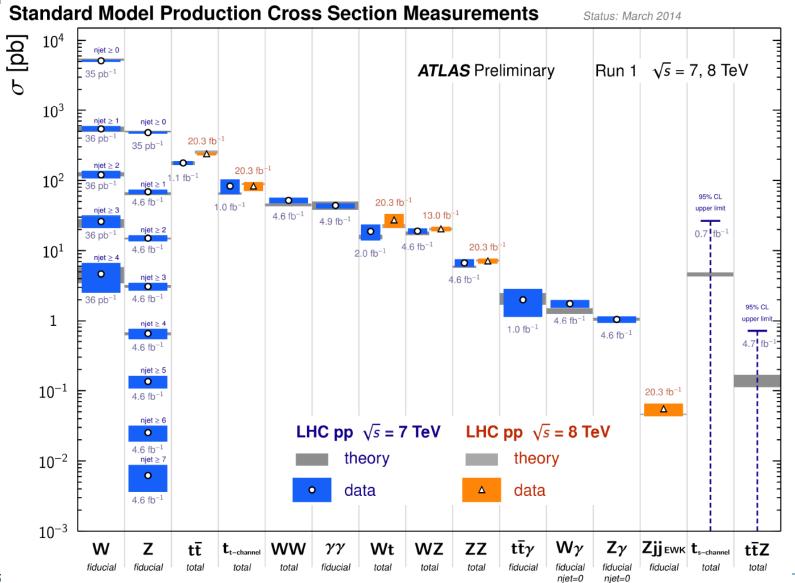


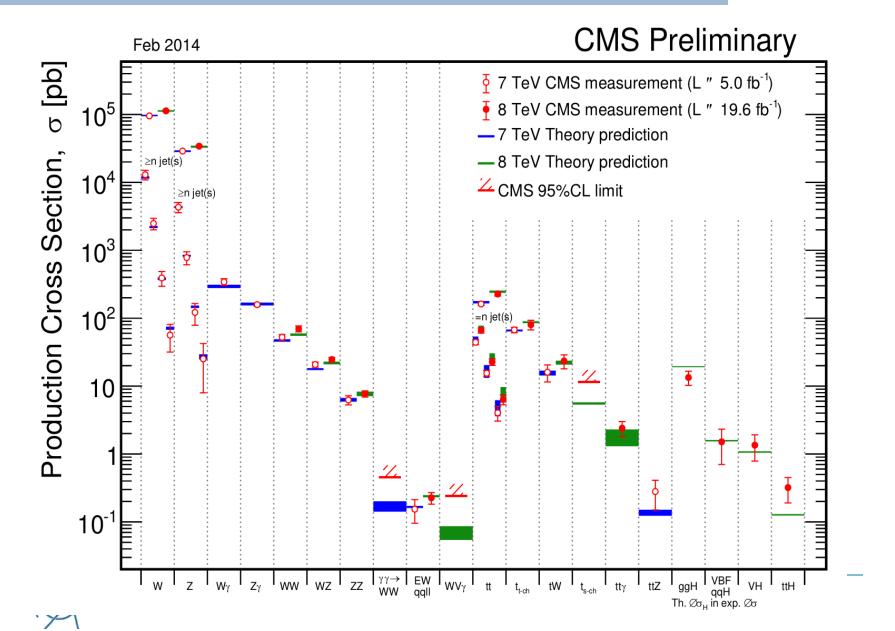
CERN Status and Future Plans

Arcetri, May 17th 2016 Sergio Bertolucci INFN



After LHC Run 1 (2010-2012):

- We have consolidated the Standard Model (a wealth of measurements at 7-8 TeV, including the rare, and very sensitive to New Physics, $B_s \rightarrow \mu\mu$ decay)
- We have completed the Standard Model: discovery of the messenger of the BEH-field, the Higgs boson discovery
- We have found interesting properties of the hot dense matter
- We have NO evidence of New Physics, although tantalizing hints have survived scrutiny

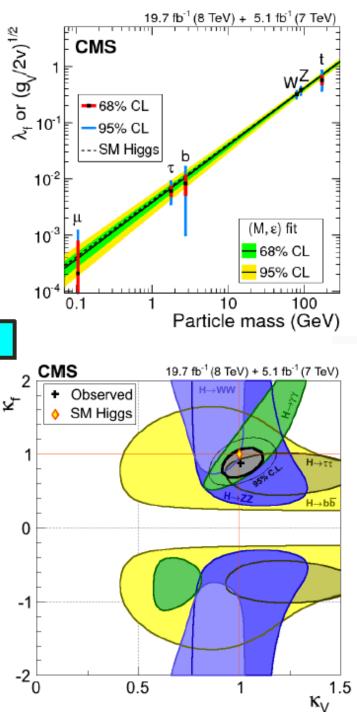


SM@LHC

SM@LHC

HIG-14-009

Higgs Combination

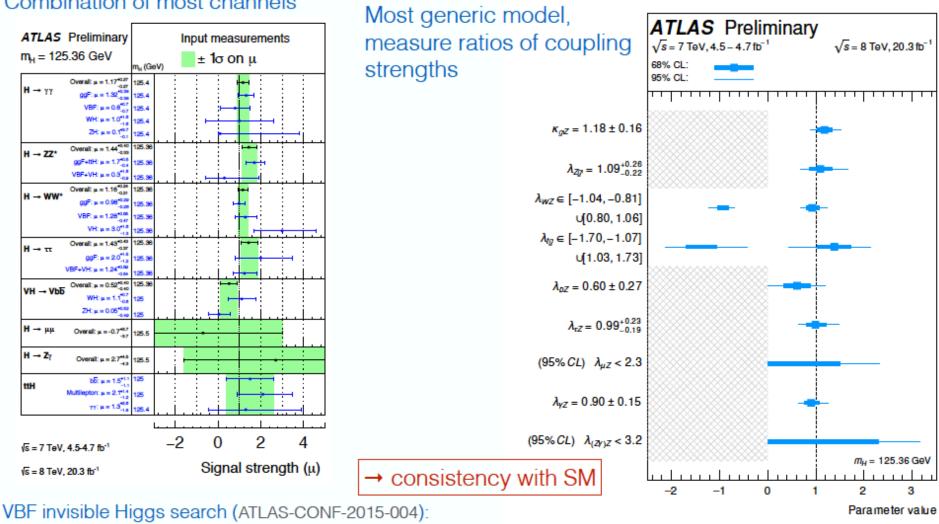

- Five main decay channels all published
- Combination submitted Dec 30
- All results consistent with SM Higgs

