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Outline
Motivation: How low baryogenesis scale can be? 

Description of the new mechanism of baryogenesis  

Concrete model 

Closer look on moving parts: 

• Hidden valleys with runaway bubbles 

• Production of heavy particles in bubble collisions 

• Non-thermalization, out of equilibrium decays to the SM 

Signatures: neutron oscillations, gravitational waves… 

Outlook



Models of Baryogenesis — 
Crude Classification

BNV 

CPV 

out of equilibrium 

(or CPTV)

Sakharov conditions:

present in
 EW th

eory

need
 new

 so
urce

s

Scenario 1:

Scenario 2:



Scale of Baryogenesis
Scenario 

2:

Typically EW scale, might 
be slightly higer if the SM 

has a complicated UV 
completion

Scenario 

1:

Almost arbitrary. 
From higgs scale 
leptogenesis to 

WIMP scale

But… The particle should freeze out and 
decay out of equilibrium



Can We Reduce 
Baryoegenesis Scale?

Obvious constraint — BBN. There is no easy way 
to go below 1 MeV and explain primordial 
element abundances 

Expanding bubbles: lowering the scale below ~100 
GeV is probably impossible 

 Decays out of equilibrium. In most of the models 
the decaying particles is assumed to freeze out at 
some point ➥  T ~ m. Are there any other options?



Why Low Scale? 
Inflation model with inefficient reheating — are 
they relevant?  

Theories with efficient baryon washout at 
(relatively) low energy — are they relevant?  

Experimental signatures. Are there new sources 
of BNV? Where should we expect the new sources 
of CPV? What is the relevant scale of the electron 
EDM?



Non-Thermal Production of 
Decaying Fermions

Processes at high-T: out-of-equilibrium decays (moduli). 

Low-T: only one process knows: bubble collisions in 1st order PT 

Bubbles should be ultra-relativistic (“runaway”) 

Collisions should be fairly elastic 

Fermions mass should be ~ to order parameter in the 
broken phase (but much heavier than T of the PT) 

Need parametric separation between the T of the PT and 
order parameter 



Existence Proof: a Model
SU(2) gauge group in the hidden sector with a small 

“higgs” quartic coupling λ << 1. mh << v and Tcrit ~ mh. 
The thermal potential should be suitable for the 1st 

order PT ➠ strong interactions with the higgs: g2 >> λ 
(gauge driven PT)

Representative mass scales:

Responsible for driving the PT 
(strong) 1st order 

PT temperature. Above this scale 
the system is in ubroken phase

Energy carried by the expanding 
bubbles



Fermions 
Colliding bubbles cannot produce efficiently particles 

heavier than the order parameter in the unbroken 
phase: mf ~ v.

Two generations of the SU(2) doublets: Li . Minimal 
amount of matter needed to cancel anomalies. Add also 

two generation of singlet fermions ei. 

The existence of Z2 in the hidden sector couplings to the heavy states leads us to a
conclusion that the couplings of the heavy states to the SM, which violate BN, should better
also violate CP, at least in the most simple models. CPV in the couplings to the hidden
sector possible, however due to a global Z2 the total asymmetry between all the species
which are charged under this symmetry after the bubble collisions will vanish. Therefore,
building a model, which is based on CPV in the hidden sector, although theoretically
possible, practically might be challenging. And in fact, in this type of models the dark
sector will probably also inherit some assymetry. This pass might by interesting in sense
of darkogenesys/ cogenesys models but definitely goes beyond the simpliest posible model
and we will not address it here.

2 What kind of models can we build?

Because our heavy particle is destined to be long-lived and respect an approximate Z2

symmetry, the first part of the analysis will largely overlap with the DM production in
the runaway bubble collisions. Assume for concreteness that there is a gauged symmetry
in the hidden sector, broken down completely by a dark higgs (or Higgses) �

i

at scale
f . One then couple � to the heavy scalars, fermions or gauge bosons in a Z2-symmetric
manner. Note that a-priori there is no constraint on the representation of the new heavy
states under the SM gauge group, as long as the collider bounds are satisfied. However, as
we know from the results of [2], it is hard to get a su�cient abundance of the new scalar
heavy particles. The fermions are also not produced very e�ciently via the “fermionic higgs
portal”, namely |�|2  ̄/⇤. The production can be e�cient if the fermion directly coupled
to the dark Higgs, namely � �. Ultimately, one can produce much heavier meta-stable
particles than the PT temperature, if those are heavy gauge bosons.

2.1 SU(2) model

This is probably the simplest possible construction: we assume a gauged SU(2) theory in
the hidden sector, spontaneously broken by a single scalar doublet �. Assume that the
L
i

are the hidden SU(2) doublets and e
i

are hidden SU(2) singlets. (I choose to switch
to this notation to underline the similarities with the SM structure if the hypercharge is
taken out of the game. Of course these fields should not be confused with the SM leptons).
We right down the most generic Lagrangian which is consistent with the Z2, acting on  
and � as

L � y
ij

�L
i

e
j

+m
L

✏
ij

✏abLi

a

Lj

b

+ (m
e

)
ij

e
i

e
j

. (1)

We also assume that m
L

i, m
e

⇠ yf . Of course, in order to avoid Witten anomaly, the
numbers of L

i

’s should be even, and we will choose to have two of these fields (the minimal

2

Not enough. In order to decay 
into the SM and produce 

asymmetry, fermions should be 
Majorana



Majorana Fermions and Decays into 
the SM

Having Dirac fermions is not enough:

The existence of Z2 in the hidden sector couplings to the heavy states leads us to a
conclusion that the couplings of the heavy states to the SM, which violate BN, should better
also violate CP, at least in the most simple models. CPV in the couplings to the hidden
sector possible, however due to a global Z2 the total asymmetry between all the species
which are charged under this symmetry after the bubble collisions will vanish. Therefore,
building a model, which is based on CPV in the hidden sector, although theoretically
possible, practically might be challenging. And in fact, in this type of models the dark
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taken out of the game. Of course these fields should not be confused with the SM leptons).
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We also assume that m
L
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e

⇠ yf . Of course, in order to avoid Witten anomaly, the
numbers of L

i

’s should be even, and we will choose to have two of these fields (the minimal
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after diagonalization — 4 Majorana fermions; 
assume yv ~ me, L. 

Possible couplings to the SM: 

possible amount). In fact, as we later show, similarly to the standard leptogenesis mecha-
nism, at least two generations are absolutely necessary to have a rescattering phase in the
CP-violating decays of the heavy fermions.

