ENHANCING CONSTRAINTS ON MODIFIED GRAVITY AND INFLATION WITH MULTI-TRACER COSMOLOGICAL SURVEYS

ARXIV:1505.04106 (MNRAS 2016) 1403.5237 (J-PAS WHITE PAPER) 1302.5444 (MNRAS 2013) 1108.5449 (MNRAS 2012)

L. Raul Abramo

Instituto de Fisica & LabCosmos

Universidade de São Paulo

Galaxy surveys are evolving

We used to live in an era of shot ("counts") noise

[Finding galaxies was the limiting factor]

We are now in the **age of cosmic variance and systematics**

[Volume and control are the limiting factors]

Surveys of large-scale structure are now limited by **cosmic variance and systematics**

However, up to any given redshift there is only a finite volume. Moreover, we are reaching closer to the limits of the observable Universe!

Shot noise:

finite number of **counts** of the tracers of the underlying density field (Poisson statistics)

Cosmic variance: finite **volume** inside which we can estimate the **amplitudes and phases** of the (Gaussian) random **modes** of the density field

 $P_g(\vec{k}) \simeq b_g^2 P_m(\vec{k}) + \frac{1}{\bar{n}_g}$

 $\bar{n}_g P_g(\vec{k}) \simeq \bar{n}_g b_g^2 P_m(\vec{k}) + 1$

SNR

noise

Clustering in units of shot noise

Feldman, Kaiser & Peacock 1994 (**FKP**) Tegmark et al. 1997, 1998

Fisher information of galaxy surveys

FKP 1994 Hamilton 2005 R. A. 2012

Fisher information in phase space

On each **unit volume** of **phase space** there is a certain **amount of information** about the clustering strength: k

$$F[\log \mathcal{P}_g] \times \frac{\Delta V_x \,\Delta V_k}{(2\pi)^3} = \frac{1}{2} \left(\frac{\mathcal{P}_g}{1 + \mathcal{P}_g} \right)^2 \times \frac{\Delta V_x \,\Delta V_k}{(2\pi)^3}$$

Fisher information/
(phase space volume) phase space
volume = $\Delta \mathcal{V}$.

The precision (SNR) with which we can estimate the clustering strength is:

$$\frac{\mathcal{P}_g^2}{\sigma^2(\mathcal{P}_g)} = F[\log \mathcal{P}_g] \times \Delta \mathcal{V} = \frac{1}{2} \left(\frac{\mathcal{P}_g}{1+\mathcal{P}_g}\right)^2 \Delta \mathcal{V}$$
$$F = \frac{1}{2} \left(\frac{\text{signal}}{\text{signal + noise}}\right)^2 \le \frac{1}{2}$$

The Universe has **many different types** of galaxies, halos, etc...

Multi-tracer Fisher information matrix

R.A. 2012 R.A. & Katie Leonard 2013

Let's say we have **several** ($\alpha = 1, 2, ... N$) **different types of tracers** of large-scale structure. E.g. : $\alpha = 1 = LRGs$, $\alpha = 2 = ELGs$, $\alpha = 3 = quasars$, etc.

$$\mathcal{P}_{\alpha}(k,\mu_k;z) = n_{\alpha}(z) \left[b_{\alpha}(z) + f(z) \,\mu_k^2 \right]^2 \,P(k;z) \qquad \qquad \mu_k = \frac{\kappa_{||}}{k}$$

The **Fisher matrix** for the N clustering strengths (power spectra) is:

$$F_{\alpha\beta} = F(\log \mathcal{P}_{\alpha}, \log \mathcal{P}_{\beta}) = \frac{1}{4} \left[\delta_{\alpha\beta} \frac{\mathcal{P}_{\alpha} \mathcal{P}}{1 + \mathcal{P}} + \frac{\mathcal{P}_{\alpha} \mathcal{P}_{\beta} (1 - \mathcal{P})}{(1 + \mathcal{P})^2} \right] \quad , \quad \mathcal{P} = \sum_{\alpha} \mathcal{P}_{\alpha}$$

Multi-tracer Fisher information

$$F[\log \mathcal{P}_{\alpha}, \log \mathcal{P}_{\beta}] = \frac{1}{4} \left[\frac{\mathcal{P}_{\alpha} \mathcal{P}_{\beta} (1 - \mathcal{P})}{(1 + \mathcal{P})^2} + \delta_{\alpha\beta} \frac{\mathcal{P}_{\alpha} \mathcal{P}}{1 + \mathcal{P}} \right]$$

