Probing Baryogenesis with Displaced Vertices at the LHC

Yanou Cui

Perimeter Institute

- Phys.Rev.D, 87,11603, YC and Raman Sundrum
- JHEP 1312 (2013) 067, YC
- JHEP 1502 (2015) 049, YC and Brian Shuve
- Ongoing corporation with ATLAS displaced jets working group

GGI LHC13 Workshop Oct 1 2015

Outline

- A mini-review of long-lived particle (displaced vertex) searches at the LHC: motivation, status
- A general cosmological motivation: baryogenesis triggered by weak scale new particle decay
- A motivated example: WIMP baryogenesis embed in natural/split SUSY
- Recast existing LHC analyses with theorists' tools:
 Baryogenesis as an example, easy to generalize!
- Conclusion/Outlook

Long-lived Particle Searches at the LHC

- Nearly all SM particles decay promptly or have small masses relative to the LHC partonic CM energy
- Energetic objects reconstructing a high mass can emerge from all parts of the detector, giving displaced vertices (DV)

CSP Displaced vertex signal is spectacular!

 Iow SM background, sensitive to rare signal events (new long-lived particles...)

Long-lived Particle Searches at the LHC

Displaced vertex signal is spectacular!

But, we could easily miss it entirely!...

- Most LHC searches require that objects pass through the primary vertex (PV) to reject cosmics, mis-reconstructed objects, etc.
- In most searches, the transverse impact parameter (distance of closest approach to the beam) has to be

≤ 100 µm - 1 mm (= prompt) (track quality cut)

Without dedicated efforts, DV signal events may fail to be even triggered on!

Long-lived Particle Searches at the LHC

Rising interests+ endeavours from **both** experimentalists and theorists in the recent years!

- A (incomplete) list of related ATLAS/CMS publications based on 8 TeV data:
 - ATLAS displaced dijets (arxiv:1504.03634)
 - ATLAS displaced lepton pairs/multitrack (arxiv:1504.05162)
 - ATLAS displaced muon+tracks (ATLAS-CONF-2013-092)
 - CMS displaced dijets (arxiv:1411.6530)
 - CMS displaced dilepton (CMS-PAS-B2G-12-024) …
- Rising # of related papers by theorists...
- Displaced higgs decay: A focus of the exotic Higgs decay working group of the LHC collaboration
- Dedicated workshop: e.g. at UMass-Amherst, Nov 2015...

Theoretical Motivations

• Naturalness: long lifetime from approximate Z₂ symmetry

SUPERSYMMETRY

- Can evade MET searches with (small) *R*-parity violation
- 'Displaced SUSY'

(Graham, Kaplan, Rajendran, Saraswat 2012...)

- Long-lived LSPs can also arise with split spectra
- General hidden valley type of new physics (Strassler, Zurek 2006...)

TWIN HIGGS

- Approximate Z₂ symmetry relates SM fields to `twin' fields, cancelling the top divergence
- Breaking must be non-zero to obtain observed EWSB, but small to obtain a natural theory

(Craig, Katz, Strassler, Sundrum 2015...)

Theoretical Motivations (new) Baryogenesis from Metastable Weak-scale New Particle

Could LHC shed light on prominent puzzles in modern cosmology?

 $\Omega_{DM} \approx 23\%, \Omega_{B} \approx 5\%, \Omega_{B} \sim \Omega_{DM}$

- Familiar/well-studied case: WIMP dark matter (Ω_{DM})
 - Mass ~O(10-100) GeV, can be produced within ELHC =14 TeV
 - Pair produced (Z₂),
 invisible, MET + X (

Theoretical Motivations (new)

Baryogenesis from Metastable Weak-scale New Particle

- New opportunity: baryogenesis (address Ω_B , possibly + $\Omega_B \sim \Omega_{DM}$)
 - New <u>metastable</u> particle (baryon parent),
 w/mass ~O(10-100) GeV
 - Pair produced (approx. Z₂), via Z/Z', or Higgs portal

8

 ℓ/MET

Mini-Review of Baryogenesis

• Origin of Ω_B ? = Where do we ourselves come from?