At this step the fermions are both heavy and stable, up to decays into one another
(if kinematically allowed). The most important point is that the lightest fermionic state
cannot decay into the hidden sector states, which consist of the three massive gauge bosons
and the higgs. Now introduce the BNV couplings of the SU(2) singlet to the SM. Ref. [3]
contains a full list of the lowest-order BNV and LNV operators, that a neutral fermion
can couple to. In order not to run into troubles with proton decay, we should avoid LNV,
leaving us with the following possible couplings:

L � 1

⇤2

⇣
⌘00
ijk

 Q
i

Q
j

D†
k

+ �00
ijk

 U
i

D
j

D
k

⌘
(2)

Of course, one would be able also to end up conseptually only with the LNV operators.
However, if the process happens when the SM-sphalerons are already inactive (as we have
in mind in the low-scale scenario), this will leave us without the baryon asymmetry. Such
that we will further assume the BNV as the most suitable and straightforward option.

We should still satisfy to additional constraints: CPV and 1st order PT in the hidden
sector with the runaway bubble collisions. The latter can probably be achieved for example
if the self-coupling of the dark higgs �|�|2 is small (gauge-bosons driven PT). We should
verify that this also gives runaway bubbles, not just 1st order PT. We can also dial the
couplings to the fermions y

i

to be large, maximizing the fermions e↵ect.
In order to analyze the CPV, namely that the Majorana fermion  decays to the neu-

trons more often than to anti-neutrons, it would be easier to “open” the non-renormalizable
couplings to the SM fermions and works in the UV complete model. Let us concentrate
on the operator �00, the analysis of the ⌘00 will go along the same lines. Let is introduce a
complex scalar � which is an anti-fundamental of the SU(3)-color and has a hypercharge
+1/3. We can write down a following Lagrangian

L = 
ij

�U
i

D
j

+ !
i

�†D
i

e+
M2

�

2
�†� (3)

Given all the SM couplings and the couplings of e to the hidden sector, we have no more
freedom of rephasing our fermions. But, as usual there is no CPV at the tree level. In
order to see the e↵ects of CPV we should go to the one-loop order, and include the second
generation of the fermions to acquire a scattering phase. The mechanism further goes along
the lines of almost ordinary leptogenesis, those are after all the same diagrams, as for the
regular sterile neutrino.

Here it becomes evident how one can avoid excessive contribution to the n� n̄ mixing.
The overall decay rate is suppressed by the mass of �, as well as by the couplings 

ij

and
!
i

. Just keeping one of these two couplings su�ciently small will render the lifetime of the
fermion “e” su�ciently long. On the other hand, if � is not too heavy compared to the

3

By taking Ψ ⇨ e we 

get potentially two 
different CPV phases



Detailed Questions to 
Address

The dark higgs by construction is the lightest dark 
particle. It should decay fast enough to the SM 
(without asymmetries) 

The dark W’s are dark-stable. Should either decay fast 
enough or not to be overproduced as the possible DM 

By construction we get neutron-antineutron 
oscillation operator. The bound on this operator is 
~100 TeV. 



When Do Bubbles Run Away?
Bodeker, Moore; 2009

Criterion

FIG. 3: Example of the effective potential V and pseudo-potential Ṽ used to determine bubble wall

runaway, for two sets of parameters which produce the same value of h/Tnuc. The left plot is a case where

the bubble wall remains of finite velocity; in the right case it runs away. Note the different scales on the

vertical axis; the scalar excitations in the two minima are much lighter for the left case than for the right.

4. Using the potential at Tnuc and the procedure of the last section, we determine whether
or not the bubble wall can run away. In detail, we must determine two “potentials”
at Tnuc; the actual potential V (Tnuc) = Vvac + VT (Tnuc) and the mean-field potential
expanded about the s minimum using Eq. (4.5), Ṽ . For our case and thanks to our
neglect of cubic terms arising from the scalar fields, Ṽ (h, s) is the same as Eq. (4.5)
without the h3T/12π type terms.

We plot both the true and mean-field potential for two illustrative cases in Fig. 3.
The black curves are the actual thermal (equilibrium) effective potentials, evaluated
along the curve in the h, s plane taken by the critical bubble profile.13 Naturally, in
both cases they indicate that the h-phase is deeper (preferred). The red curves are
the mean-field potentials Ṽ defined in the last section, which we can think of as non-
equilibrium effective potentials. The value of the red curve at a given value of h, s is
the free energy cost per unit volume to force a phase interface to sweep through the
plasma, if the phase interface changes the plasma from the h = 0 phase to a phase with
the given h, s value. For values of (h, s) where it is positive, it would cost energy to
create a phase with these VEVs if the phase is to be produced by an ultra-relativistic
interface. Where the potential is negative, there is leftover free energy available from
creating the h-phase, which goes into accelerating the bubble wall. Therefore the
left figure represents a case where the bubble wall cannot run away. The right figure
represents a case where it will run away. Note however that the value of h where the
red curve is minimized is not the same as the equilibrium h VEV. This means that,

13 V is evaluated along the path through the (h, s) plane which is actually explored by the critical bubble;

the x-axis is the affine distance in the (h, s) plane along this curve. The cusp in the left figure is at

the (h, s) value at the center of the critical bubble; we used a straight-line extension from there to the

minimum of the potential, so the path in the (h, s) plane had a cusp at this point.

12

Mean free field 
approximation

Full thermal 
potential



Why Mean Free Field?
Bodeker, Moore; 2009

The difference between the values of the 
thermal potential at different higgs points:be integrated to recover the full potential. In particular, to compute the difference between

VT (h, s) and VT (h+δh, s), calculate the change in all particle energies in changing the value
of h:

δVT =
∑

a

∫

d3p

(2π)3
fB(Ep,h,a)

dEp,h,a

dh
δh =

∑

a

∫

d3p

(2π)3

fB(Ep,h,a)

2Ep,h,a

dm2
a

dh
δh , (2.2)

where the sum
∑

a is over all fields (for us, just h, s), Ep,h,a =
√

p2 + m2
a(h, s) and m2

a(h, s)
is the h, s dependent mass squared for particle type a. For a scalar field m2 is the second
derivative of V (h, s) with respect to the scalar field value; for instance, in our toy model
m2

s(h, s) = m2
S

+ 3λss2 + λh2/2.

In addition to this energy cost, there is a free energy cost associated with changing the
particle occupancies fB(Ep,h,a) from the values relevant at field value h to those relevant
at field value h+δh. But this free energy cost is quadratic in δh, since the equilibrium
occupancies are a minimum of the free energy.4 Therefore, if we treat δh as infinitesimal we
may drop this term, and reconstruct the thermal contribution to the effective potential by
integrating Eq. (2.2) – provided we account for the way that Ep,h,a and fB(Ep,h,a) vary with
h as we integrate.