1 tracer
$$F = \frac{1}{2} \left(\frac{\mathcal{P}}{1 + \mathcal{P}} \right)^2$$

$$2 \operatorname{tracers} \implies \frac{1}{4} \begin{pmatrix} \frac{\mathcal{P}_{1}^{2}(1-\mathcal{P})}{(1+\mathcal{P})^{2}} + \frac{\mathcal{P}_{1}\mathcal{P}}{1+\mathcal{P}} & \frac{\mathcal{P}_{1}\mathcal{P}_{2}(1-\mathcal{P})}{(1+\mathcal{P})^{2}} \\ \\ \frac{\mathcal{P}_{1}\mathcal{P}_{2}(1-\mathcal{P})}{(1+\mathcal{P})^{2}} & \frac{\mathcal{P}_{2}^{2}(1-\mathcal{P})}{(1+\mathcal{P})^{2}} + \frac{\mathcal{P}_{2}\mathcal{P}}{1+\mathcal{P}} \end{pmatrix}$$

$$3 \text{ tracers} \implies \frac{1}{4} \begin{pmatrix} \frac{\mathcal{P}_{1}^{2}(1-\mathcal{P})}{(1+\mathcal{P})^{2}} + \frac{\mathcal{P}_{1}\mathcal{P}}{1+\mathcal{P}} & \frac{\mathcal{P}_{1}\mathcal{P}_{2}(1-\mathcal{P})}{(1+\mathcal{P})^{2}} & \frac{\mathcal{P}_{1}\mathcal{P}_{3}(1-\mathcal{P})}{(1+\mathcal{P})^{2}} \\ \frac{\mathcal{P}_{1}\mathcal{P}_{2}(1-\mathcal{P})}{(1+\mathcal{P})^{2}} & \frac{\mathcal{P}_{2}^{2}(1-\mathcal{P})}{(1+\mathcal{P})^{2}} + \frac{\mathcal{P}_{2}\mathcal{P}}{1+\mathcal{P}} & \frac{\mathcal{P}_{2}\mathcal{P}_{3}(1-\mathcal{P})}{(1+\mathcal{P})^{2}} \\ \frac{\mathcal{P}_{1}\mathcal{P}_{3}(1-\mathcal{P})}{(1+\mathcal{P})^{2}} & \frac{\mathcal{P}_{2}\mathcal{P}_{3}(1-\mathcal{P})}{(1+\mathcal{P})^{2}} & \frac{\mathcal{P}_{3}^{2}(1-\mathcal{P})}{(1+\mathcal{P})^{2}} + \frac{\mathcal{P}_{3}\mathcal{P}}{1+\mathcal{P}} \end{pmatrix} \end{pmatrix}$$

OK... but are we in fact **gaining** any information by **splitting galaxies** into **types**, or are we just "shuffling around" the information?

<u>Multi-tracer technique:</u> Seljak 2008 McDonald & Seljak 2008 Gil-Marín et al. 2011 Hamaus et al. 2011,2012 Cai & Bernstein 2011

Fisher matrix:

R.A. 2012 R.A. & K. Leonard 2013

Multi-tracer Fisher information

Yes, we gain information

> In fact, with **multiple tracers** the Fisher information is **unbounded**!

We can **diagonalize** the multi-tracer Fisher matrix by changing variables:

⇒ (hyper) **spherical coordinates**!

$$\left\{ \begin{array}{c} \mathcal{P}_{1} \\ \mathcal{P}_{2} \\ \mathcal{P}_{3} \end{array} \right\} = \left\{ \begin{array}{c} x^{2} \\ y^{2} \\ z^{2} \end{array} \right\} \quad \iff \quad \left\{ \begin{array}{c} r^{2} \\ \tan^{2} \theta \\ \tan^{2} \phi \end{array} \right\} = \left\{ \begin{array}{c} \mathcal{P} & \mathbf{Total} \\ \mathbf{Clustering strength} \\ \mathbf{P}_{3} & \mathbf{P}_{1} + \mathcal{P}_{2} \\ \mathbf{P}_{3} & \mathbf{Relative} \\ \mathbf{Clustering} \\ \mathbf{T}_{1} + \mathcal{P}_{2} \\ \mathbf{P}_{1} & \mathbf{Strengths} \end{array} \right\}$$

Multi-tracer Fisher information matrix

In "spherical" coordinates (i.e., using the total clustering strength and the relative clustering strengths) the **Fisher matrix becomes diagonal**!

