-DM-SM_3$	M-X-X
SU1			(1, 1, 0)	В	$ \begin{split} &(u_R \overline{u_R}), (d_R \overline{d_R}), (Q_L \overline{Q_L}) \\ &(\ell_R \overline{\ell_R}), (L_L \overline{L_L}), (HH^{\dagger}) \end{split} $	H1	\checkmark
SU2		0		F	$(L_L H)$		
SU3			$(1 \ 3 \ 0)^{N \ge 2}$	В	$(Q_L \overline{Q_L}), (L_L \overline{L_L}), (HH^{\dagger})$	H1	\checkmark
SU4	$(1 N \alpha)$		(1, 3, 0) =	F	$(L_L H)$		
SU5	(1,1, α)		$(1 \ 1 \ -2)$	В	$(d_R \overline{u_R}), (H^{\dagger} H^{\dagger})$		\checkmark
SU6		_9	(1, 1, -2)	F	$(L_L H^{\dagger})$	H2	
SU7		-2	$(1, 3, -2)^{N \ge 2}$	В	$(H^{\dagger}H^{\dagger}), (L_L L_L)$		$\checkmark(\alpha=\pm 1)$
SU8			(1, 3, -2) =	F	$(L_L H^{\dagger})$	H2	
SU9		-4 (1, 1, -4)		В	$(\ell_R\ell_R)$		$\checkmark (\alpha = \pm 2)$
SU10		_1	(1, 2, -1)	В	$(d_R \overline{Q_L}), (\overline{u_R} Q_L), (\overline{L_L} \ell_R)$	H3	
SU11	$(1 N + 1 \alpha)$	-1	(1, 2, -1)	F	$(\ell_R H)$	H4	
SU12	$(1, N \perp 1, \alpha)$	_ 3	(1, 2, -3)	В	$(L_L \ell_R)$		
SU13		-3	(1, 2, -3)	F	$(\ell_R H^\dagger)$		
SU14		0	(1, 2, 0)	В	$(L_L \overline{L_L}), (Q_L \overline{Q_L}), (HH^{\dagger})$		$\checkmark (\alpha = 0)$
SU15	$(1, N \pm 2, \alpha)$	0	(1, 3, 0)	F	$(L_L H)$		
SU16		0	(1, 2, -2)	В	$(H^{\dagger}H^{\dagger}), (L_L L_L)$		$\checkmark (\alpha = \pm 1)$
SU17		-2	2 (1, 3, -2)	F	$(L_L H^{\dagger})$		

12

- "ST" models

ID	Х	$\alpha + \beta$	M_s	Spin	$(SM_1 SM_2)$	$X-DM-SM_3$	M-X-X	
ST1		$\frac{10}{3}$	$(3, 1, \frac{10}{3})$	В	$(u_R \overline{l_R})$		$\sqrt{\alpha} = -\frac{5}{3}$	
ST2			$(3, 1, \frac{4}{3})$	В	$(d_R\overline{\ell_R}), (Q_L\overline{L_L}), (\overline{d_Rd_R})$		$\sqrt{\alpha} = -\frac{2}{3}$	
ST3		4	$(3, 1, \frac{3}{3})$	F	$(Q_L H)$	H5		
ST4		3	$(2, 2, 4)N \ge 2$	В	$(Q_L \overline{L_L})$		$\sqrt{\alpha} = -\frac{2}{3}$	
ST5	$(3 N \alpha)$		$(3, 3, \frac{3}{3})$ –	F	$(Q_L H)$	H5		
ST6	$(3, N, \alpha)$		$(3, 1, -\frac{2}{3})$	В	$(\overline{Q_LQ_L}), (\overline{u_R}\overline{d_R}), (u_R, \ell_R), (Q_LL_L)$		$\checkmark \alpha = \frac{1}{3}$	
ST7		_ 2	$(3, 1, -\frac{3}{3})$	F	$(Q_L H^{\dagger})$	H6		
ST8		3	$(3, 3, -2)^{N \ge 2}$	В	$(\overline{Q_L Q_L}), (Q_L L_L)$		$\checkmark \alpha = \frac{1}{3}$	
ST9			$(3, 3, -\frac{1}{3})$ -	F	$(Q_L H^{\dagger})$	H6		
ST10		$-\frac{8}{3}$	$(3, 1, -\frac{8}{3})$	В	$(\overline{u_R u_R}), (d_R \ell_R)$		$\checkmark \alpha = \frac{4}{3}$	
ST11		7 3	7	(2, 2, 7)	В	$(Q_L \overline{\ell_R}), (u_R \overline{L_L})$		
ST12			$(3, 2, \frac{3}{3})$	F	$(u_R H)$			
ST13	$(2 N \pm 1 \infty)$	1	(2, 2, 1)	В	$(d_R\overline{L_L}), (\overline{Q_Ld_R}), (u_RL_L)$			
ST14	$(3, N \perp 1, \alpha)$	3	$(3, 2, \frac{1}{3})$	F	$(u_R H^{\dagger}), (d_R H)$	H7		
ST15		5	$(3, 2, -\frac{5}{2})$	В	$(\overline{Q_L}\overline{u_R}), (Q_L\ell_R), (d_RL_L)$			
ST16	- <u>3</u>		(3, 2, 3)	F	$(d_R H^{\dagger})$			
ST17	$(3, N \pm 2, \alpha)$	4	(2, 2, 4)	В	$(Q_L \overline{L_R})$		$\sqrt{\alpha} = -\frac{2}{3}$	
ST18		3	$(3, 3, \frac{1}{3})$	F	$(Q_L H)$			
ST19		2	(3, 3, -2)	В	$(\overline{Q_L Q_L}), (Q_L L_L)$		$\checkmark \alpha = \frac{1}{3}$	
ST20		- 3	$(3, 3, -\frac{1}{3})$	F	$(Q_L H^{\dagger})$			