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig14009PaperTwiki

 $m_{\rm H} = 125.02 \stackrel{+0.26}{_{-0.27}}$ (stat.) $\stackrel{+0.14}{_{-0.15}}$ (syst.) GeV

 $\mu = 1.00^{+0.14}_{-0.13} [\pm 0.09 \text{ (stat.)} ^{+0.08}_{-0.07} \text{ (theo.)} \pm 0.07 \text{ (syst.)}]$

Channel	Obs (တ)	Exp (σ)
$H \rightarrow ZZ$	6.5	6.3
$H \rightarrow \gamma \gamma$	5.6	5.3
$H \rightarrow WW$	4.7	5.4
$H\to\tau\tau$	3.8	3.9
$H \rightarrow bb$	2.0	2.6
$H \rightarrow \mu\mu$	< 0.1	0.4



_____n!

Higgs production, rates, couplings

ATLAS-CONF-2015-007

Measurement of coupling strengths in a variety of models, with varying levels of model dependence (assumptions)

Combination of most channels

BR(H→invis.) < 29% (obs.) and < 35% (exp.) at 95% CL. T. Eifert - ATLAS Status Report - 122nd LHCC meeting - 3rd June 2015

ATLAS+CMS Higgs mass combination

... and the ATLAS+CMS combined Higgs boson mass is: $m_H = 125.09 \pm 0.24 \,\, {\rm GeV}$ (0.19% precision!) $= 125.09 \pm 0.21$ (stat.) ± 0.11 (syst.) GeV ATLAS and CMS preliminary -Syst. — Total -Stat. LHC Run 1 Stat. Syst. Total ATLAS $H \rightarrow \gamma \gamma$ 126.02 \pm 0.51 (\pm 0.43 \pm 0.27) GeV 124.70 ± 0.34 (± 0.31 ± 0.15) GeV CMS $H \rightarrow \gamma \gamma$ ATLAS $H \rightarrow ZZ \rightarrow 1111$ 124.51 ± 0.52 (± 0.52 ± 0.04) GeV **CMS** $H \rightarrow ZZ \rightarrow IIII$ 125.59 ± 0.45 (± 0.42 ± 0.17) GeV ATLAS+CMS YY 125.07 ± 0.29 ($\pm 0.25 \pm 0.14$) GeV ATLAS+CMS 1111 125.15 ± 0.40 ($\pm 0.37 \pm 0.15$) GeV ATLAS+CMS $\gamma\gamma$ +1111 125.09 ± 0.24 ($\pm 0.21 \pm 0.11$) GeV 123 124 125 126 127 128 129 *т*_н [GeV]

