Strangeness Nuclear Physics – homework assignments

- Assume that the isospin I = 0 $\bar{K}N$ s-wave interaction is strongly attractive, with a matrix element V_0 , and that the isospin I = 1 matrix element V_1 is negligible with respect to V_0 . Focusing on core nuclei in the *s* shell and neglecting the *NN* tensor force, what quantum numbers *L*, *S*, *J*, parity π and isospin *I* (all 'total') are the most likely ones for $\bar{K}NN$, $\bar{K}NNN$ and $\bar{K}\bar{K}NN$ bound-states? Is the isospin of the nuclear core I_C a good quantum number? How would all of this change if the $\bar{K}N$ interaction were isospin independent?
- The ΛN effective interaction, for a $1s_{\Lambda}$ in the nuclear p shell, is given (apart from an induced nuclear spin-orbit term) by

$$V_{\Lambda N} = \bar{V} + \Delta \,\vec{s}_N \cdot \vec{s}_\Lambda + S_\Lambda \,\vec{l}_N \cdot \vec{s}_\Lambda + T \,S_{N\Lambda},\tag{1}$$

Eq. (7) of my notes. Assuming LS-coupling for ⁶Li g.s. (L=0, S=1, I=0) and for ⁸Be 1st excited 2⁺ state (L=2, S=0, I=0), with fully symmetric spatial wavefunctions for the *p*-shell nucleons, show that the splitting of the g.s. doublet states $J^{\pi} = 1/2^+, 3/2^+$ in ⁷_ALi is given by $\frac{3}{2}\Delta$, and the splitting of the $J^{\pi} = 3/2^+, 5/2^+$ excited doublet states in ⁹_ABe is given by $\frac{5}{2}S_{\Lambda}$.