13

- "SO" and "SE" models

ID	Х	$\alpha + \beta$	M_s	Spin	$(\mathrm{SM}_1~\mathrm{SM}_2)$	$X-DM-SM_3$	M-X-X
SO1		0	$(8,1,0)^{\neq g[s2]}$	В	$(d_R\overline{d_R}), (u_R\overline{u_R}), (Q_L\overline{Q_L})$		$\checkmark \alpha = 0$
SO2	(8, N, lpha)	0	$(8,3,0)^{N\geq 2}$	В	$(Q_L \overline{Q_L})$		$\checkmark \alpha = 0$
SO3	*	$^{-2}$	(8, 1, -2)	В	$(d_R \overline{u_R})$		$\checkmark \alpha = \pm 1$
SO4	$(8, N \pm 1, \alpha)$	-1	(8, 2, -1)	В	$(d_R \overline{Q_L}), (Q_L \overline{u_R})$		
SO5	$(8, N \pm 2, \alpha)$	0	(8, 3, 0)	В	$(Q_L \overline{Q_L})$		$\checkmark \alpha = 0$
SE1		<u>8</u> 3	$(6, 1, \frac{8}{3})$	В	$(u_R u_R)$		$\sqrt{\alpha} = -\frac{4}{3}$
SE2	$(6 N \alpha)$	2	$(6, 1, \frac{2}{3})$	В	$(Q_L Q_L), (u_R d_R)$		$\checkmark (\alpha = -\frac{1}{3})$
SE3	$(0, N, \alpha)$	3	$(6,3,\frac{2}{3})^{N\geq 2}$	В	$(Q_L Q_L)$		$\checkmark \alpha = -\frac{1}{3}$
SE4		$-\frac{4}{3}$	$(6, 1, -\frac{4}{3})$	В	$(d_R d_R)$		$\checkmark \alpha = \frac{2}{3}$
SE5	$(6 N \pm 1 \alpha)$	<u>5</u> 3	$(6, 2, \frac{5}{3})$	В	$(Q_L u_R)$		
SE6	$(0, N \pm 1, \alpha)$	$-\frac{1}{3}$	$(6, 2, -\frac{1}{3})$	В	$(Q_L d_R)$		
SE7	$(6, N \pm 2, \alpha)$	$\frac{2}{3}$	$(6, 3, \frac{2}{3})$	В	$(Q_L Q_L)$		$\sqrt{\alpha} = -\frac{1}{3}$

- Organize models into tables according to color charges of X
 - "TU" (t-channel, uncolored): 33
 - "TT" (t-channel, color triplet): 52
 - "TO" (t-channel, color octet): 10
 - "TE" (t-channel, 'exotic' [i.e. color rep. not realized in SM]): 10
- Again, some are "Extensions" of hybrid models