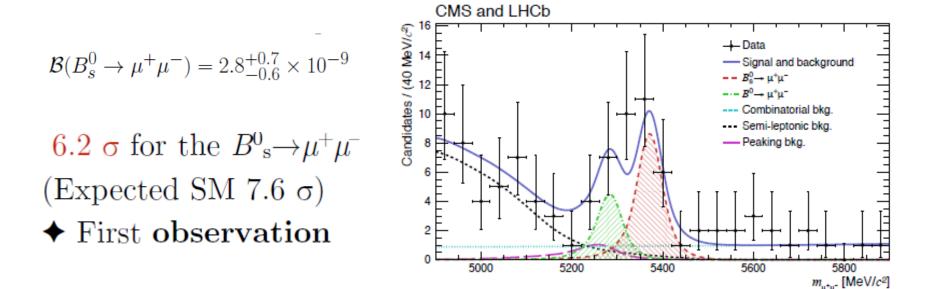
Run-1 SUSY program completing

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary C 7 0 ToV

SI	Status: Feb 2015 $\sqrt{s} = 7, 8 \text{ TeV}$						
	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	1 Mass limit	Reference
Inclusive Searches	$ \begin{array}{c} \text{MSUGRAVCMSSM} \\ \overline{q} \overline{q}, \overline{q} \rightarrow q \overline{t}_{1}^{0} \\ \overline{q} \overline{q} \gamma, \overline{q} \rightarrow q \overline{t}_{1}^{0} \\ (\text{compressed}) \\ \overline{z} \overline{s}, \overline{s} \rightarrow q \overline{s} \overline{t}_{1}^{0} \\ \overline{z} \overline{s}, \overline{s} \rightarrow q \overline{s} \overline{t}_{1}^{0} \\ \overline{z} \overline{s}, \overline{s} \rightarrow q \overline{q} \overline{t}_{1}^{0} \\ \overline{z} \overline{s}, \overline{s} \rightarrow q \overline{q} \overline{t}_{1}^{0} \\ \overline{z} \overline{s}, \overline{s} \rightarrow q \overline{q} \overline{t}_{1}^{0} \\ \overline{q} \overline{s} \overline{s}, \overline{s} \rightarrow q \overline{q} \overline{t}_{1}^{0} \\ \overline{q} \overline{s} \overline{s}, \overline{s} \rightarrow q \overline{q} \overline{t}_{1}^{0} \\ \overline{q} \overline{s} \overline{s}, \overline{s} \rightarrow q \overline{q} \overline{t}_{1}^{0} \\ \overline{q} \overline{s} \overline{s}, \overline{s} \rightarrow q \overline{q} \overline{t}_{1}^{0} \\ \overline{s} \overline{s}, \overline{s} \rightarrow q \overline{q} \overline{t}_{1}^{0} \\ \overline{s} \overline{s}, \overline{s} \rightarrow q \overline{s} \overline{s} \overline{s} \overline{s} \overline{s} \overline{s} \overline{s} \overline{s}$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ \gamma \\ 0 \\ 1 \\ e, \mu \\ 2 \\ e, \mu \\ 1 \\ 2 \\ r \\ + 0 \\ 1 \\ e, \mu + \gamma \\ \gamma \\ 2 \\ e, \mu (Z) \\ 0 \end{array}$	1 b 0-3 jets mono-jet		20.3 20.3 20.3 20 20 20.3 20.3 4.8 4.8 5.8 20.3	Ř. ř. 1.7 TeV m(ij) = m(ij) 0 850 GeV m(ij) = m(ij) 7 250 GeV m(ij) = m(ij) 8 1.33 TeV m(ij) = m(ij) 8 1.33 TeV m(ij) = m(ij) 8 1.2 TeV m(ij) = 0 GeV, m(1 ^m gos, 0) = m(2 ^m gos, 0) 8 1.2 TeV m(ij) = 0.06V, m(1 ^m gos, 0) = 0.5(m(ij)) + =m(g)) 8 1.23 TeV m(ij) = 0.06V 8 1.28 TeV m(ij) = 0.06V 8 0.0 GeV m(ij) = 0.06V 8 0.0 GeV m(ij) = 0.06V 8 0.0 GeV m(ij) = 0.06V 8 619 GeV m(ij) = 0.06V 8 619 GeV m(ij) = 0.06V 8 690 GeV m(ij) = 0.06V 8 690 GeV m(ij) = 0.06V 8 690 GeV m(ij) = 0.15 TeV	1405.7875 1405.7875 1411.1559 🔅 1405.7875 1501.03555 💮 1407.0603 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 1502.01518 🔅
3 rd gen. 2 med.	$\vec{s} \rightarrow \delta \bar{\delta} \vec{x}_{1}^{0}$ $\vec{s} \rightarrow \delta \bar{x}_{2}^{0}$ $\vec{s} \rightarrow \delta \bar{x}_{1}^{0}$ $\vec{s} \rightarrow \delta \bar{x}_{1}^{0}$	0 0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	k 1.25 TeV m[t ₁ ²]<400 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} & \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to b \tilde{t}_1^0 \\ & \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \to \delta \tilde{t}_1^1 \\ & \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \to \delta \tilde{t}_1^1 \\ & \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \to \delta \tilde{t}_1^0 \\ & \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \to \delta \tilde{t}_1^0 \\ & \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \to \delta \tilde{t}_1^0 \\ & \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \to \delta \tilde{t}_1^0 \\ & \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \to \delta \tilde{t}_1^0 \\ & \tilde{t}_1 \tilde{t}_1 (\operatorname{notined} GMSB) \\ & \tilde{t}_2 \tilde{t}_2, \ \tilde{t}_2 \to \tilde{t}_1 + Z \end{split} $	0 2 e, µ (SS) 1-2 e, µ 0-1 e, µ 0 m 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets 1-2 b tono-jet/c- 1 b 1 b	Yes Yes Yes Yes Yes tag Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.3 20.3 20.3	b_1 100-620 GeV $m[\tilde{r}_1^0] + 30 \text{ GeV}$ b_1 275-440 GeV $m[\tilde{r}_1^0] + 30 \text{ GeV}$ \tilde{r}_1 230-460 GeV $m[\tilde{r}_1^0] + 30 \text{ GeV}$ \tilde{r}_1 30-191 GeV $m[\tilde{r}_1^0] + 35 \text{ GeV}$ \tilde{r}_1 30-191 GeV $m[\tilde{r}_1^0] + 16 \text{ eV}$ \tilde{r}_1 210-640 GeV $m[\tilde{r}_1^0] + 16 \text{ eV}$ \tilde{r}_1 30-240 GeV $m[\tilde{r}_1^0] + 35 \text{ GeV}$ \tilde{r}_1 30-240 GeV $m[\tilde{r}_1^0] + 35 \text{ GeV}$ \tilde{r}_1 30-240 GeV $m[\tilde{r}_1^0] + 35 \text{ GeV}$ \tilde{r}_2 290-600 GeV $m[\tilde{r}_1^0] < 200 \text{ GeV}$	1308.2631 1404.2500 1209.2102, 1407.0563 1403.4853, 1412.4742 1407.0683, 1402.122 1407.0608 1403.5222 1403.5222