Often the particle masses ma(h, s) are small compared to πT . Then we can approximate
fB(E)/2E in the second expression in Eq. (2.2) with fB(p)/2p. In this case we can perform
the integral:

dVT

dh
=
∑

a

dm2
a

dh

∫

d3p

(2π)3

fB(Ep,h,a)

2Ep,h,a
≃
∑

a

dm2
a

dh

∫

d3p

(2π)3

fB(p)

2p
=
∑

a

dm2
a

dh

T 2

24
(2.3)

which is trivial to integrate:

VT (h) =
T 2

24

∑

a

m2
a(h) + V0(T ) , (2.4)

with V0(T ) an undetermined (and for us irrelevant) integration constant. A slightly less
drastic approximation, useful if m2(h1)−m2(h2) ≪ T 2 but valid even if m2 itself is relatively
large, is to neglect the h dependence of the particle masses in the expression for E, replacing
Ep,h,a with Ep,h1,a:

VT (h2) − VT (h1) ≃
∑

a

(

m2
a(h2) − m2

a(h1)
)

∫

d3p

(2π)3

fB(Ep,h1,a)

2Ep,h1,a
. (2.5)

This approximation is the same as determining VT (h2) by performing a 2’nd order Taylor
series expansion of VT about h1 – provided that the potential is at most quartic, and particle
squared masses quadratic, in the condensate values of scalar fields (true at tree level in
renormalizable theories). In what follows we will call this the mean field approximation to
the effective potential. In our toy model, if only the h field takes a nonzero background
value, the effective mass for the s field is d2Vvac/ds2 = m2

S
+ λh2/2. In this case the s

4 This is an example of the usual perturbation theory result that changes to the state first give rise to

shifts in the (free) energy at second order in a perturbation.
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Limit but the masses are not small

be integrated to recover the full potential. In particular, to compute the difference between
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is the h, s dependent mass squared for particle type a. For a scalar field m2 is the second
derivative of V (h, s) with respect to the scalar field value; for instance, in our toy model
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S
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In addition to this energy cost, there is a free energy cost associated with changing the
particle occupancies fB(Ep,h,a) from the values relevant at field value h to those relevant
at field value h+δh. But this free energy cost is quadratic in δh, since the equilibrium
occupancies are a minimum of the free energy.4 Therefore, if we treat δh as infinitesimal we
may drop this term, and reconstruct the thermal contribution to the effective potential by
integrating Eq. (2.2) – provided we account for the way that Ep,h,a and fB(Ep,h,a) vary with
h as we integrate.

Often the particle masses ma(h, s) are small compared to πT . Then we can approximate
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with V0(T ) an undetermined (and for us irrelevant) integration constant. A slightly less
drastic approximation, useful if m2(h1)−m2(h2) ≪ T 2 but valid even if m2 itself is relatively
large, is to neglect the h dependence of the particle masses in the expression for E, replacing
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This approximation is the same as determining VT (h2) by performing a 2’nd order Taylor
series expansion of VT about h1 – provided that the potential is at most quartic, and particle
squared masses quadratic, in the condensate values of scalar fields (true at tree level in
renormalizable theories). In what follows we will call this the mean field approximation to
the effective potential. In our toy model, if only the h field takes a nonzero background
value, the effective mass for the s field is d2Vvac/ds2 = m2
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shifts in the (free) energy at second order in a perturbation.
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equivalent to expanding to the second order in h



Why Mean Free Field?
Bodeker, Moore; 2009

Pressure on plasma (per unit area) in limit ɣ >> 1: 

and taking advantage of the absence of reflections.

Since the wall is at rest and uniform in the transverse directions, both energy and p⊥ are
conserved. Together with γ ≫ 1, this makes evaluating (pz,in − pz,out) simple:

p2
z,in + m2(h1) = p2

z,out + m2(h2) ,

pz,in +
m2(h1)

2pz,in
+ O(m4/p3) = pz,out +

m2(h2)

2pz,out

+ O(m4/p3) ,

pz,in − pz,out = −
m2(h2) − m2(h1)

2E
+ O(m2/E3, p2

⊥/E3) , (3.6)

where in the last line we have used E−1 = −p−1
z +O(m2/E3, p2

⊥/E3). The terms ∼ E−3 will
be γ−2 suppressed and can be dropped. Therefore the pressure difference is

F

A
=
∑

a

(m2
a(h2) − m2

a(h1))

∫

d3p

(2π)32Ep,h1,a
fa(p, in) + O(1/γ2) . (3.7)

The integration measure and occupancies are covariant7 and can be performed in any frame;
it is most convenient to do so back in the plasma frame. This shows that Eq. (3.7) is identical
to Eq. (2.5).

Therefore the backwards pressure on the interface in the limit γ ≫ 1 is found by replacing
the thermal effective potential V = Vvac + VT with Ṽ = Vvac + VT [mean field]. This is the
main result of this section.8

Let us comment quickly on scaling. The density of particles increases as γ, due to Lorentz
contraction. But the mean momentum that each particle induces, in climbing the wall, goes
as 1/γ (since δpz ∼ m2/E ∼ 1/γ), which explains why there is a finite large-γ limit.

As a check, we can repeat the calculation in the plasma frame. Since the wall passes at
the speed of light and purely in the +z direction, it leaves each particle’s p⊥ and E − pz

unchanged.9 However E2−p2 must change by ∆m2, which uniquely determines the changes
to a particle’s 4-momentum:

(E, pz, p⊥) →
(

E +
m2(h2) − m2(h1)

2(E − pz)
, pz +

m2(h2) − m2(h1)

2(E − pz)
, p⊥

)

. (3.8)

In computing the momentum transfer to the phase interface, we must remember to consider
the flux of particles through the wall, not the particle density. The flux differs from the

7 Note that p, f(p) are defined based on their symmetric phase (z > 0) values. The expression is covariant

only if we identify E = Ep,h1,a since that is the energy which satisfies the mass shell condition in the

symmetric phase, where p is defined.
8 Some readers might worry that this leading-order analysis may receive large higher-loop effects of form

α ln γ. In particular, since the wall “sees” particles with extremely high energies, shouldn’t it analyze

their partonic content? We believe that the answer is “no.” Partonic content becomes important when a

particle is analyzed not with a large energy, but with a large available transverse momentum needed to

put the partonic contents on-shell. The wall is uniform in the transverse direction and so cannot impart

any transverse momentum; so the actual transverse analysis scale is infrared and partonic content is not

probed.
9 E − pz conservation is the same as energy conservation in the wall rest frame.