t-channel

• "TU" models

Spin categories

ID	Х	$\alpha + \beta$	M_t	Spin	$(\mathrm{SM}_1~\mathrm{SM}_2)$	$X-DM-SM_3$
TU1			$(1, N \pm 1, \beta - 1)$	Ι	(HH^{\dagger})	H1
TU2			$(1, N \pm 1, \beta + 1)$	II	$(L_L H)$	
TU3			$(1, N \pm 1, \beta - 1)$	III	(HL_L)	
TU4		0	$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{Q_L})$	H1
TU5		U	$(\bar{3}, N, \beta - \frac{4}{3})$	IV	$(u_R \overline{u_R})$	H1
TU6			$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{d_R})$	H1
TU7			$(1, N \pm 1, \beta + 1)$	IV	$(L_L \overline{L_L})$	H1
TU8	$(1, N, \alpha)$		$(1, N, \beta + 2)$	IV	$(\ell_R \overline{\ell_R})$	H1
TU9			$(1, N \pm 1, \beta + 1)$	Ι	$(H^{\dagger}H^{\dagger})$	
TU10			$(1, N \pm 1, \beta + 1)$	II	$(L_L H^\dagger)$	H2
TU11		-2	$(1, N \pm 1, \beta + 1)$	III	$(H^{\dagger}L_L)$	H2
TU12		2	$(1, N \pm 1, \beta + 1)$	IV	$(L_L L_L)$	
TU13			$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{u_R}d_R)$	
TU14			$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{u_R})$	
TU15		-4	$(1, N, \beta + 2)$	IV	$(\ell_R \ell_R)$	
TU16			$(1,N,\beta+2)$	II	$(\ell_R H)$	H4
TU17			$(1, N \pm 1, \beta - 1)$	III	$(H\ell_R)$	H4
TU18			$(1,N,\beta+2)$	IV	$(\ell_R \overline{L_L})$	H3
TU19		-1	$(1, N \pm 1, \beta - 1)$	IV	$(\overline{L_L}\ell_R)$	H3
TU20	$(1, N + 1, \alpha)$	1	$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{Q_L})$	H3
TU21	(1,1,1,1,1,0)		$(3,N\pm 1,\beta+\tfrac{1}{3})$	IV	$(\overline{Q_L}d_R)$	H3
TU22			$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{u_R})$	H3
TU23			$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{u_R}Q_L)$	H3
TU24		-3	$(1, N \pm 1, \beta + 1)$	IV	$(L_L \ell_R)$	
TU25		0	$(1, N, \beta + 2)$	IV	$(\ell_R L_L)$	
TU26			$(1, N \pm 1, \beta - 1)$	Ι	(HH^{\dagger})	
TU27			$(1, N \pm 1, \beta + 1)$	II	$(L_L H)$	
TU28	$(1, N \pm 2, \alpha)$	0	$(1, N \pm 1, \beta - 1)$	III	(HL_L)	
TU29			$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{Q_L})$	
TU30			$(1, N \pm 1, \beta + 1)$	IV	$(L_L \overline{L_L})$	
TU31			$(1, N \pm 1, \beta + 1)$	Ι	$(H^{\dagger}H^{\dagger})$	
TU32		-2	$(1, N \pm 1, \beta + 1)$	II	$(L_L H^{\dagger})$	
TU33			$(1,N\pm 1,\beta+1)$	III	$(H^{\dagger}L_L)$	

t-channel

• "TT" models 1-21

ID	Х	$\alpha + \beta$	M_t	Spin	$(SM_1 SM_2)$	$X-DM-SM_3$
TT1		10	$(\overline{3}, N, \beta - \frac{4}{3})$	IV	$(u_R \overline{\ell_R})$	
TT2		3	$(1, N, \beta - 2)$	IV	$(\overline{\ell_R}u_R)$	
TT3			$(\bar{3},N\pm 1,eta-rac{1}{3})$	II	$(Q_L H)$	H4
TT4			$(1,N\pm 1,eta-1)$	III	(HQ_L)	H4
TT5			$(1, N, \beta - 2)$	IV	$(\overline{\ell_R}d_R)$	
TT6		$\frac{4}{3}$	$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{L_L})$	
TT7			$(1,N\pm 1,eta-1)$	IV	$(\overline{L_L}Q_L)$	
TT8			$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{\ell_R})$	
TT9			$(3, N, \beta - \frac{2}{3})$	IV	$(\overline{d_R d_R})$	
TT10			$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	II	$(Q_L H^{\dagger})$	H5
TT11			$(1,N\pm 1,\beta+1)$	III	$(H^{\dagger}Q_L)$	H5
TT12	$(3, N, \alpha)$		$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{u_R}\overline{d_R})$	
TT13			$(3, N \pm 1, \beta + \frac{1}{3})$	IV	$(\overline{Q_L Q_L})$	
TT14			$(\overline{3},N,eta-rac{4}{3})$	IV	$(u_R \ell_R)$	
TT15		$-\frac{2}{3}$	$(1, N, \beta + 2)$	IV	$(\ell_R u_R)$	
TT16			$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L L_L)$	
TT17			$(1,N\pm 1,\beta+1)$	IV	$(L_L Q_L)$	
TT18			$(3, N, \beta - \frac{2}{3})$	IV	$(\overline{d_R}\overline{u_R})$	
TT19			$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{u_R u_R})$	
TT20		$-\frac{8}{3}$	$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \ell_R)$	
TT21			$(1, N, \beta + 2)$	IV	$(\ell_R d_R)$	