EW direct	$\begin{array}{l} \tilde{t}_{1,\mathbf{R}}\tilde{t}_{1,\mathbf{R}}, \tilde{t} \rightarrow \delta\tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{\dagger}\tilde{x}_{1}^{-}, \tilde{x}_{1}^{\dagger} \rightarrow \tilde{t}\nu(\ell\tilde{\nu}) \\ \tilde{x}_{1}^{\dagger}\tilde{x}_{1}^{-}, \tilde{x}_{1}^{\dagger} \rightarrow \tilde{t}\nu(\ell\tilde{\nu}) \\ \tilde{x}_{1}^{\dagger}\tilde{x}_{2}^{0} \rightarrow \tilde{w}\tilde{x}_{1}^{0}\ell\tilde{x}_{1}^{0}, \tilde{w}\tilde{v}_{1}^{0}\ell\tilde{v}), \tilde{v}\tilde{b}_{L}(\ell\tilde{\nu}\nu) \\ \tilde{x}_{1}^{\dagger}\tilde{x}_{2}^{0} \rightarrow \tilde{w}\tilde{x}_{1}^{0}\tilde{x}_{2}^{0} \rightarrow \tilde{w}\tilde{v}_{1}^{0}\tilde{x}_{1}^{0}, h \rightarrow \delta\tilde{b}/WW/\tau\tau/\\ \tilde{x}_{1}^{\dagger}\tilde{x}_{2}^{0} \rightarrow \tilde{w}\tilde{x}_{1}^{0}\tilde{x}_{2}^{0} \rightarrow \tilde{w}\tilde{x}_{1}^{0}\tilde{x}_{1}^{0}, h \rightarrow \delta\tilde{b}/WW/\tau\tau/\\ \tilde{x}_{2}^{\dagger}\tilde{x}_{2}^{0}, \tilde{x}_{2}^{0} \rightarrow \tilde{s}_{R}\ell \end{array}$	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ γγ e,μ,γ 4 e,μ	0 - 0-2 jets 0-2 <i>b</i> 0	Yas Yas Yas Yas Yas Yas	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294,1402.7029 1501.07110 ∰ 1405.5086
Long-lived particles	Direct $\tilde{k}_{1}^{+}\tilde{k}_{1}^{-}$ prod., long-lived \tilde{k}_{1}^{+} Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{r}, \tilde{k}_{1}^{0} \rightarrow \tilde{r}(\tilde{e}, \tilde{\mu}) + \tau(e,$ GMSB, $\tilde{k}_{1}^{0} \rightarrow \gamma G$, long-lived \tilde{k}_{1}^{0} $\tilde{q}\tilde{q}, \tilde{k}_{1}^{0} \rightarrow q_{0\mu}$ (RPV)	0 trk	1 jet 1-5 jets - - -	Yes Yes Yes	20.3 27.9 19.1 19.1 20.3 20.3	x̂² 270 GeV m(x̂₁²)-m(x̂₁²)=160 MeV, r(x̂₁²)=0.2 ns x̂ 832 GeV m(x̂₁²)-m(x̂₁²)=0.2 ns x̂ 1.27 TeV x̂² 537 GeV 10 x̂² 435 GeV 2 r(x̂₁²)=0.2 ns ŷ² 537 GeV 10 10 10 ŷ² 435 GeV 2 10 <th< th=""><th>1310.3675 1310.6584 1411.6795 D 1411.6795 D 1409.5542 ATLAS-CONF-2013-092</th></th<>	1310.3675 1310.6584 1411.6795 D 1411.6795 D 1409.5542 ATLAS-CONF-2013-092
BPV	$ \begin{array}{l} LFV\;\rho\rho\!\rightarrow\!\!\bar{v}_{\tau}+X,\bar{v}_{\tau}\!\rightarrow\!\!e\!+\mu\\ LFV\;\rho\rho\!\rightarrow\!\!\bar{v}_{\tau}+X,\bar{v}_{\tau}\!\rightarrow\!\!e\!(\mu)+\tau\\ Binear\;RPV\;CMSSM\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{+},\tilde{x}_{1}^{+}\!\rightarrow\!\!W\tilde{x}_{1}^{0},\tilde{x}_{1}^{0}\!\rightarrow\!e\!\bar{v}_{\rho},e_{t}\bar{v}_{\tau}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{-},\tilde{x}_{1}^{+}\!\rightarrow\!\!W\tilde{x}_{1}^{0},\tilde{x}_{1}^{-}\!\rightarrow\!e\!\bar{v}_{\rho}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{-},\tilde{x}_{1}^{+}\!\rightarrow\!\!W\tilde{x}_{1}^{0},\tilde{x}_{1}^{-}\!\rightarrow\!e\!\bar{v}_{\rho}\\ \tilde{x}\rightarrow\!\!q_{\theta}\\ \tilde{x}\rightarrow\!\!q_{\theta}\\ \tilde{x}\rightarrow\!\!q_{\theta}\\ \tilde{x}\rightarrow\!\!q_{\theta}\\ \tilde{x}=\!\!q_{\theta}\\ Scalar\;charm,\;\tilde{c}\!\rightarrow\!\!e\!\tilde{x}_{1}^{0}\\ \end{array}$	$2 e, \mu$ $1 e, \mu + \tau$ $2 e, \mu$ (SS) $4 e, \mu$ $3 e, \mu + \tau$ 0 $2 e, \mu$ (SS) 0	- - 3 b - - - - - - - - - - - - - - - - - - -	Yes Yes Yes Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3 20.3	P, 1.61 TeV J ₂₁₁ =0.10, J ₃₂₂ =0.05 P, 1.1 TeV J ₂₁₁ =0.10, J ₃₂₂ =0.05 P, 1.1 TeV J ₃₁₁ =0.10, J ₃₂₂ =0.05 P, 1.35 TeV m(i)t=0.10, J ₃₂₂₀ =0.05 P, 1.35 TeV m(i)t=0.10, J ₃₂₂₀ =0.05 R_1^2 750 GeV m(i)t=0.10, J ₃₂₂₀ =0.05 R_1^2 916 GeV m(i)t=0.10, J ₃₂₂₀ =0 R_2 916 GeV BR(i)t=BR(i)t=BR(i)t=BR(i)t=BR(i)t=0% R_2 490 GeV m(i)t=0.200 GeV	1212.1272 1212.1272 1404.2500 1405.5086 ATLAS-CONF-2013-091 1404.250
Othe	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8$ TeV artial data	$\sqrt{s} =$	8 TeV data) ⁻¹ 1 Mass scale [TeV]	