- **Sakharov Conditions** (1967):
- Require baryon number violation
- Require C-, CP-symmetry violation

Mini-Review of Baryogenesis

Sakharov Conditions (cont.):

In thermal equilibrium:

$$n_{B}(p)^{eq} \sim \exp\left[\left(-\sqrt{p^{2} + m_{B}^{2}} + \mu\right)/T\right], \ n_{\bar{B}}(p)^{eq} \sim \exp\left[\left(-\sqrt{p^{2} + m_{\bar{B}}^{2}} - \mu\right)/T\right]$$

$$\bar{B} \longrightarrow B \qquad (\textcircled{P} \qquad \mu = 0$$

$$CPT \ symmetry \qquad (\textcircled{P} \qquad m_{B} = m_{\bar{B}})$$

$$m_{B} = n_{\bar{B}}^{eq}, \ (\langle B \rangle_{eq} = 0)$$

Ω_B≈5%: Need <u>beyond</u> the Standard Model Physics!

Require departure from equilibrium!

Existing baryogenesis mechanisms: (leptogenesis, EWBG...) Most involve high M or/and T, <u>direct</u> experimental test impossible (c.f. WIMP DM for Ω_{DM})

Baryogenesis from Out-of-Equilibrium Decay

A general class of baryogenesis models (e.g. leptogenesis)

- Assume a massive neutral particle χ
- Baryon asymmetry can be produced in its decay (B-, CP-violating)

- Typically, the inverse processes efficiently erase the asymmetry
- But, if χ is long-lived, and <u>decays only after $T_f < M_{\chi}$ </u>:

 $n_f - n_{\bar{f}} \neq 0$

Baryogenesis from Out-of-Equilibrium Decay $x = -\frac{x}{f}$ $f = -\frac{x}{f}$ $e^{-M_x/T_{deca}}$

• Asymmetry is robustly preserved if (*H*: Hubble expansion rate) $\Gamma_{\chi} < H(T = M_{\chi})$ (Content of a con

Sundrum 2012; YC, Shuve, 2014)

- If χ has mass at weak scale (the new energy frontier LHC is exploring!), numerology gives $c\tau_{\chi}^{-1} < H(T_{\rm EW}) \sim 10^{-13} \text{ GeV}$
- Converting to decay length:

 $c\tau_{\chi} \gtrsim \text{mm}$ (CP) Displaced vertex regime @LHC!

Displaced Vertices Motivated by Baryogenesis

 $\Gamma_{\chi} < H(T = M_{\chi})$ $\subset c \tau_{\chi} \gtrsim \mathrm{mm}$

- A generic connection between cosmological slow
 rates at *T*~100 GeV and displaced vertices at colliders
 - The universe around EW phase transition was just slightly bigger than LHC tracking resolution!

 $H(100 \text{ GeV}) \sim 10^{-14} \text{ GeV} \sim (1.3 \text{ cm})^{-1}$ 10 GeV $\rightarrow (1.3 \text{ m})^{-1}$

 $1 \text{ TeV} \rightarrow (0.13 \text{ mm})^{-1}$

also see: Chang, Luty, 2009

Displaced Vertices Motivated by Baryogenesis

Production at the LHC?

No conflict between a **small** decay rate and a **large** production rate

- Long lifetime due to approximate symmetry (e.g. Z₂ parity)
- Recover MET signal for DM in the limit of exact symmetry!

Concrete, motivated baryogenesis models as example?

Baryogenesis from WIMPs

- YC and Raman Sundrum, Phys.Rev.D,11603 (2012)
- YC, JHEP 1312 (2013) 067

WIMP Miracle for DM

 $- \Omega_{DM}$ by weak scale new physics

- Cosmic Evolution of a stable WIMP χ :

WIMP DM Miracle

• Neat prediction for the <u>absolute</u> amount of Ω_{DM} :

$$\Omega_{\chi} \propto \langle \sigma_{\rm ann} v \rangle^{-1}$$

~ $0.1 \left(\frac{G_{\rm Fermi}}{G_{\chi}} \right)^2 \left(\frac{M_{\rm weak}}{m_{\chi}} \right)^2$

With $m_{\chi} \sim M_{\text{weak}}, G_{\chi} \sim G_{\text{Fermi}}$, readily gives $\Omega_{\text{DM}} \approx 23\%$!