t-channel

• "TT" models 22-52

TT22			$(3, N, \beta - \frac{4}{3})$	II	$(u_R H)$	
TT23			$(1,N\pm 1,eta-1)$	III	(Hu_R)	
TT24		7	$(\overline{3}, N, \beta - \frac{4}{3})$	IV	$(u_R \overline{L_L})$	
TT25		3	$(1,N\pm 1,eta-1)$	IV	$(\overline{L_L}u_R)$	
TT26			$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{\ell_R})$	
TT27			$(1, N, \beta - 2)$	IV	$(\overline{\ell_R}Q_L)$	
TT28			$(\overline{3}, N, \beta - \frac{4}{3})$	II	$(u_R H^{\dagger})$	H6
TT29			$(\bar{3}, N, \beta + \frac{2}{3})$	II	$(d_R H)$	H6
TT30			$(1, N \pm 1, \beta + 1)$	III	$(H^{\dagger}u_R)$	H6
TT31		1	$(1, N \pm 1, \beta - 1)$	III	(Hd_R)	H6
TT32	(2 N + 1 -)	3	$(\bar{3}, N, \beta - \frac{4}{3})$	IV	$(u_R L_L)$	
TT33	$(3, N \pm 1, \alpha)$		$(1, N \pm 1, \beta + 1)$	IV	$(L_L u_R)$	
TT34			$3, N, \beta - \frac{2}{3})$	IV	$(\overline{d_R Q_L})$	
TT35			$(3, N \pm 1, \beta + \frac{1}{3})$	IV	$(\overline{Q_L d_R})$	
TT36			$(\bar{3}, N, \beta + \frac{2}{3})$	II	$(d_R H^{\dagger})$	
TT37			$(1, N \pm 1, \beta + 1)$	III	$(H^{\dagger}d_R)$	
TT38			$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R L_L)$	
TT39		5	$(1,N\pm 1,\beta+1)$	IV	$(L_L d_R)$	
TT40		- 3	$(3, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \ell_R)$	
TT41			$(1, N, \beta + 2)$	IV	$(\ell_R Q_L)$	
TT42			$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{u_R}\overline{Q_L})$	
TT43			$(3, N \pm 1, \beta + \frac{1}{3})$	IV	$(\overline{Q_L}\overline{u_R})$	
TT44			$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	II	$(Q_L H)$	
TT45		4	$(1,N\pm 1,eta-1)$	III	(HQ_L)	
TT46		3	$(3, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{L_L})$	
TT47			$(1,N\pm 1,eta-1)$	IV	$(\overline{L_L}Q_L)$	
TT48	$(3, N \pm 2, \alpha)$		$(\bar{3},N\pm 1,eta-rac{1}{3})$	II	$(Q_L H^{\dagger})$	
TT49		$-\frac{2}{3}$	$(1,N\pm 1,\beta+1)$	III	$(H^{\dagger}Q_L)$	
TT50			$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L L_L)$	
TT51			$(1,N\pm 1,\beta+1)$	IV	$(L_L Q_L)$	
TT52			$(3,N\pm 1,\beta+\tfrac{1}{3})$	IV	$(\overline{Q_L Q_L})$	

"TO" and "TE" models

ID	Х	$\alpha + \beta$	M_t	Spin	$(\mathrm{SM}_1\ \mathrm{SM}_2)$	$X-DM-SM_3$
TO1			$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{Q_L})$	
TO2		0	$(\bar{3}, N, \beta - \frac{4}{3})$	IV	$(u_R \overline{u_R})$	
TO3	$(8, N, \alpha)$		$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{d_R})$	
TO4		_2	$(\overline{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{u_R})$	
TO5		-2	$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{u_R}d_R)$	
TO6			$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{Q_L})$	
TO7	$(8 N \pm 1 \alpha)$	_1	$(3, N \pm 1, \beta + \frac{1}{3})$	IV	$(\overline{Q_L}d_R)$	
TO8	(0,11 ± 1,4)	-1	$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{u_R})$	
TO9			$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{u_R}Q_L)$	
TO10	$(8, N \pm 2, \alpha)$	0	$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{Q_L})$	
TE1		83	$(\bar{3}, N, \beta - \frac{4}{3})$	IV	$(u_R u_R)$	
TE2			$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L Q_L)$	
TE3	$(6, N, \alpha)$	$\frac{2}{3}$	$(\overline{3}, N, \beta - \frac{4}{3})$	IV	$(u_R d_R)$	
TE4			$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R u_R)$	
TE5		$-\frac{4}{3}$	$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R d_R)$	
TE6		5	$(\overline{3}, N, \beta - \frac{4}{3})$	IV	$(u_R Q_L)$	
TE7	$(6, N \pm 1, \alpha)$	3	$(\overline{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L u_R)$	
TE8		1	$(\overline{3}, N, \beta + \frac{2}{3})$	IV	$(d_R Q_L)$	
TE9		- 3	$(3, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L d_R)$	
TE10	$(6, N \pm 2, \alpha)$	$\frac{2}{3}$	$(\bar{3},N\pm 1,\beta-rac{1}{3})$	IV	$(Q_L Q_L)$	

EWSB effects

- Thus far, simplified models are constructed in EW symmetric phase
 - Field content admits coannihilation diagram with treelevel vertices without violating EW symmetry
- Straightforward to include EWSB effects in simplified models thus far
- Can also formulate procedure for identifying simplified models that require EWSB
 - Model content is orthogonal to those already written
 - Can capture phenomenology of such models already with current classification

Phenomenology

- Goal: Explore the cosmological, astrophysical, and collider phenomenology for each (co)annihilation diagram
 - Each simplified model can be realized independently
 - And each simplified model can be a distilled version of many distinct UV completions
- By construction, marginal new physics couplings are introduced in a controlled manner
 - Enables tighter connection between relic density constraint and experimental searches