9

Occupancies in the unbroken state — unperturbed plasma. 
This expression is identical to the mean free field approximation.  
Basic assumption: in the ultra-relativistic limit the occupancies of 
the plasma in the unbroken phase particles approaching the wall 
get no signal about the approaching wall, and their occupancies 

are those of the equilibrium state. 

Momentum of incoming particle is ɣT, reflections from 
the walls are exponentially suppressed. 



Runaway Bubbles without Singlets
Strong modification of the zero-T potential (achieved by 
singlets in BM scenario) 
Significant supercooling (have to calculate)

In original Bodeker-Moore scenario it was a scalar which 
strongly modified the potential.

The effect is also 
possible if we strongly 

modify the zero-T 
potential

original idea of Espinosa-Quiros; 2007
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FIG. 1: Upper plot: In the plane (ζ, λ), the green line corre-
sponds to the condition V ′′(0) = 0, the red to V (v) = V (0)
and the blue to V ′′(v) = 0. Black solid lines correspond to
the indicated values of Mh. Lower plot: Potential for ζ = 1.0
and different values of λ (or Mh) as marked on the vertical
line in upper plot.

with the presence of a tachyonic mass at the ori-
gin, as in the SM. Instead it is triggered by radia-
tive corrections via the mechanism of dimensional
transmutation.

The minimum at the origin becomes a maximum at the
green line. In fact the green line corresponds to the con-
formal case where m2 = 0 and electroweak breaking pro-
ceeds by pure dimensional transmutation (see also [9]).
iv) Finally, in the region above the green line the origin
is a maximum as in the SM, with m2 < 0.

Notice that, while λ > 0 is required in the SM case
(ζ = 0 axis), now λ < 0 is accessible for sufficiently large
ζ. The shape of the potential for the different cases is il-
lustrated by the lower plot of Fig. 1, where ζ = 1 has been
fixed and we vary λ as indicated by the vertical line in the
upper plot of Fig. 1. From bottom-up the potentials have
decreasing values of λ. The lowest potential corresponds
to λ = 0.01 and has the conventional maximum at the
origin. The green potential corresponds to the conformal
case where m2 = 0 (in this particular example also λ is
zero!). The next line corresponds to λ = −0.02 with a
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FIG. 2: Green: Effective potential for the conformal case.
Black: running λ̃ and λ̂, with Q = Mt(h).

barrier between the origin and the electroweak minimum
while for the red potential the two minima become de-
generate. The next line corresponds to the potential for
λ = −0.04 where the electroweak minimum is already
a false minimum, which becomes an inflection point at
the blue line where Mh = 0. Finally the highest line
corresponds to λ = −0.08 and the electroweak extremal
is a maximum (the potential has a minimum somewhere
else, for some ⟨h⟩ > v. If ζ2 were smaller, ζ2 <

∼ h2
t /2, the

potential would instead be destabilized due to λ < 0.).
In order to have a better understanding of the phe-

nomenon of radiative electroweak breaking by dimen-
sional transmutation in this setting consider the confor-
mal case with m2 = 0. Then improve the one-loop effec-
tive potential of Eq. (2) by including the running with the
renormalization scale of couplings and wave functions.
We use for that the SM renormalization group equations
(RGEs) supplemented by the effects of Si loops plus the
RGEs for the new couplings to the hidden sector (see [10]
for details). The RGE-improved effective potential is
scale independent and we can take advantage of that to
take Q = Mt(h) as a convenient choice to evaluate the
potential at the field value h (with all couplings ran to
that particular renormalization scale). This results in a
“tree-level” approximation V ≃ (1/4)λ̂h4 with [11]

λ̂ ≡ λ +
∑

α

Nακ2
α

64π2

[

ln
κα

h2
t
− Cα

]

, (3)

where the κα’s are coupling constants, defined by the
masses as M2

α = (1/2)καh2. The behavior of the one-loop
potential as a function of h is captured by the “tree-level”
approximation above through the running of λ̂ with the
renormalization scale, linked to a running with h by the
choice Q = Mt(h). To illustrate this, we show in Fig. 2
the effective potential for this conformal case (green lines
in Fig. 1) with m2 = 0 and ζ = 1, together with the
effective quartic coupling λ̂(h). We can see that the scale
of dimensional transmutation is related to the scale at
which the potential crosses through zero. The structure

V(T = 0) due to CW modifiction 
(with singlets in EQ case)
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formal case where m2 = 0 and electroweak breaking pro-
ceeds by pure dimensional transmutation (see also [9]).
iv) Finally, in the region above the green line the origin
is a maximum as in the SM, with m2 < 0.

Notice that, while λ > 0 is required in the SM case
(ζ = 0 axis), now λ < 0 is accessible for sufficiently large
ζ. The shape of the potential for the different cases is il-
lustrated by the lower plot of Fig. 1, where ζ = 1 has been
fixed and we vary λ as indicated by the vertical line in the
upper plot of Fig. 1. From bottom-up the potentials have
decreasing values of λ. The lowest potential corresponds
to λ = 0.01 and has the conventional maximum at the
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barrier between the origin and the electroweak minimum
while for the red potential the two minima become de-
generate. The next line corresponds to the potential for
λ = −0.04 where the electroweak minimum is already
a false minimum, which becomes an inflection point at
the blue line where Mh = 0. Finally the highest line
corresponds to λ = −0.08 and the electroweak extremal
is a maximum (the potential has a minimum somewhere
else, for some ⟨h⟩ > v. If ζ2 were smaller, ζ2 <

∼ h2
t /2, the

potential would instead be destabilized due to λ < 0.).
In order to have a better understanding of the phe-

nomenon of radiative electroweak breaking by dimen-
sional transmutation in this setting consider the confor-
mal case with m2 = 0. Then improve the one-loop effec-
tive potential of Eq. (2) by including the running with the
renormalization scale of couplings and wave functions.
We use for that the SM renormalization group equations
(RGEs) supplemented by the effects of Si loops plus the
RGEs for the new couplings to the hidden sector (see [10]
for details). The RGE-improved effective potential is
scale independent and we can take advantage of that to
take Q = Mt(h) as a convenient choice to evaluate the
potential at the field value h (with all couplings ran to
that particular renormalization scale). This results in a
“tree-level” approximation V ≃ (1/4)λ̂h4 with [11]

λ̂ ≡ λ +
∑
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Nακ2
α

64π2

[

ln
κα
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t
− Cα

]

, (3)

where the κα’s are coupling constants, defined by the
masses as M2

α = (1/2)καh2. The behavior of the one-loop
potential as a function of h is captured by the “tree-level”
approximation above through the running of λ̂ with the
renormalization scale, linked to a running with h by the
choice Q = Mt(h). To illustrate this, we show in Fig. 2
the effective potential for this conformal case (green lines
in Fig. 1) with m2 = 0 and ζ = 1, together with the
effective quartic coupling λ̂(h). We can see that the scale
of dimensional transmutation is related to the scale at
which the potential crosses through zero. The structure
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The potential can be very flat near the 
origin at T = 0 or the origin can even be 
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Figure 2: Examples of potentials in the SU(2) models which satisfy Bodeker-Moore crite-
rion for the runaway bubbles due to strong modification of the CW potential.