- Robust, insensitive to cosmic initial condition
- Miracle: Predicts the right location of <u>a needle in a haystack</u>!

The familiar story of a stable WIMP

* Diverse lifetimes: generic in nature (symmetry, mass/coupling hierarchy) e.g. long lifetime of b-quark, muon $(m_W \gg m_b, m_\mu)$, SUSY WIMP w/RPV

X

WIMP χ

YC and Sundrum 2012; **YC** 2013

+ B-, C-, CP-violating decay

(later decay)

Baryogenesis from Metastable WIMP Decay

 A new baryogenesis mechanism w/weak scale new physics:
 A WIMP miracle for baryons,
 can occur well below T_{EW}

• If + A stable WIMP DM rew path addressing $\Omega_{\rm B} \sim \Omega_{\rm DM}$ Consider a stable WIMP χ_{DM} as DM; In addition, a metastable WIMP χ_B as baryon parent

Cosmic evolution of the two WIMPs:

- Robust: insensitive to model details (weak washout typical)
- Novel low scale baryogenesis (independent of WIMP DM)
- Extra factor $\epsilon_{CP} \frac{m_p}{m_{\chi_B}}$ ($\epsilon_{CP} \sim 1\%, m_{\chi_B} \sim 100 \text{ GeV}$), compensated by

 $\Omega_{\chi_B}^{\tau \to \infty} > \Omega_{\chi_{DM}} - accommodated by O(1) different masses/$ couplings associated w/χ_{DM} and χ_B (χ_B: a "weaker" WIMP)

Recall: WIMP miracle is not precise!

$$\Omega_{\chi} \sim 0.1 \left(\frac{G_{\text{Fermi}}}{G_{\chi}}\right)^2 \left(\frac{M_{\text{weak}}}{m_{\chi}}\right)^2$$

A Minimal Model Example

• We add to the Standard Model Lagrangian ($\mathcal{B}, \mathcal{CP}$):

 $\begin{aligned} \Delta \mathcal{L} &= \lambda_{ij} \phi d_i d_j + \varepsilon_i \chi \bar{u}_i \phi + M_{\chi}^2 \chi^2 + y_i \psi \bar{u}_i \phi + M_{\psi}^2 \psi^2 \\ &+ \alpha \chi^2 S + \beta |H|^2 S + M_S^2 S^2 + \text{h.c.} \end{aligned}$

 ϕ : di-quark scalar w/same charges as SM u-quark;

 χ, ψ : SM singlet Majorana fermions;

 $\varepsilon_i \ll 1$: small breaking of a χ -parity blong-lived χ $\chi \equiv \chi_B$, the WIMP parent for baryogenesis.

S: singlet scalar, mediate WIMP annihilation $\chi \chi \rightarrow SM$ via h-portal

A Minimal Model Example

- Out-of-equilibrium decay of $\chi \rightarrow \Omega_B$ $\chi \rightarrow \chi$ $\chi \rightarrow \chi$
- Interference of tree- & loop-level decay
- $\rightarrow \mathbf{CP} \text{ asymmetry } \epsilon_{\mathbf{CP}} \equiv \frac{\Gamma(\chi \to \phi^* u) \Gamma(\chi \to \phi \bar{u})}{\Gamma(\chi \to \phi^* u) + \Gamma(\chi \to \phi \bar{u})}$

• Check other constraints ($n \rightarrow \overline{n}$ oscillation, neutron EDM...)

With weak scale masses, new particles couple mostly to heaviest quarks (b, t) (just like the Higgs boson!)

Meeting Particle Physics Frontier —Embedding in Supersymmetry (SUSY)

• Our mechanism: generic low scale baryogenesis

Embed in motivated theory framework, e.g. SUSY?