Coannihilation condition

 $m_{\rm DM}$

 $x = m_{\rm DM}/T$

- Fractional mass splitting Δ between X and DM of around 10%-20% or less ensures X number density is close to DM number density during freezeout
 - Larger Δ can also be important if DM pair annihilation is small $\Delta = \frac{m_{\rm X} m_{\rm DM}}{m_{\rm X}}$
 - Important handle for collider searches

$$\begin{split} \sigma_{\rm eff} &= \frac{g_{\rm DM}^2}{g_{\rm eff}^2} \bigg\{ \sigma_{\rm DM\,DM} + 2\sigma_{\rm DM\,X} \frac{g_{\rm X}}{g_{\rm DM}} (1+\Delta)^{\frac{3}{2}} \exp(-x\Delta) \\ &+ \sigma_{\rm X\,X} \frac{g_{\rm X}^2}{g_{\rm DM}^2} (1+\Delta)^3 \exp(-2x\Delta) \bigg\} \,. \end{split}$$

Direct and indirect detection

 Direct detection and indirect detection signals are generally model dependent

Can generally eliminate DM-DM-Z coupling by mixing with a (1, N, -β) field

Assume X and M have decayed

Snowmass Cosmic Frontier WG [1401.6085]

Collider signatures

- Production processes
 - Strong and weak pair production
 - Single production of M_s
 - Associated production of M_s +SM, M_t +DM, and M_t +X
- Decays
 - Simply recycle coannihilation vertices, assume prompt
 - X has three-body decay to $(SM_1+SM_2)_{soft}+DM$ via M_s
 - M_s decays to X+DM or (SM₁+SM₂)_{resonant}
 - M_t decays to DM+SM₁ or X+SM₂

Collider signatures

• Stitching together production and decay gives

	prod. conditions	<i>s</i> -channel	t-channel
anb	pair production via gauge int.	$2M_s \rightarrow 2 (SM_1SM_2)_{res}$ $2M_s \rightarrow (SM_1SM_2)_{res} + (SM_1SM_2)_{soft} + \mathcal{E}_T$	$2M_t \rightarrow 2 (SM_1)_{hard} + \not{E}_T$ $2M_t \rightarrow 2 (SM_2)_{hard} + 2 (SM_1SM_2)_{soft} + \not{E}_T$ $2M_t \rightarrow (SM_1SM_2)_{hard} + (SM_1SM_2)_{soft} + \not{E}_T$
uni	$(\mathrm{SM}_1\mathrm{SM}_2) \in p$	$M_s \rightarrow (SM_1SM_2)_{res}$	
	$SM_1 \in p$	$M_s SM_2 \rightarrow (SM_1SM_2)_{res} + (SM_2)_{hard}$	$M_t DM \to (SM_1)_{hard} + \not E_T$
	$\mathrm{SM}_2 \in p$	$M_s SM_1 \rightarrow (SM_1SM_2)_{res} + (SM_1)_{hard}$	$X M_t \rightarrow (SM_2)_{hard} + 2 (SM_1 SM_2)_{soft} + \not E_T$
Ţ	p.p. via g. int.	$2M_s \text{ or } 2X \rightarrow 2 \left(SM_1 SM_2 \right)_{soft} + \mathcal{E}_T$	$2X \rightarrow 2 \left(SM_1 SM_2 \right)_{soft} + \not{E}_T$
Iom	$(\mathrm{SM}_1\mathrm{SM}_2) \in p$	$M_s \rightarrow (SM_1SM_2)_{soft} + \mathcal{E}_T$	$X DM \rightarrow (SM_1SM_2)_{soft} + \mathcal{K}_T$
imo	$SM_1 \in p$	$M_s SM_2 \rightarrow (SM_2)_{hard} + (SM_1SM_2)_{soft} + \not E_T$	$M_t DM \rightarrow (SM_2)_{hard} + (SM_1SM_2)_{soft} + \not{E}_T$
Ŭ	$\mathrm{SM}_2 \in p$	$M_s SM_1 \rightarrow (SM_1)_{hard} + (SM_1SM_2)_{soft} + \not{E}_T$	$X M_t \rightarrow (SM_1)_{hard} + (SM_1SM_2)_{soft} + \not{E_T}$

 Many s-channel resonances, t-channel cascade decays, signatures with and without MET

Signature class I: the new mono-Y

- For small Δ, the SM decay products from X can be too soft to reconstruct
 - X and DM pair production and X DM associated production give same MET signature, but X can be colored
 - Mono-Y (Y = jet, photon, Z, etc.) searches become very powerful and less model dependent
- For moderate Δ or large DM mass, soft SM decay products start to pass detector thresholds
 - SM products come in many pairs, can define many new variants with different object classes

Signature class II: s-channel resonances

- Mediator M_s generally pair-produced via strong or EW interactions
- Generates a suite of two-body resonances, competes against "invisible" X+DM decay channel
 - Three signatures: paired resonances, resonance + MET, mono-Y – needed for coupling measurements
- Single production and associated production also possible
 - Rate scales with NP coupling, more model dependent
 - Many striking signatures (e.g. LQ + lepton)

Signature class III: t-channel cascades

- Mediator M_t also generally pair-produced via strong or EW interactions
- Always have MET in the final state
- SM legs from cascade chain are typically hard, complicated by possible soft decays from X