Include here the subdominant log ⇣ term
Usually this criterion is not easy to satify because in the standard 1st order PT picture

one gets the local minimum due to the cubic term in the high-T expansion. Therefore
switching the cubic potential term o↵ in the e↵ective non-equilibrium potential very often
leads to erasing the meta-stable vacuum. For the runaway bubbles Ref. [7] considered a
theory where the higgs mixes with a SM singlet, and the higgs potential is strongly modified
already at the zero-T level. In principle we could also pursue this approach here, but this
model would be very non-minimal and in lots of senses unnatural.

Instead, we will take a di↵erent approach, which would be very hard to implement
in the SM, but there is nothing unnatural about this approach in a di↵erent sector. In
fact, it has been noticed already in [8] that the 1st order PT can occur even in the SM
without strong modification of the themal potential, in case that the zero-tmeperature CW
potential is strongly modi�ed near the origin. The claim was that the zero-temperature
potential can be so strongly modified near the origin that the latter stays a local minimum
even at zero temperature. In fact the idea did not work well in the original scenario of [8],
because in order to trigger this strong modification one needs counplings which are much
stronger than the SM quartic �

SM

. Introducing new BSM scalars along these lines would
clearly need non-perturbative couplings. The Ref. [8] tried to circumvent this problem via
introducing several scalars like this, but the model still stays on dubious ground, because
its perturbativity in the ’t Hooft sense is at least questionable, namely wether N� ⌧ 1.

However, whatever does not work in the SM can easily work in the hidden sector,
definitely in the case where � ⌧ 1. We will even not need any new scalars, it will be
enough to have the quartic coupling � and the gauge coupling g to satisfy the hierarchy
� ⌧ g2. Let us neglect for now the fermions, which will also have tree level masses and
therefore one can neglect their contributions to the zero-temperature CW potential. Then

8

Points, which 
satisfy Bodeker-
Moore criterion 

due to 
modification via 

CW potentia



Supercooling
It is not enough to verify that Bodeker-Moore criterion 
holds. We should also make sure that the PT does not 
happen at higher-T, namely that we indeed supercool.

formation of bubbles of the field φ corresponding to the second minimum
starts somewhat later, and it goes sufficiently fast to fill the whole universe
with the bubbles of the new phase only at some lower temperature T when
the corresponding euclidean action suppressing the tunneling becomes less
than 130 – 140 [13, 21, 22]. Some small uncertainty in this number is related
to the speed with which bubble walls move after being formed (see the next
section) and to the exact value of the critical temperature, which is very
sensitive to the top quark mass and to the value of the cubic term. In this
paper (see also [21]) we performed a numerical study of the probability of
tunneling. Before reporting our results, we will remind the reader of some
basic concepts of the theory of tunneling at a finite temperature.

In the euclidean approach to tunneling (at zero temperature) [34], the
probability of bubble formation in quantum field theory is proportional to
exp(−S4), where S4 is the four-dimensional Euclidean action correspond-
ing to the tunneling trajectory. In other words, S4 is the instanton action,
where the instanton is the solution of the euclidean field equations describ-
ing tunneling. A generalization of this method for tunneling at a very high
temperature [27] gives the probability of tunneling per unit time per unit
volume

P ∼ A(T ) · exp(−
S3

T
) . (17)

Here A(T ) is some subexponential factor roughly of order T 4; S3 is a three-
dimensional instanton action. It has the same meaning (and value) as the
fluctuation of the free energy F = V (φ(x⃗), T ) which is necessary for bubble
formation. To find S3, one should first find an O(3)-symmetric solution, φ(r),
of the equation

d2φ

dr2
+

2

r

dφ

dr
= V ′(φ) , (18)

with the boundary conditions φ(r = ∞) = 0 and dφ/dr|r=0 = 0. Here

r =
√

x2
i ; the xi are the euclidean coordinates, i = 1,2,3. Then one should

calculate the corresponding action

S3 = 4π
∫ ∞

0
r2 dr[

1

2

(

dφ

dr

)2

+ V (φ(r), T )] . (19)

Usually it is impossible to find an exact solution of eq. (18) and to
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Tunnelling probability per unit 
time per unit volume: 

Linde’s approximation: 
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bubble radius extremizes 
this expression

This approximation is valid only for very weak 1st order PT. 
But it can be shown that true S3 is bigger than Linde’s 

approximation, and we always overestimate Tnuc



Linde’s Bound on Nucleation 
Temperature

Linde’s approximation overestimates the Tnuc ➩ use it 
as a bound on nucleation temperatures

3.2 Annihilations or Decays of Dark W s and Zs

These particles are stable within this model, and they can only annihilate into the dark
Higgses. We will not worry if the dark gauge bosons will be a poor dark matter candidate,
and if they are vastly underproduced. The dominant DM component can be produced in
the bubbles collisions during the PT together with the baryonic matter. However, this DM
component should not be overproduced.

We also notice, that in principle the dark gauge bosons are “WIMPless-miracle” DM
candidates [5]. Indeed, their annihilation cross section scales as

h�vi ⇠ g4
D

f2
(9)

If we assume that coupling g2
D

is suppressed compared to the g22 by the ratio f/m
EW

, we
land in the ballpark of the correct relic abundance. However this is very light dark matter,
annihilating into a light mediator, which further decays into the SM (especially e+e�)
might be in troubles with Planck observations, via modification of WMAP anisotropies [6].
Therefore, much safer possibility would probably assuming g

D

⇠ g2. In this case the dark
gauge bosons are e�ciently washed out and form only a tiny subdominant component of
the overall DM. Probably there can be more imaginative ways around this problem, for
example that the dark gauge bosons are some non-negligible portion of the DM, while the
rest are bubble-collision produced particles. But this is not the main point of the study
and can addressed later.

4 1st order PT and Runaway Bubbles

The crucial question that one can ask in this context would be what are the ingrediaents
needed in order to get 1st order PT with the runaway bubbles in the hidden sector.

As we have mentioned before, we will be interested in theories, in which the order
parameter in the broken phase is much bigger than the temperature of the phase transition,
namely f � T

c

⇠ m
h

. Ineterestingly in theories like this runaeway bubbles can occur in
very simple theories, without extra singlets and/ or other particles required.