E.g.: three species of tracers

Why?

Cosmic variance is only inherited through the spectrum

By **comparing** the clustering between **different tracers** of large-scale structure (e.g.: LRGs, ELGs, etc.), we can **measure with arbitrary accuracy*** the physical parameters that distinguish the different **clustering strengths**:

$$\mathcal{P}_1 = n_1 (b_1 + f \,\mu_k^2)^2 \, P(k;z)$$
$$\mathcal{P}_2 = n_2 (b_2 + f \,\mu_k^2)^2 \, P(k;z)$$

$$\frac{\mathcal{P}_1}{\mathcal{P}_2} = \frac{n_1 \, (b_1 + f \, \mu_k^2)^2}{n_2 \, (b_2 + f \, \mu_k^2)^2}$$

Cosmic variance does **not** apply: ***bias *RSDs *PNGs *HOD**

The key: **high number densities** of distinct types of tracers (red galaxies, blue galaxies, emission-line galaxies, quasars, etc.)

Simplest example: <u>two</u> types of tracers of large-scale structure

Total clustering

$$\mathcal{F}_{\mathcal{P}} = \frac{\mathcal{P}^2}{\sigma^2(\mathcal{P})} = \frac{1}{2} \frac{\mathcal{P}^2}{(1+\mathcal{P})^2}$$

Relative clustering

$$\mathcal{F}_{\mathcal{R}} = \frac{(\mathcal{P}_2/\mathcal{P}_1)^2}{\sigma^2(\mathcal{P}_2/\mathcal{P}_1)} = \frac{1}{4} \frac{\mathcal{P}_1 \mathcal{P}_2}{1+\mathcal{P}_1}$$

Where the hell are we going to get all those galaxies — with decent redshifts??

Estudios de Física del Cosmos

Isiudios de Tsieg del Cosmos

WFC@INT

J-PAS

survey starts in **Q1 2017 !**

Benítez et al., 1403.5237 Benítez et al. 2016 (to appear)

2017	2018	2019	2020	2021	2022	2023
J-PAS	J-PAS	J-PAS	J-PAS ¹	J-PAS	J-PAS ²	
		DESI (?)	DESI	DESI	DESI	
			Euclid	Euclid	Euclid	Euclid

Massive & deep multi-tracer survey with J-PAS

* GAMA - Blake et al., MNRAS 2013 : $P_1 > 10$ for z<0.25

* Radio galaxies & SKA - Ferramacho et al. 2014, Camera et al. 2015, ...

* 21cm intensity mapping - Bull, Ferreira, Patel & Santos 2015

* SKA + optical surveys - Fonseca, Camera, Santos & Maartens 2015 * DESI, Euclid...

R.A. & Leonard 2013 Benítez et al. 2014

Application: RSDs in J-PAS

Marginalized^{*} errors on matter growth rate

PAS

* Marginalized 7 "global" cosmological parameters (Ω_m , h, etc.) + 5 parameters on each redshift slice

J-PAS constraints on local non-Gaussianity parameter *f*_{NL}

$$\mathcal{P}_g = n_g (b_g + f \,\mu_k^2)^2 P(k; z)$$
$$b_g \to b_g + \Delta b_g(f_{NL}, k)$$
$$F(\theta) = \frac{1}{\sigma_c^2(\theta)}$$

Ζ

R.A. & Leonard 2013

Benítez et al. 2014

PAS

TH: CONTROL

Information from relative clustering can improve constraints on *f*_{NL} by ~5 at low-z! R.A. & Leonard 2013 Benítez et al. 2014

> $f_{\rm NL}$ is almost unaffected by marginalization w.r.t. bias The k-dependence of $\Delta b_{\rm NL} \sim f_{\rm NL} \ge k^{-2}$ helps break the degeneracy

Cumulative uncertainty on *f*_{NL} when the redshift slices are combined

WARNING: this is *Fisherology* – not robust w.r.t. *systematics*

How to do it in practice

Lucas ⇔ UPenn

Arthur \Rightarrow UCL

From catalogs to the power spectrum

Fourier analysis of galaxy surveys

Given a **galaxy catalog** *n_g*(*x*), the **optimal estimator** for the spectrum (FKP) is:

$$\frac{\delta n_g(x)}{\bar{n}_g} = \delta_g(x) \longrightarrow f_g(x) = w_{_{FKP}}(x) \,\delta_g(x)$$