Favored viable SUSY models after LHC runs:

- "Natural" SUSY: light stop $m_{\tilde{t}} \ll m_{\tilde{q}_{1,2}}$ and/or B-(L-) violation
- (Mini-)Split SUSY ($m_{gauginos} \ll m_{sfermions}$)

Embedding in Natural SUSY: Model

Our minimal model: direct "blueprint"

- Promote singlets χ , S to chiral superfields, add to the MSSM. *B* superpotential: $W \supset \lambda_{ij}TD_iD_j + \varepsilon'\chi H_uH_d + y_tQH_uT + +\mu_\chi\chi^2$
 - + $\mu H_u H_d + \mu_S S^2 + \alpha \chi^2 S + \beta S H_u H_d.$
- Assume *SUSY* pattern: scalar χ and $\tilde{q}_{1,2}$ heavy, decoupled, as in "natural SUSY"
- Mapping: (minimal model \longrightarrow SUSY model)
 - Diquark $\phi \longrightarrow$ light \tilde{t}_R in superfield T
 - Baryon parent singlet $\chi \longrightarrow$ fermion singlet χ
 - Majorana $\psi \longrightarrow$ MSSM gaugino
 - Singlet scalar $S \longrightarrow$ singlet S, mixes with H_u , enables χ annihilation
 - Small parameter $\varepsilon \longrightarrow \varepsilon'$, enables late decay $\chi \rightarrow \tilde{t}$ via $\chi \tilde{H}_u$ mixing

Embedding in Natural SUSY - Also a remedy!

Potential cosmological crisis of *B* natural SUSY:

- An important channel of natural SUSY search at the LHC: light stop with B-violating prompt decay $TD_i D_j$ coupling $(\lambda_{ij} \gtrsim 10^{-7})$
- Cosmological problem:

Assume conventional baryogenesis at $T \gtrsim m_{EW} \longrightarrow \text{pre-existing } Y_B^{\text{init}}$ can be efficiently washed out by \mathcal{B} scattering e.g. $\tilde{H}_u t \rightarrow \bar{d}_i \bar{d}_j$ with $\lambda_{ij} \gtrsim 10^{-7}$!

• Our model in Natural SUSY: Baryon asymmetry

regenerated below weak scale when all washout decouple

> A robust cure to this problem!

Embedding in Mini-Split SUSY (Cui, JHEP 1312 (2013) 067)

Interesting (surprising) finding: successful baryogenesis

from minimal SUSY standard model (WIMP \tilde{B} decay)! $\tilde{B} \rightarrow \Delta B$!

Sakharov#1: out-of equilibrium

Split SUSY+ O(1) RPV: Natural long life-time of gauginos Split spectrum O(100 - 1000)TeV ~ $m_{scalar} \gg m_{gaugino} \sim TeV + RPV$

Late decay automatic! e.g. $\chi \rightarrow udd$ (heavy mediator, 3body...) $\tilde{B} \longrightarrow d_i$

Embedding in Mini-Split SUSY

- ★ Sakharov #2, #3 (CP-, B/L-violation) ✓
 rich CPV sources in SUSY (e.g. Majorana gaugino
 masses), Ø (Ł) from RPV couplings (safer w/heavy scalars)
- ★ WIMP parent χ for baryons with <u>"would-be" over-abundance</u> \checkmark .: Bino \tilde{B} ! (not desirable if it is DM in RPC SUSY...)
- ★ Nanopoulos-Weinberg Theorem for Baryogenesis:
 additional
 ß source in the interference loop
 √
 Another Majorana fermion in MSSM?
 Ŵ,
 ĝ!

Minimal model (MSSM+RPV) gives everything needed for baryogenesis!