Many kinematic handles and edges

Case study ST11

- Perform a case study of s-channel model ST11
- Prescribe the spin assignments and Lagrangian as

Field	(SU(3), SU(2), U(1))	Spin assignment
DM	(1, 1, 0)	Majorana fermion
Х	(3, 2, 7/3)	Dirac fermion
Μ	(3, 2, 7/3)	Scalar

 $\mathcal{L} = \frac{i}{2} \overline{\mathrm{DM}} \partial \mathrm{DM} + i \overline{\mathrm{X}} D \mathrm{X} + |D_{\mu}\mathrm{M}|^{2} + \frac{m_{\mathrm{DM}}}{2} \overline{\mathrm{DM}} \mathrm{DM} + m_{\mathrm{X}} \overline{\mathrm{X}} - V(\mathrm{M}, H)$ $+ (y_{D} \overline{\mathrm{X}} \mathrm{M} \mathrm{DM} + \mathrm{h.c.}) + (y_{Q\ell} \overline{Q_{L}} \mathrm{M} \ell_{R} + \mathrm{h.c.}) + (y_{Lu} \overline{L_{L}} \mathrm{M}^{c} u_{R} + \mathrm{h.c.}),$ $V(\mathrm{M}, H) = V(H) + m_{\mathrm{M}}^{2} \mathrm{M}^{\dagger} \mathrm{M} + \frac{1}{4} \lambda_{\mathrm{M}} (\mathrm{M}^{\dagger} \mathrm{M})^{2} + \epsilon_{\mathrm{M}} \mathrm{M}^{\dagger} \mathrm{M} \left(H^{2} - \frac{v^{2}}{2} \right),$

Ωh^2

First study relic density vs. DM mass

Fix y≡y_D=y_{QI}, set_č y_{Lu}=0

Coannihilation spikes clearly visible

Show dependence on LQ mass, Δ , y^{0.0}

ST11: Ωh^2

Can also solve for ∆ given y=0.1 and DM and LQ masses

Below black line indicates multiple solutions for Δ are possible

ST11: Ωh^2

Can also solve for y given Δ=0.1 and DM and LQ masses

Black line here indicates the resonant coannihilation region

ST11: direct detection

- DM (Z₂ odd, SM gauge singlet Majorana fermion) has no tree-level pair annihilation diagram to SM particles
- Resulting higher dimensional operators for DMnucleon scattering are loop-suppressed and experimentally insensitive

ST11: LHC signatures

• Mono-Y

- XX + ISR j: Gives 2 soft (lj) pairs + MET + tagging jet NEW!

- s-channel mediator pair production $\propto g_s^2$
 - $-M_s M_s \rightarrow (Ij)_{res} (Ij)_{res}$: Usual paired leptoquark resonances
 - $-M_s M_s \rightarrow (Ij)_{res} X DM : Novel targeted analysis NEW!$
 - $-M_{s}M_{s} \rightarrow X DM X DM$: Similar to mono-Y
- s-channel mediator associated production ∝ g_s y_{Ql}
 − M_s I → (Ij)_{res} I: Known single leptoquark search
 − M_s I → X DM I: Gives monolepton signature
- Focus on first generation LQ = electron+jet (second generation results in backup)

new+

ST11: LHC signatures

- Recasting existing paired leptoquark searches depends on branching fractions of mediator
 - $-\beta \equiv Br(M_s \rightarrow ej)$

– Benchmark has $\beta_0 = 50\%$, maximizes mixed decay rate

• Relic density constrains y_D , complementary parameter space $\tau = m_{DM}^2/m_{LQ}^2$ and $\beta_0 = y_{Q\ell}^2/(y_{Q\ell}^2 + 2y_D^2)$.

$$\begin{split} &\Gamma\left(\mathrm{LQ} \to \ell \, q\right) = \frac{y_{Q\ell}^2}{16\pi} m_{\mathrm{LQ}} \,, \\ &\Gamma\left(\mathrm{LQ} \to \mathrm{DM} \; \mathrm{X}\right) = \frac{y_D^2}{8\pi} m_{\mathrm{LQ}} \left(1 - \Delta^2 \tau\right)^{1/2} \left[1 - (2 + \Delta)^2 \tau\right]^{3/2} \equiv \frac{y_D^2}{8\pi} m_{\mathrm{LQ}} K(\Delta, \tau) \,, \\ &\operatorname{Br}\left(LQ \to \ell \, q\right) = \frac{y_{Q\ell}^2}{y_{Q\ell}^2 + 2y_D^2 K(\Delta, \tau)} = \frac{\beta_0}{\beta_0 + (1 - \beta_0) K(\Delta, \tau)} \,. \end{split}$$

ST11

CheckMATE¹ used for 8 **TeV recasting**

Collider Reach² used for 100 fb⁻¹ 13 TeV LHC projection

ST11: Targetting the mixed decay (ej)

- One mediator decays to ej, second mediator decays to (ej)_{soft} + MET
- Use MET and transverse mass cuts to reduce lepton
 + jet backgrounds
 - Look for bump in smooth m_{ej} distribution