The FKP weights express the best compromise between cosmic variance and shot noise:

$$w_{_{FKP}} = \frac{1}{1 + \mathcal{P}_g} \,\bar{n}_g \,B_g \qquad \qquad B_g = b_g(z) + f(z)\mu_k^2 + \dots$$

The **estimated spectrum** for a Fourier bin *k*_{*i*} (the *bandpower*) is then:

$$\hat{P}_g(k_i) = \frac{1}{N} \langle |\tilde{f}_g|^2 \rangle_{k_i} \qquad \qquad \tilde{f}_g(\mathbf{k}) = \mathrm{FFt}[f_g(\mathbf{x})]$$

The FKP estimator is **optimal** — it is **unbiased**, and it saturates the **Cramér-Rao bound**:

$$Cov[\hat{P}_g(k_i), \hat{P}_g(k_j)] \to [\text{Fisher}]^{-1}$$

Fourier analysis of multi-tracer surveys

Given any number of galaxy catalogs $n_{\mu}(x)$, the weighted fields are:

$$\delta_{\mu}(x) \longrightarrow f_{\mu}(x) = \sum_{\nu} w_{\mu\nu} \,\delta_{\nu}(x)$$

The multi-tracer weights are:

$$w_{\mu\nu} = \left[\delta_{\mu\nu} - \frac{\mathcal{P}_{\mu}}{1+\mathcal{P}}\right] \bar{n}_{\nu}B_{\nu}$$

The estimated auto-spectra are:

$$\hat{P}_{\mu}(k_i) = \sum_{\nu} N_{\mu\nu}^{-1} \langle |\tilde{f}_{\nu}|^2 \rangle_{k_i}$$

These estimators are **optimal**: their **covariance** is the **inverse of the Fisher matrix**!

$$Cov[\hat{P}_{\mu}, \hat{P}_{\nu}] = [F_{\mu\nu}]^{-1}$$

Testing and validating the multi-tracer estimators

Case	$\bar{n}_1 (h^3 \text{ Mpc}^{-3})$	b_1	$\bar{n}_2 (h^3 { m Mpc}^{-3})$	b_2
A	1.10^{-2}	1.0	1.10^{-2}	1.2
В	1.10^{-2}	1.0	1.10^{-5}	1.2
С	1.10^{-5}	1.0	1.10^{-5}	1.2

* Volume = $(1280 h^{-1} \text{ Mpc})^3 = (128 \times 10 h^{-1} \text{ Mpc})^3$

* 10³ lognormal realizations

* Planck-vanilla fiducial parameters

✓ Unbiased

o tracer 1 (FKP) □ tracer 2 (FKP) • tracer 1 (multi-tracer) tracer 2 (multi-tracer) 10^{-1} 10⁻¹ Case A $|\sigma_{12}/P_1P_2|$ $\left(\frac{\sigma(P_1/P_2)}{P_1/P_2}\right)^2$ 10⁻² 10^{-2} 10^{-3} 10^{-3} $\sigma_1^2 \ /P_1^2$ ••• σ_2^2 / P_2^2 10^{-4} 10^{-4} Case A 10⁻⁵ 10^{-5} 10^{0} 10° Case B 10^{-1} 10 10^{-2} 10^{-2} 10^{-3} 10^{-3} --- Theory (FKP) 10 – Theory (multi-tracer) Unbiased B \checkmark 10^{-5} Optimal Case C 10^{0} 10 10^{-1} 10^{-1} 10^{-2} 10⁻³ Case C 0.01 10 0.2 0.01 0.05 0.1 0.05 0.1 0.2 $k \; [\mathsf{Mpc}^{-1} h]$ $k \left[\mathsf{Mpc}^{-1}h \right]$

Testing and validating the multi-tracer estimators

Framework to combine data from all surveys to fully exploit the science: DE, MoG, inflation, ...

- Emission line galaxies
- ► LRGs
- Ly-breaks
- Ly- α forest

- Quasars/AGNs
 HI intensity maps
 Sub-mm galaxies
 Galaxies ---> halos
- ...

The End