Embedding in Mini

(RPC decays also included in analysis)

Numerical Results, examples Include cosmological constraints: $(\Omega_{\Delta B})$ Loss of full \implies mini-split: $m_{\text{scalar}} \sim O(100 - 1000)$ TeV ! naturalness: a Baryogenesis with $M_{\tilde{p}} = 1 \text{ TeV}$ Leptogenesis with $M_{\tilde{p}} = 8 \text{ TeV}$ compromise 10⁹ 10^{10} $T_d < T_c$ with anthropic/ environmental $0.01 < \Omega_{\Delta B} < 0.04$ $0.01 < \Omega_{\Lambda B} < 0.04$ selection? 10^{8} 10⁹ μ (GeV) μ (GeV) washout $T_d > T_f$ 107 10^{8} $T_d > T_f$ washout 10^{7} 10^{6} 10^{6} 10^{7} 10^{8} 10^{5} 10^{5} 10^{4} 10^{6} 10^{7} m_0 (GeV) m_0 (GeV) (b)(a)

Figure 7: Cosmologically allowed regions of parameter space for (a) baryogenesis and (b) leptogenesis models. We set RPV couplings $\lambda'' = \lambda' = 0.2$, $\phi = \frac{\pi}{2}$. Cyan region provides baryon abundance $10^{-2} < \Omega_{\Delta B} < 4 \cdot 10^{-2}$. In the case of leptogenesis the brown region is excluded by decay after EWPT at $T_c \approx 100$ GeV. The pink region is excluded by our simple basic assumption that bino decays after freezeout. Yellow region is excluded by requiring that washout processes are suppressed $(T_d < M_{\tilde{B}})$. Yellow region is in fact all included in the pink region (so appear to be orange in the overlapped region).

Baryogenesis from Out-of-equlibrium Decays

- Collider Phenomenology

YC and Shuve, arxiv:1409.6729, JHEP

Strategy/results generally applicable to other new physics search via displaced vertices

Simplified Models

Classify parity-invariant production modes (analogy to DM search @LHC!), e.g.

• Classify decay modes (unlike DM search), e.g.

Baryon number violating:

$$\chi \to u_i d_j d_k$$

Lepton number violating:

$$\chi \to L_i Q_j \bar{d}_k$$
$$\chi \to L_i L_j \bar{E}_k$$

Later comprehensive analyses in RPV SUSY: Liu, Tweedie 2015; Csaki et.al 2015; Zwanne 2015

LHC Search Possibilities

Experimental Searches

- Focus on displaced decay in tracking volume
- Near lower bound $c\tau_{\chi} \gtrsim mm$ & better sensitivity, easier to model! (decay in other parts of detector important too...)
- Do recasts and reasonable variations of existing analyses due to modelling difficulties (for theorists!)
 - Two concrete examples (light-flavour only):

Baryon number violating:

 $\chi \to 3q$

displaced jets (all-hadronic)

CMS, arXiv:1411.6530

Goal of our analysis:

- What is the coverage for our simplified models based on benchmarks chosen by the collaborations?
- What advice can we provide for general experimental improvement?

Lepton number violating:

 $\chi \to \ell + 2q$

displaced muon + hadrons ATLAS-CONF-2013-092

Fully hadronic displaced vertices

CMS displaced dijet, arXiv:1411.6530

wino

2000

 M_{χ} (GeV)

1500

1000

35

2500

10

1 DV, 30% syst.

1.0

 $\lambda_{S_{\chi\chi}} \sin(2\alpha)$

2.0

1.5

0.5

Displaced muon + hadrons

ATLAS-CONF-2013-092

wino

singlet (*Higgs portal*) (singlet-like, $M_{\chi} = 150$ GeV)

No bound @ 8 TeV 20 fb⁻¹

13 TeV: σ_S~10 ab for L_{xy}~1 cm!

36

Conclusion/Outlook

- Search for long-lived particles/DV at the LHC:
 - Spectacular channel, exciting developing field
 - Theoretically motivated, not mere "exotic"!
 - Challenges: e.g. trigger on low mass all hadronic states
- Baryogenesis from metastable weak scale particle decay:
 - A robust cosmological motivation for DV searches @ LHC
 - Exciting opportunity to reproduce the early universe BG @LHC!
- WIMP baryogenesis: a motivated example, new mechanism addressing $\Omega_B(+)\Omega_B \sim \Omega_{DM}$, natural embedding in SUSY
- w/ATLAS displaced jets working group: working on implementing simplified models of WIMP BG as a benchmark example in official analysis w/LHC Run 2 data...

Thank you !