First we review the condictions for runaway bubbles as they were summarized in Ref. [7].
The claim in this reference can be summarized as follow. The non-equilibrium e↵ective
potential for the “higgs” field can be approximated by the mean-field potential, which
includes the zero-T potential and only the leading term of the thermal potential potential
in its high-T expansion. If at the nucleation temperature the symmetry-breaking vacuum
has lower energy than the symmetry-preserving vacuum both in full thermal potential
picture and in the non-equilibrium e↵ective potential, than the bubbles are runaway. In
high-T regime one gets the nucleation temperature when

S3

T
⇠ 5 log

✓
M

pl

T
c

◆
. (10)
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Figure 3: On the LH plot blue, orange and red lines stand for the g2 values 0.987, 0.98
and 0.95 respectively. It is clear from this bound that in the two first cases runaway
bubbles are inevitable if the phase transition occurs. On the RH side these colors stand
for g2 = 0.33, 0.34, 0.345. In all the cases one gets runaway bubbles (unless the system
undergoes the spinodal decomposition, something that we cannot really check).

and the 3D Euclidian action is

S3 = 4⇡

Z 1

0
r2

 
1

2

✓
d�

dr

◆2

+ V (�(r), T )

!
dr (15)

Formally, before doing this cumbersome calculation, one can try to use Linde’s approxi-
mation, namely

S3 = �4⇡

3
R3�V + 4⇡R2

Z
d�
p

2V (�, T ) (16)

and R is found from extremization of this expression. �V is a potential di↵erence between
the false vacuum and the global one. In ptinciple Linde’s approximation is valid only if �V
is much smaller that the barrier between them and therefore corresponds to the weak 1st
order PT. Strictly speaking in the regime that we are interested in, it always fails. However,
it can be shown that this approximation always underestimates the real 3D actions [9] and
therefore overestimates the temperature of the phase transition. Therefore, we will further
refer to the value of nucleation temperature in Linde’s approximation as “Linde’s bound”:
it is di�cult to see how the real nucleation temperature can exceed this bound.

To go further we define for the bound that we have described above for each temperature
a new value:

⇣ ⌘ S3/T

5 log(M
pl

/T )
. (17)
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and R is found from extremization of this expression. �V is a potential di↵erence between
the false vacuum and the global one. In ptinciple Linde’s approximation is valid only if �V
is much smaller that the barrier between them and therefore corresponds to the weak 1st
order PT. Strictly speaking in the regime that we are interested in, it always fails. However,
it can be shown that this approximation always underestimates the real 3D actions [9] and
therefore overestimates the temperature of the phase transition. Therefore, we will further
refer to the value of nucleation temperature in Linde’s approximation as “Linde’s bound”:
it is di�cult to see how the real nucleation temperature can exceed this bound.

To go further we define for the bound that we have described above for each temperature
a new value:

⇣ ⌘ S3/T

5 log(M
pl

/T )
. (17)
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Suitable for runaway bubbles  

? ?



Heavy Particles Production 
from the Runaway Bubbles

Probability of particle production
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where the boundary conditions follow from imposing continuity of δhTI(z, t) and ∂t δhTI(z, t)
at t = 0. From (2.9), we finally obtain

hTI(z, t > 0) = vT

⎡

⎣1 +
lw
γw

∫ ∞

0

dpz
pz

√

p2z +m2
h

Cos (pz z)

Sinh
(

π lw pz
2 γw

) Sin

(

√

p2z +m2
h t

)

⎤

⎦ (2.10)

Notice that in the limit mh → 0, (2.9) becomes (∂2
t − ∂2

z ) δhTI(z, t) = 0 and (2.7) is also a
solution for t > 0, case in which the two bubble walls would pass through each other without
actually colliding.

The analysis for the dynamics of bubble collisions presented here may be extended to
phase transitions involving multiple fields (see for example [20]), although in this case the
analysis of the field evolution after the bubble collision becomes much more complicated
(since the scalar potential is multidimensional and the field “excursion” at the moment of
the bubble collision will involve several fields), and we will not attempt it here.

2.2 Particle Production Through Bubble Collisions

The bubble collision processes analyzed in the previous section allow to liberate into the
plasma the energy contained in the bubble walls. This can happen either via direct particle
production in the collisions or via radiation of classical scalar waves which will subsequently
decay into particles. For bubble collisions taking place in a thermal environment, the number
densities nα for the different particle species created during the collisions should very quickly
approach the ones in thermal equilibrium nEQ

α after the phase transition, thus rendering the
particle production process irrelevant for the subsequent evolution of the Universe. However,
as it has been briefly discussed in the introduction, under certain conditions fast thermal-
ization of certain species after the phase transition may be avoided, which can make the
particle production process very important in that case.

In order to study the particle production through bubble collisions, we will treat the scalar
field configuration h(z, t) as a classical external field and the states coupled to it as quantum
fields in the presence of this source. In doing so, we will neglect the back-reaction of particle
production on the evolution of the bubble walls themselves throughout the collision, which
should be a good approximation when the energy of the produced particles (for each species)
is much less than the energy contained in the field configuration h(z, t). The probability of
particle production is given by [8]

P = 2 Im (Γ [h]) (P ≪ 1) (2.11)

where Γ [h] is the effective action. Γ [h] is the generating functional of 1PI Green functions,
and to the quadratic order in h

Γ [h] =
1

2

∫

d4x1 d
4x2 h(x1) h(x2)Γ

(2) (x1, x2) (2.12)

with Γ(2) (x1, x2) ≡ Γ(2) (x1 − x2) being the 2-point 1PI Green function. In terms of its
Fourier transform Γ̃(2) (p2), and using (2.11) and (2.12) we get

7

effective action

The effective action is calculated using the 
explicit higgs profile in thermal potential at the 
nucleation temperature. Collisions are either 

elastic (the bubble planar wave retreats back after 
the collision and restores the symmetric phase) or 

partially inelastic. 
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Nlw

A
=

8 v2T l2w
γ2
w

∫ ∞

0

dω

∫ ∞

0

dpz
Im
(

Γ̃(2) (ω2 − p2z)
)

(ω2 − p2z)
2

ω2

(

Sinh
[

π lw ω
2 γw

])2 (2.19)

For the opposite case of a totally inelastic collision (h(z, t) = hTI), the Fourier transform
is given by

h̃(pz,ω) = h̃TI(pz,ω) ≡
π lw pz
2 γw

2 vT

Sinh
[

π lw pz
2 γw

]

(

1

ω2 − p2z
− 1

ω2 − p2z −m2
h

)

(2.20)