*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1\sigma theoretical signal cross section uncertainty.

CMS and LHCb $B^0_{s,d} \rightarrow \mu \mu$ combination

Fit to full run I data sets of both experiments, sharing parameters

Result demonstrates power of combing data from >1 experiment (an LHC first!)

projection of invariant mass in most sensitive bins

We have exhausted the number of "known unknowns" within the current paradigm.

Although the SM enjoys an enviable state of health, we know it is incomplete, because it cannot explain several outstanding questions, supported in most cases by experimental observations.

Looking for "unknown unknowns"

Needs a synergic use of:

- High-Energy colliders
- neutrino experiments (solar, short/long baseline, reactors, 0vββ decays),
- cosmic surveys (CMB, Supernovae, BAO, Dark E)
- gravitational waves
- dark matter direct and indirect detection
- precision measurements of rare decays and phenomena
- dedicated searches (WIMPS, axions, dark-sector particles)

From the Update of the European Strategy for Particle Physics

The success of the LHC is proof of the effectiveness of the European organizational model for particle physics, founded on the sustained long-term commitment of the CERN Member States and of the national institutes, laboratories and universities closely collaborating with CERN.

Europe should preserve this model in order to keep its leading role, sustaining the success of particle physics and the benefits it brings to the wider society.

The scale of the facilities required by particle physics is **resulting in the globalization of the field**. The European Strategy takes into account the worldwide particle physics landscape and developments in related fields and should continue to do so.

From the P5 report

Particle physics is global.

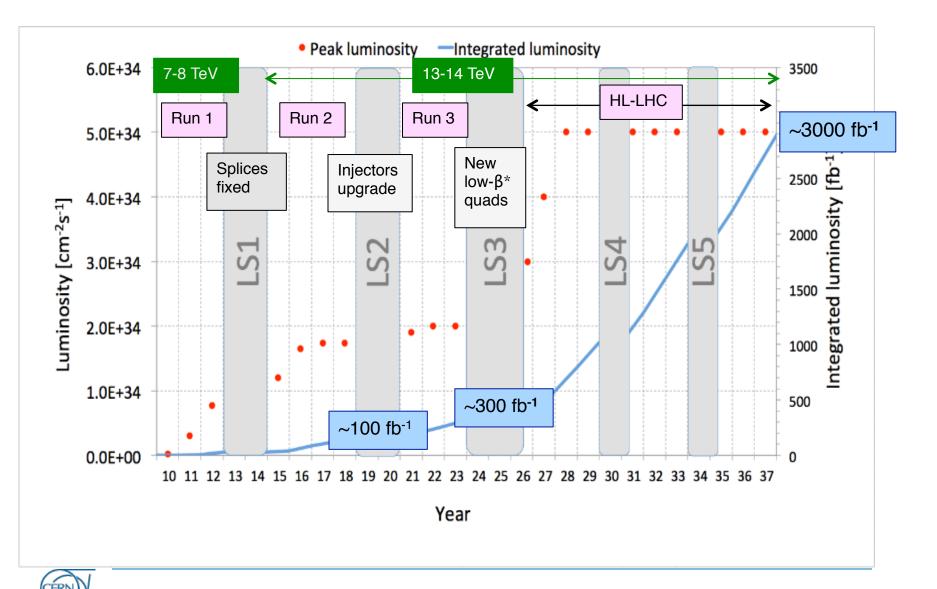
The United States and major players in other regions can together address the full breadth of the field's most urgent scientific questions **if each hosts a unique world-class facility at home and partners in highpriority facilities hosted elsewhere**.

Strong foundations of international cooperation exist, with the Large Hadron Collider (LHC) at CERN serving as an example of a successful large international science project.

Reliable partnerships are essential for the success of international projects. Building further international cooperation is an important theme of this report, and this perspective is finding worldwide resonance in an intensely competitive field.

From Japan HEP Community

The committee makes the following recommendations concerning large-scale projects, which comprise the core of future high energy physics research in Japan.


Should a new particle such as a Higgs boson with a mass below approximately 1 TeV be confirmed at LHC, **Japan should take the leadership role in an early realization of an e+e- linear collider**. In particular, if the particle is light, experiments at low collision energy should be started at the earliest possible time. In parallel, continuous studies on new physics should be pursued for both LHC and the upgraded LHC version. Should the energy scale of new particles/physics be higher, accelerator R&D should be strengthened in order to realize the necessary collision energy.

Should the neutrino mixing angle θ_{13} be confirmed as large, Japan should aim to realize a large-scale neutrino detector through international cooperation, accompanied by the necessary reinforcement of accelerator intensity, so allowing studies on CP symmetry through neutrino oscillations.

This new large-scale neutrino detector should have sufficient sensitivity to allow the search for proton decays, which would be direct evidence of Grand Unified Theories.

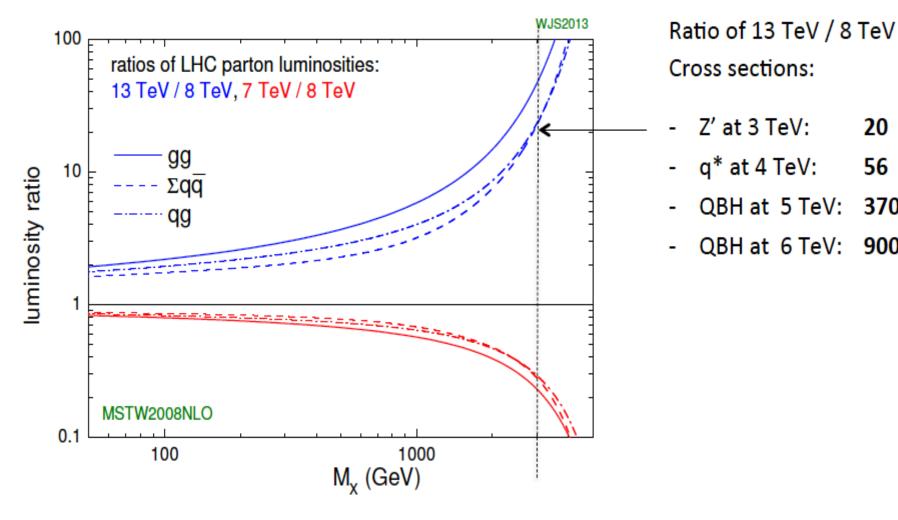
The LHC timeline

The question

- Is the mass scale beyond the LHC reach ?
- Is the mass scale within LHC's reach, but final states are elusive ?