ST11: Backgrounds for 13 TeV LHC

MadGraph 5 + Pythia 6 (+ MLM matching if multiple jets)
 + Delphes 3.2
 PRELIMINARY

Validate OCD	Background	LO Cross section (pb)	k-factor (× "adjusting" factor)
with 13 TeV	QCD	$2.1 imes 10^7$	$1.3 \ [119, \ 120]$
ATLAS dijets	Leptonic $W^{\pm} + 1$, 2 jets	2222	$1.15 (\times 2)$
ATLAS-CONF-2015-042	$(Z \rightarrow \nu \nu) + j$	736	1.15
Validate W+iets	$t\overline{t}$ (all modes)	465	1.67
7+iets with 8 TeV	$(Z \to \ell^+ \ell^-) + j$	370	1.15
CMS monoiets	$(Z \to \tau^+ \tau^-) + j$	163	1.15
CMS [1/08 3583]	Semileptonic $t\overline{t}$	124	1.67
K factors	WW, WZ, ZZ	37	1.7
N-IdCLUIS	t + 1, 2j	16.9	1.07
	Semileptonic W^+W^-	9.8	1.5
	$W(Z\to\nu\nu)+j$	2.2	1.7
	$W(Z \rightarrow jj)$	2.2	1.7

ST11: Mixed decay cut flow

- Jet faking electron rate = 0.0023 ATLAS-CONF-2014-032
- Signal benchmark is M_s = 950 GeV, DM = 405 GeV, X = 445 GeV
- Mass window is 40 GeV wide
 N_{ev} for 13 TeV, 100 fb⁻¹

PRELIMINARY

	QCD	W+1,2j	$t\bar{t}$	$Z_{\nu\nu} + j$	$Z_{\tau\tau} + j$	W^+W^-	$WZ_{\nu\nu} + j$	WZ_{jj}	signal
$p_T(j_1) > 50 \text{ GeV}$	$2.1\!\times\!10^{12}$	$4.4\!\times\!10^8$	1.3×10^8	$7.0\!\times\!10^7$	$1.3\!\times\!10^7$	$1.2\!\times\!10^6$	$1.3\!\times\!10^5$	$3.1\!\times\!10^5$	600
$N_e^{\rm h} = 1, N_e \le 2$	$4.8\!\times\!10^9$	$8.8\!\times\!10^7$	$1.2\!\times\!10^7$	$8.6\!\times\!10^4$	$4.8\!\times\!10^5$	$2.4\!\times\!10^5$	$1.9\!\times\!10^4$	$6.1\!\times\!10^4$	415
<i>b</i> -jet veto	$4.0\!\times\!10^9$	$8.2\!\times\!10^7$	$5.0\!\times\!10^6$	$8.2\!\times\!10^4$	$4.6\!\times\!10^5$	$2.2\!\times\!10^5$	$1.9\!\times\!10^4$	$5.4\! imes\!10^4$	395
$N_{\rm hard\ jets} \le 3$	$3.9\!\times\!10^9$	$8.2\!\times\!10^7$	$4.3\!\times\!10^6$	$8.2\!\times\!10^4$	$4.6\!\times\!10^5$	$2.2\!\times\!10^5$	$1.9\!\times\!10^4$	5.4×10^4	335
Z veto	$3.9\!\times\!10^9$	$8.2\!\times\!10^7$	$1.7\!\times\!10^6$	$8.2\!\times\!10^4$	$4.6\!\times\!10^5$	$2.2\!\times\!10^5$	$1.9\!\times\!10^4$	5.4×10^4	326
$\not\!\!\!E_T > 700~{\rm GeV}$	133	1738	15	19	9	10	27	2	75
$m_T > 150 \text{ GeV}$	132	16	10^{-3}	18	0.005	0.01	10	0.001	67
mass window	3	0.2	0	0.3	10^{-5}	10^{-5}	0.1	10^{-5}	24

ST11: Mixed decay MET distribution

- Left: no transverse mass cut
- Right: m_T > 150 GeV

PRELIMINARY

- **ST11:** Mixed decay m_{ei} distribution
- Prominent leptoquark resonance

42

ST11: Soft lepton analysis

- Second new analysis targets the soft decays of X
- Important interplay between pure monojet and monojet + soft lepton analyses
 - Fractional mass splitting Δ controls visibility of X decays
 - 13 TeV lepton p_T thresholds have large impact on signal sensitivity
- Can generalize to all XX production in our simplified model catalog

ST11: Soft lepton cut flow

- Use monojet analysis as baseline
- Allow additional soft leptons, $p_T > 25$ GeV
- Signal has M_s = 1.7 TeV, DM = 600 GeV, X = 660 GeV
 N_{ev} for 13 TeV, 100 fb⁻¹