The relative “−” sign between the two contributions in (2.20) can be easily understood
noticing that in the limit mh → 0 the Fourier transform of hTI(z, t) should give h̃(pz,ω) ∼
δ(ω ± pz). From (2.20), the mean number of particles produced per unit area in the case of
a totally inelastic collision is given by

NTI

A
=

2 v2T l2w
γ2
w

∫ ∞

0

dω

∫ ∞

0

dpz
m4

h Im
(

Γ̃(2) (ω2 − p2z)
)

(ω2 − p2z)
2 (ω2 − p2z −m2

h)
2

p2z
(

Sinh
[

π lw pz
2 γw

])2 (2.21)

The expressions (2.17), (2.19) and (2.21) can be rewritten in a more compact form by
making the change of variables χ = ω2 − p2z, Ψ = ω2 + p2z. After performing the integral in
Ψ, the mean number of particles produced per unit area finally reads

N
A

=
1

2 π2

∫ ∞

0

dχ f(χ) Im
(

Γ̃(2) (χ)
)

(2.22)

The function f(χ) encodes the details of the bubble collision process and quantifies the
efficiency of particle production. For a perfectly elastic collision, in the limit of infinitely
thin bubble walls, we have

f(χ) = f∞(χ) ≡
16 v2T Log

[

2 ( γw
lw
)
2
−χ+2 γw

lw

√

( γw
lw
)
2
−χ

χ

]

χ2
Θ

[

(

γw
lw

)2

− χ

]

(2.23)

For a perfectly elastic collision, and for bubble walls with finite thickness, we have

f(χ) = flw(χ) ≡
2 π2 l2w v2T

γ2
w

1

χ2

∫ ∞

χ

dΨ
Ψ+ χ

√

Ψ2 − χ2

1
(

Sinh
[

π lw
√
Ψ+χ

2
√
2 γw

])2 (2.24)

Finally, for a totally inelastic collision, we have

f(χ) = fTI(χ) ≡
π2 l2w v2T
2 γ2

w

m4
h

χ2 (χ−m2
h)

2

∫ ∞

χ

dΨ
Ψ− χ

√

Ψ2 − χ2

1
(

Sinh
[

π lw
√
Ψ−χ

2
√
2 γw

])2 (2.25)
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Particle produced 
per unit area:

Im
(

Γ̃(2) (χ)
)

=
1

2

∑

α

∫

dΠα

∣

∣M(h → α)
∣

∣

2
Θ [χ− χmin] (2.28)

where
∣

∣M(h → α)
∣

∣

2
is the spin-averaged squared amplitude for the decay of h into a set of

particles α with masses Mα, χmin ≡ (
∑

Mα)
2 is the minimum value of χ for which this decay

is possible and dΠα is the relativistically invariant n-body phase space element

dΠα =

(

∏

i

d3 ki
(2 π)3

1

2Ei

)

(2 π)4 δ4(p−
∑

i

ki) (2.29)

Then, the number of particles of a certain type α produced per unit area during the
bubble collision will simply read from (2.22) and (2.28)

N
A

∣

∣

∣

∣

α

=
1

4 π2

∫ ∞

χmin

dχ f(χ)

∫

dΠα

∣

∣M(h → α)
∣

∣

2
(2.30)

The amount of energy produced per unit area in the form of particles α is obtained by
weighting (2.30) by the energy of each decaying Fourier mode. This yields

E
A

∣

∣

∣

∣

α

=
1

4 π2

∫ ∞

χmin

dχ f(χ)
√
χ

∫

dΠα

∣

∣M(h → α)
∣

∣

2
(2.31)

From (2.30) and (2.31), the non-thermally produced energy density ρα (assuming that
the produced particles quickly diffuse into the bubble interior) reads

ρα ≡ E
V

∣

∣

∣

∣

α

=
E
A

∣

∣

∣

∣

α

A

V
≃ E

A

∣

∣

∣

∣

α

3

2RB
(2.32)

with A ∼ 4 πR2
B being the total collision area and V the volume of the two colliding bubbles.

From (2.32), and bearing in mind that RB ≃ β−1, the non-thermally generated comoving
energy density is

Υα =
ρα

s(TEW)
≃ 20

√
π g∗

1

MPl TEW

β

H

E
A

∣

∣

∣

∣

α

(2.33)

with s(TEW) the entropy density after the EW phase transition.

3 Particle Production via the Higgs Portal

The efficiency of particle production may strongly depend on the nature of the particles
being produced. In this section we will analyze the particle production efficiency for scalars
S, fermions f and vector bosons Vµ coupled to the Higgs field. Apart from estimating the
production of SM fermions and gauge bosons through this process, we will consider a simple
Higgs-portal extension of the SM in order to study the production of other possible scalar,
fermion or vector boson particles. Furthermore, we will restrict ourselves to Z2 symmetric
Higgs-portal scenarios, since we will ultimately be interested in dark matter analyses. We also
comment on how to interpret the results in the case when the calculated particle production
exceeds the energy available in the bubble wall.
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two-point 1PI Green functionfunction which carries the 
information about the 

efficiency of the collisions

In small quartic limit production starts being 
inefficient for particles with mass ~ v (fully 

elastic case) and ~mh (fully inelastic)



How Many Baryons Can We Produce?
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Figure 4: Predicted values of the ⌦h2/✏
CP

for various assumptions about �. The orange,
green and blue lines stand for T = 10 GeV, v = 1 TeV, y = 1; T = 10 GeV, v = 2 TeV,
y = 1.5; T = 50 MeV, v = 500 GeV and y = 1 respectively. The dashed lines stands for
the CP e�ciencies needed to get the correct baryonic density ✏

CP

= 1, 0.01, 10�4.

Using this two-point function we find the comoving number density of the heavy
fermions produced. The comoving number of the baryons that one get from the decays of
the fermions  will be further suppressed by the CP-e�ciency of the decay process (that
we will discuss bit later) and after all given by

⌦
B

h2 = ✏
CP

⌥m
p

s0h
2

m
 

⇢
cr

(27)

where ⌥ is takek from Eq. (24), s0 = 2891 cm�3 is current entropy density and the critical
energy density we compare to is ⇢

cr

= 4.85⇥ 10�6 GeV
cm3 .

The measure baryonic matter density (Planck+WMAP) combination is [10] is

⌦
B

h2 = 0.02220± 0.00025 (28)

with h = 0.667± 0.011.