We should be prepared to exploit both scenarios, through:

- Precision
- Sensitivity (to elusive signatures)
- Extended energy/mass reach



Extending the reach...

- Weak boson scattering
- Higgs properties
- Supersymmetry searches and measurements
- Exotics
- t properties
- Rare decays
- CPV
- ..etc

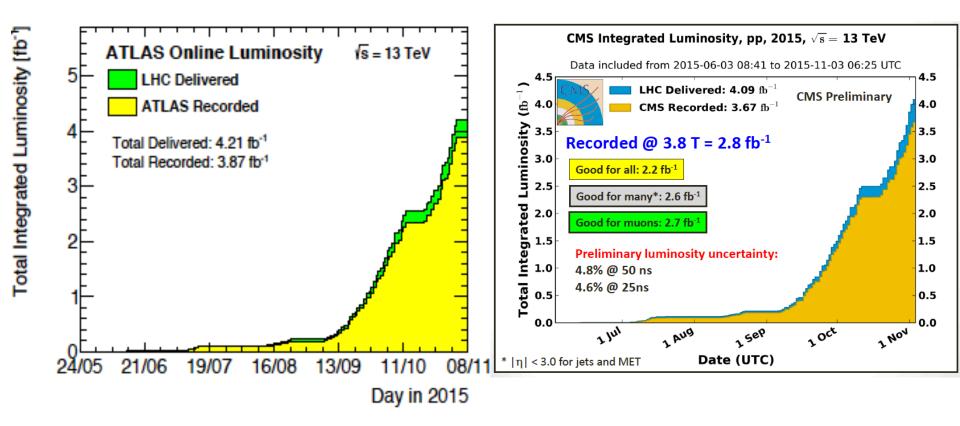
13 TeV vs 8 TeV

The main 2013-14 LHC consolidations

1695 Openings and final reclosures of the interconnections Complete reconstruction of 1500 of these splices Consolidation of the 10170 13kA splices, installing 27 000 shunts Installation of 5000 consolidated electrical insulation systems 300 000 electrical resistance measurements

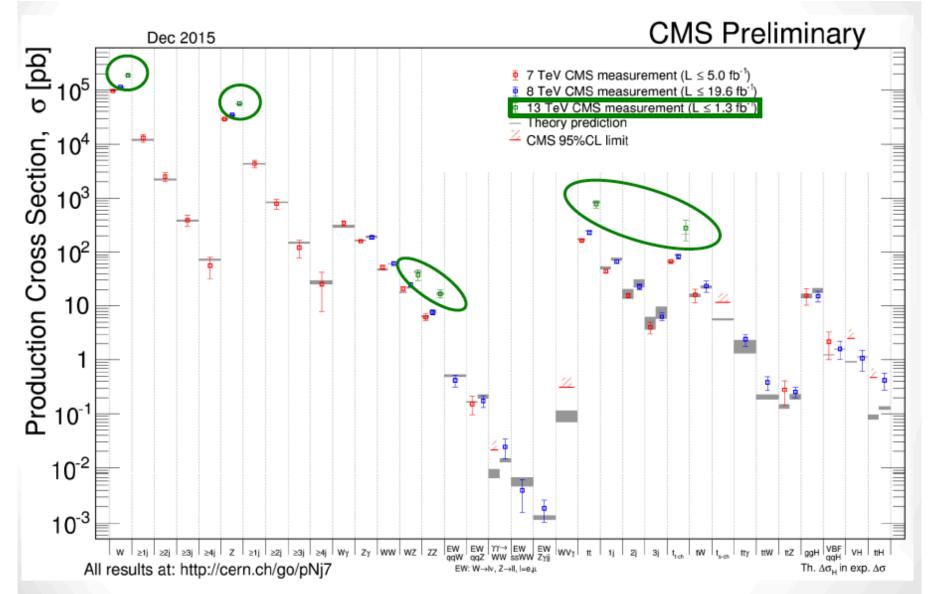
bring the total to 1344

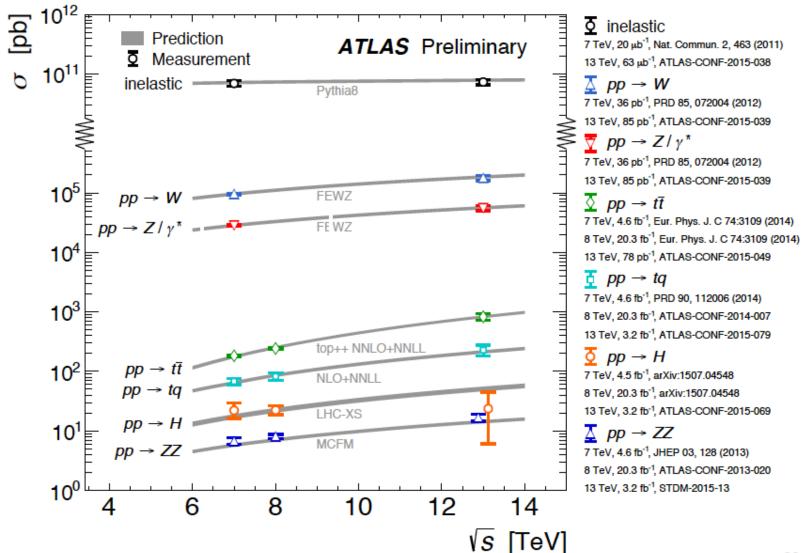
10170 orbital welding of stainless steel lines


main electrical feed-

boxes

CERN


Run2 @13 Tev in 2015


- Experiments in good shape (except for cryo problem with CMS solenoid)
- ~4 pb⁻¹ collected

SM Physics at 13 TeV

SM Physics at 13 TeV

The tantalizing diphotons: ATLAS

Search for a Two Photons Resonance (I)