	$t \bar{t}$	$Z_{ll} + j$	Diboson	$W_{l\nu} + j$	t+j	Signal
$\not\!\!\!E_T > 50~{\rm GeV}$	$1.9 imes 10^7$	$7.9 imes 10^6$	1.1×10^6	1.9×10^8	$5.6 imes 10^5$	8.5×10^4
$p_T^{\text{lead}} > 50 \text{ GeV}$	1.8×10^7	6.1×10^6	$5.9 imes 10^5$	1.5×10^8	4.6×10^5	$7.1 imes 10^4$
$\Delta \phi_{j_1 j_2} < 2.5$	1.2×10^7	4.2×10^6	5.0×10^5	1.1×10^8	2.9×10^5	$5.4 imes 10^4$
Z and μ veto	8.5×10^6	2.7×10^6	4.0×10^5	8.6×10^7	1.9×10^5	5.2×10^4
b veto	3.6×10^6	2.6×10^6	3.7×10^5	8.2×10^7	1.1×10^5	2.0×10^4
$N_l \ge 2$	2.5×10^4	4371	1076	9.8×10^4	382	1748
$\not\!\!\!\!E_T>400~{\rm GeV}$	12	11	0.07	780	2	118
$\left \frac{p_{T \ j_1}}{\not\!\!\!E_T} - 1 \right < 0.2$	1	11	0.07	148	0.2	85

ST11: Mixed + soft lepton projections

- Different coverage from mixed decay vs. paired LQ
- Great reach for soft I
- analysis

ST11: Mixed + soft lepton projections

- Different coverage from mixed decay vs. paired LQ
- Great reach for soft l analysis

DM reach for lepton p_T thresholds and Δ

	$p_T > 10 \text{ GeV}$	$p_T > 15 \text{ GeV}$	$p_T > 25 \text{ GeV}$
$\Delta = 5\%$	1030 (860)	930~(790)	700 (500)
$\Delta = 10\%$	$1030 \ (860)$	1000 (830)	870 (730)
$\Delta=20\%$	$1030 \ (860)$	1020 (870)	1000 (850)

Future outlook

- Comprehensive framework for testing how DM annihilates to SM
 - Huge array of LHC signatures
 - Kinematics of coannihilation motivate new variants of mono-Y searches
 - Multiple decay channels guaranteed by coannihilation topology
 - Provides critical post-discovery cross-channels for measuring dark sector couplings
- If assumptions about tree-level, two-to-two scattering, thermal relic DM are correct, Nature is realized as one of our simplified models

Conclusions

- We have established a simplified model codex for testing DM annihilation mechanism
 - Grounded in general assumptions
- Framework directly leads guaranteed production and decay modes for X and M
 - Recycling the coannihilation diagram and classification under SM gauge quantum numbers
 - Many searches avoid strong model dependence on marginal couplings – especially attractive for experiment

ST11: Mixed decay analysis (µj)

• Cut flow table

	QCD	W+1,2j	$t\overline{t}$	$Z_{\nu\nu} + j$	$Z_{\tau\tau} + j$	W^+W^-	$WZ_{\nu\nu} + j$	WZ_{jj}	signal
$p_T(j_1) > 50 {\rm GeV}$	$2.1\!\times\!10^{12}$	$4.4\!\times\!10^8$	$1.3\!\times\!10^8$	$7.0\!\times\!10^7$	$1.3\!\times\!10^7$	$1.2\!\times\!10^6$	$1.3\!\times\!10^5$	$3.1\!\times\!10^5$	600
$N_e^{\rm h} = 1, N_e \le 2$	$4.8\!\times\!10^9$	$8.8\!\times\!10^7$	$1.2\!\times\!10^7$	$8.6\!\times\!10^4$	$4.8\!\times\!10^5$	$2.4\!\times\!10^5$	$1.9\!\times\!10^4$	$6.1\!\times\!10^4$	502
<i>b</i> -jet veto	$4.0\!\times\!10^9$	$8.2\!\times\!10^7$	$5.0\!\times\!10^6$	$8.2\!\times\!10^4$	$4.6\!\times\!10^5$	$2.2\!\times\!10^5$	$1.9\!\times\!10^4$	$5.4\!\times\!10^4$	360
$N_{\rm hard\ jets} \leq 3$	$3.9\!\times\!10^9$	$8.2\!\times\!10^7$	$4.3\!\times\!10^6$	$8.2\!\times\!10^4$	$4.6\!\times\!10^5$	$2.2\!\times\!10^5$	$1.9\!\times\!10^4$	$5.4\!\times\!10^4$	306
Z veto	$3.9\!\times\!10^9$	$8.2\!\times\!10^7$	$1.7\!\times\!10^6$	$8.2\!\times\!10^4$	$4.6\!\times\!10^5$	$2.2\!\times\!10^5$	$1.9\!\times\!10^4$	$5.4\!\times\!10^4$	297
$\not\!\!\!E_T>700~{\rm GeV}$	133	1738	15	19	9	10	27	2	62
$m_T > 150 \text{ GeV}$	132	16	10^{-3}	18	0.005	0.01	10	0.001	58
mass window	3	0.2	0	0.3	10^{-5}	10^{-5}	0.1	10^{-5}	13

PRELIMINA SY

ST11: Mixed decay analysis (µj)

PRELIMINARY

ST11: Mixed decay analysis (µj)

PRELIMINARY