6 To Do: Open Questions

Just a short list summary of further questions, which would be useful to address:

• Can we have runaway bubbles in gauge-bosons driven 1st order PT or do wee need
an extra scalar à la Bodeker-Moore? – addressed

• What are the maximal plausible values of � for the runaway bubbles when the log
friction term is taken into account

13

What values of ɣ are reasonable? 
Theoretical bound

Orange — T=10 GeV, 
v = 1 TeV, y = 1 
Green — T = 10 GeV, 
v = 2 TeV, y = 1.5 
Blue — T = 50 MeV, 
v= 500 GeV, y = 1
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Practically these velocities are hard to reach because of 
the friction term ~ log(ɣ)



Open Questions About 
Particles Production 

Are the collisions elastic or largely inelastic in our 
case?  

What are realistic values of the bubble velocity (ɣ) 
when all friction effects are properly taken into 
account?   

Any further parameter space beyond what is 
allowed by Bodeker-Moore criterion?



Remarks on Experimental 
Signatures 

Gravitation wave (1st order PT) 

Neutron oscillations 
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Right now the bound ~ 100 TeV — not very high and 
much weaker than the bound on Λ (decay within 1 sec)



Remarks on Model-Dependent 
Experimental Signatures 

possible amount). In fact, as we later show, similarly to the standard leptogenesis mecha-
nism, at least two generations are absolutely necessary to have a rescattering phase in the
CP-violating decays of the heavy fermions.

At this step the fermions are both heavy and stable, up to decays into one another
(if kinematically allowed). The most important point is that the lightest fermionic state
cannot decay into the hidden sector states, which consist of the three massive gauge bosons
and the higgs. Now introduce the BNV couplings of the SU(2) singlet to the SM. Ref. [3]
contains a full list of the lowest-order BNV and LNV operators, that a neutral fermion
can couple to. In order not to run into troubles with proton decay, we should avoid LNV,
leaving us with the following possible couplings:

L � 1

⇤2

⇣
⌘00
ijk

 Q
i

Q
j

D†
k

+ �00
ijk

 U
i

D
j

D
k

⌘
(2)

Of course, one would be able also to end up conseptually only with the LNV operators.
However, if the process happens when the SM-sphalerons are already inactive (as we have
in mind in the low-scale scenario), this will leave us without the baryon asymmetry. Such
that we will further assume the BNV as the most suitable and straightforward option.

We should still satisfy to additional constraints: CPV and 1st order PT in the hidden
sector with the runaway bubble collisions. The latter can probably be achieved for example
if the self-coupling of the dark higgs �|�|2 is small (gauge-bosons driven PT). We should
verify that this also gives runaway bubbles, not just 1st order PT. We can also dial the
couplings to the fermions y

i

to be large, maximizing the fermions e↵ect.
In order to analyze the CPV, namely that the Majorana fermion  decays to the neu-

trons more often than to anti-neutrons, it would be easier to “open” the non-renormalizable
couplings to the SM fermions and works in the UV complete model. Let us concentrate
on the operator �00, the analysis of the ⌘00 will go along the same lines. Let is introduce a
complex scalar � which is an anti-fundamental of the SU(3)-color and has a hypercharge
+1/3. We can write down a following Lagrangian

L = 
ij

�U
i

D
j

+ !
i

�†D
i

e+
M2

�

2
�†� (3)

Given all the SM couplings and the couplings of e to the hidden sector, we have no more
freedom of rephasing our fermions. But, as usual there is no CPV at the tree level. In
order to see the e↵ects of CPV we should go to the one-loop order, and include the second
generation of the fermions to acquire a scattering phase. The mechanism further goes along
the lines of almost ordinary leptogenesis, those are after all the same diagrams, as for the
regular sterile neutrino.

Here it becomes evident how one can avoid excessive contribution to the n� n̄ mixing.
The overall decay rate is suppressed by the mass of �, as well as by the couplings 

ij

and
!
i

. Just keeping one of these two couplings su�ciently small will render the lifetime of the
fermion “e” su�ciently long. On the other hand, if � is not too heavy compared to the

3

Interactions suggest colored bosonic mediator. Small Λ ➡ small 
couplings to the SM. Possibly shows up as an R-hadron at the 
LHC. Cannot be much heavier than the Ψ (to have efficient 

baryon production)

The dark higgs should decay. The most natural candidate:

fermions masses and at least one of these couplings is order O(1) and violates CP, this will
already be enough in order to maximize ✏

CP

. Therefore, we see that the constraints on
n� n̄ are almost unrelated to the e�ciency of the CPV decays.

2.2 SU(N) generalization

This idea is probably straightforward to extend to other groups, which are not necesserilly
pseudo-real.

3 SU(2) model - the dark sector

First let us take care about the light portion of the dark sector. In the broken phase we have
there a Higgs field and three massive gauge bosons. It might also include an extra scalar in
order to trigger 1st order PT with runaway bubbles, if necessary. It will be hard to make
the gauge bosons decay into something. However, as we will later see, the we will eventually
deal with the models of the dark sector, where the dark higgs mass is parametrically lighter

than its VEV. In general, only those theories will be interesting, where the order parameter
in the broken phase is parametrically bigger than the temperature of the phase transition
(the latter goes as the dark higgs mass in our case). In other words, we will be interested
in theories with a tiny quartic. Therefore, if the gauge couplings in the hidden sector are
of order 1, it is natural that the gauge bosons of the broken symmetries are much heavier
than the darks higgs, and they will be able to safely annihilate into it. The higgs itself
should decay, and we first study the constraints on our parameter space from the dark
higgs decays into the SM.

3.1 Dark higgs decay

The dark higgs can decay if we add a small mixing coupling between the dark and the
visible higgs. We will check here two possible portals which can cause the hidden higgs
decay: the higgs portal and the neutrino portal. While the first is pretty constrained, the
second is in principle wide open and can be e�ciently used to get rid of the dark higgses.
However, the second in principle can also predict non-trivial new physics in the neutrino
sector and can potentially be probed.

3.1.1 Higgs portal

After all the higgs operator |H|2 is the lowest possible dimension portal in the SM, therefore
we couple the dark higgs to the visible higgs in the following way:

L = �|H|2|�|2 ! �vf(h') +
�v

2
h'2 + . . . (4)

4

exotic higgs decays. But model 
dependent…



Conclusions
There is a simple mechanism to produce the baryonic asymmetry at 
temperatures as low as BBN 

The mechanism heavily relies on the strong 1st order PT in the hidden 
sector with runaway bubbles  

Generic signals of this kind of mechanism: primordial gravitational wave 
from 1st order PT and neutron-antineutron oscillations 

The parameter space of these kind of models and how fine-tuned they 
are is yet to be explored  

Still unclear if this kind of phenomenon is possible in confinement PT 

Less generic signatures will have to do with the dark particle decays 
(dark higgs decays ⇔ exotic visible higgs decays), new colored (long lived) 
particles with masses close to the hidden fermions