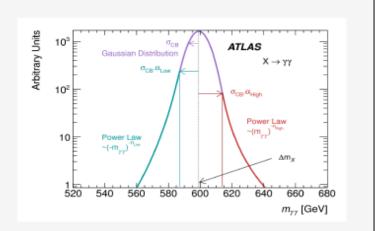
ATLAS-CONF-2015-081

Inclusive search for two photon resonance (optimized for a scalar resonance)

- Selection of two photons with pT/m thresholds of 0.3 and 0.4 and pT dependent calorimeter and track isolation criteria
- Typical prompt photon purity 90%

Background from a functional

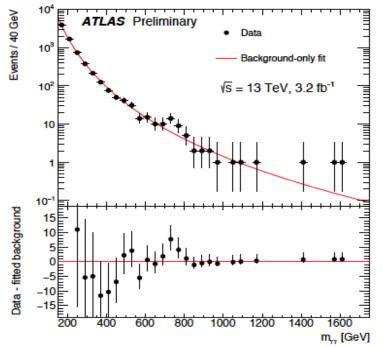
Similar to the dijet search but chosen using the Fisher F-test and the spurious signal method measured in events from Sherpa, Diphox and Jetphox:

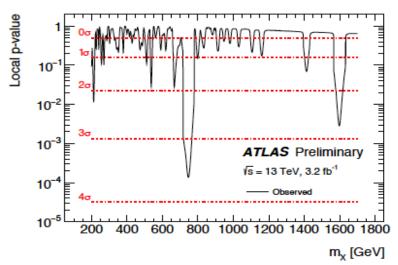

$$f_{bkg}(x; b, \{a_k\}) = (1 - x^{1/3})^b x^{\sum_{j=0}^{k} a_j \log(x)^j}$$

 $x = \frac{m_{\gamma\gamma}}{\sqrt{s}}$

Here a simple form with k=0 is used

Signal Model


- NWA: Use Double Sided Crystal Ball function
- LW: Use DSCB fitted from simulated samples with different widths with up to 25% of the resonance mass

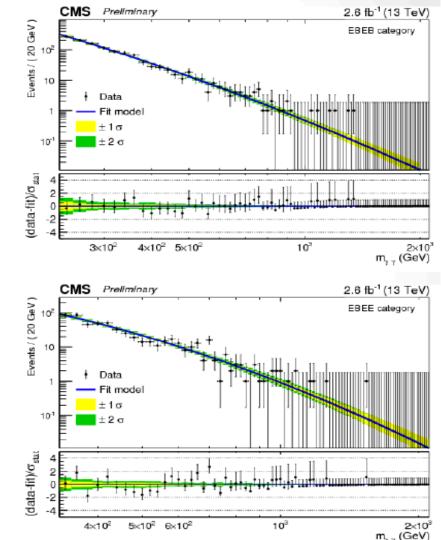

The tantalizing diphotons: ATLAS

Search for a Two Photons Resonance (II)

Results: Events with mass in excess of 200 GeV are included in **unbinned fit**

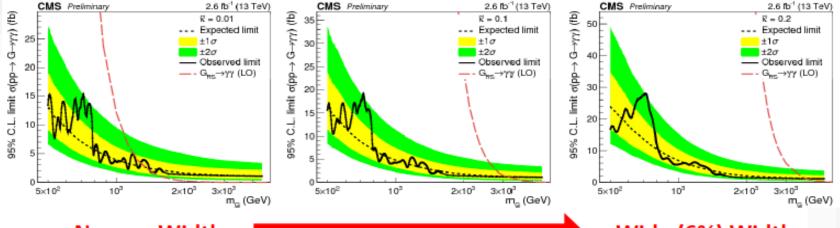
- In the NWA search, an excess of 3.6σ (local) is observed at a mass hypothesis of minimal p₀ of 750 GeV
- Taking a LEE in a mass range (fixed before unblinding) of 200 GeV to 2.0 TeV the global significance of the excess is 2.0 or

In the NWA fit the resolution uncertainty is profiled in the NWA fit and is pulled by 1.5σ

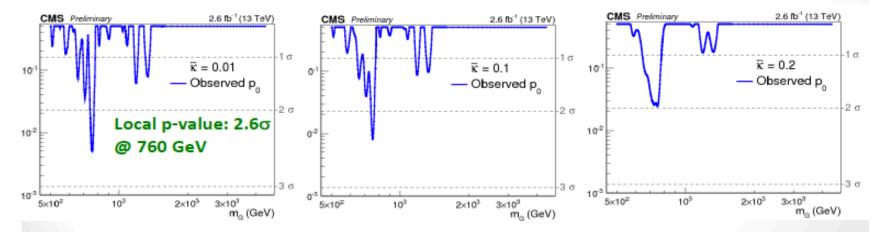

The data was then fit under a LW hypothesis yielding a width of approximately 45 GeV (Approx. 6% of the best fit mass of approximately 750 GeV)

- As expected the local significance increases to 3.9σ
- Taking into account a LEE in mass and width of up to 10% of the mass hypothesis of 2.3σ (Note: upper range in resolution fixed after unblinding)

...and CMS


Search for diphoton resonances

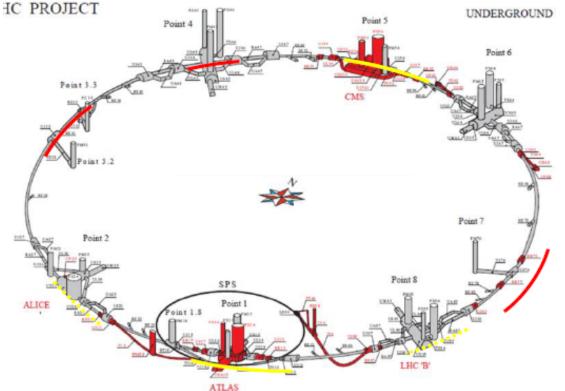
- Two categories: barrel-barrel (EBEB), barrel-endcap (EBEE)
- p_T(γ) > 75 GeV, I_{ch} < 5 GeV (in 0.3 cone around photon direction)
- Efficiency, scale and resolution calibrated on Z → ee and high-mass DY events
- Search for RS graviton with three assumptions on coupling: $\tilde{\kappa} = 0.01$ (narrow), 0.1, 0.2 (wide)
- Blind analysis, no changes have been made to the analysis since unblinding data in the signal region


...and CMS

Combined limits and p-values

Narrow Width

Wide (6%) Width



Including LEE (0.5 - 4.5 TeV; narrow width), global p-value < 1.20

Only time will tell...

The HL-LHC Project

 New IR-quads Nb₃Sn (inner triplets)

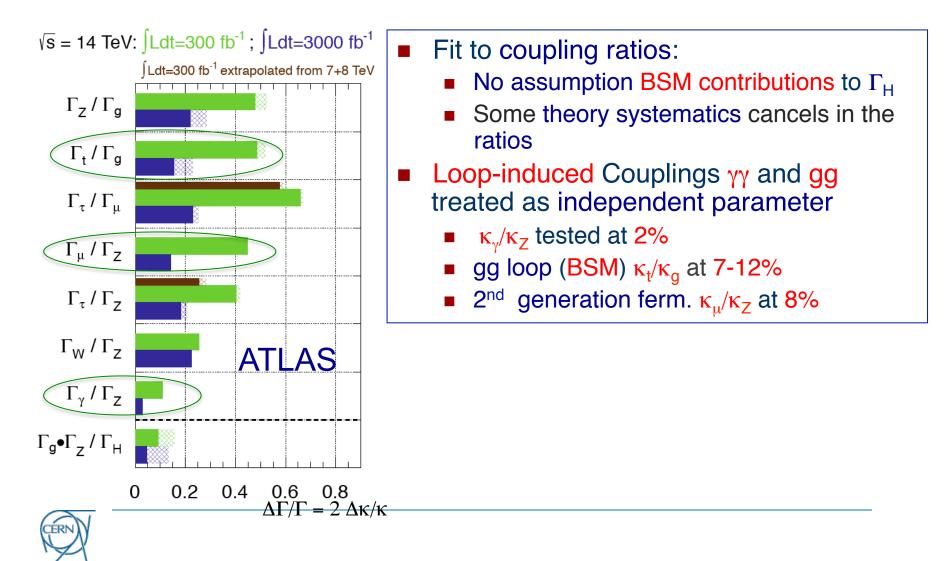
- New 11 T Nb₃Sn (short) dipoles
- Collimation upgrade
- Cryogenics upgrade
- Crab Cavities
- Cold powering
- Machine protection

Major intervention on more than 1.2 km of the LHC Project leadership: L. Rossi and O. Brüning

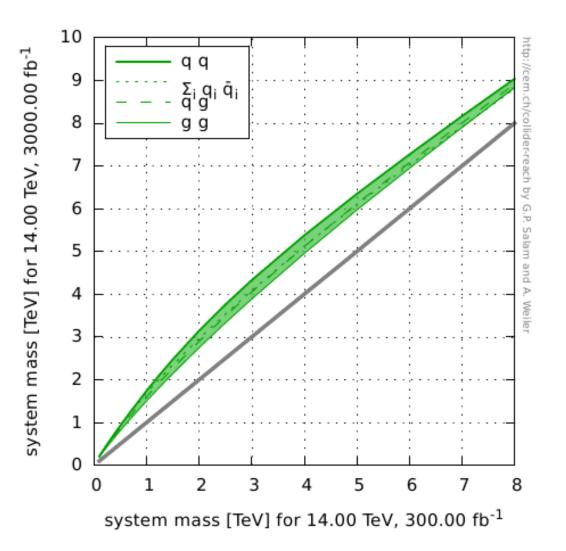
Higgs couplings fit at HL-LHC

		Uncertainty (%)						
Coupling		$300 {\rm ~fb^{-1}}$			3000 fb^{-1}			
		Scenario 1	Scenario 2	Sce	enario 1	Scenario	2	
CMS	κ_{γ}	6.5	5.1		5.4	1.5		
	κ_V	5.7	2.7		4.5	1.0		
	κ_g	11	5.7		7.5	2.7		
	κ_b	15	6.9		11	2.7		
	κ_t	14	8.7		8.0	3.9		
	$\kappa_{ au}$	8.5	5.1		5.4	2.0		

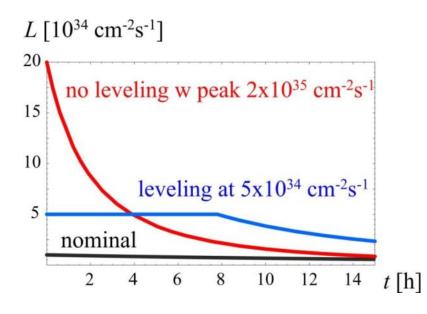
CMS Projection


Assumption NO invisible/undetectable contribution to Γ_{H} :

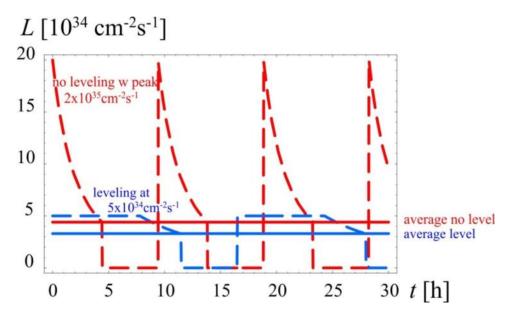
- Scenario 1: system./Theory err. unchanged w.r.t. current analysis


- Scenario 2: systematics scaled by 1/sqrt(L), theory errors scaled by $\frac{1}{2}$
- ✓ γγ loop at 2-5% level
- ✓ down-type fermion couplings at 2-10% level
- ✓ direct top coupling at 4-8% level
- ✓ gg loop at 3-8% level

Coupling Ratios Fit at HL-LHC



Extending the reach....



Luminosity Levelling, a key to success

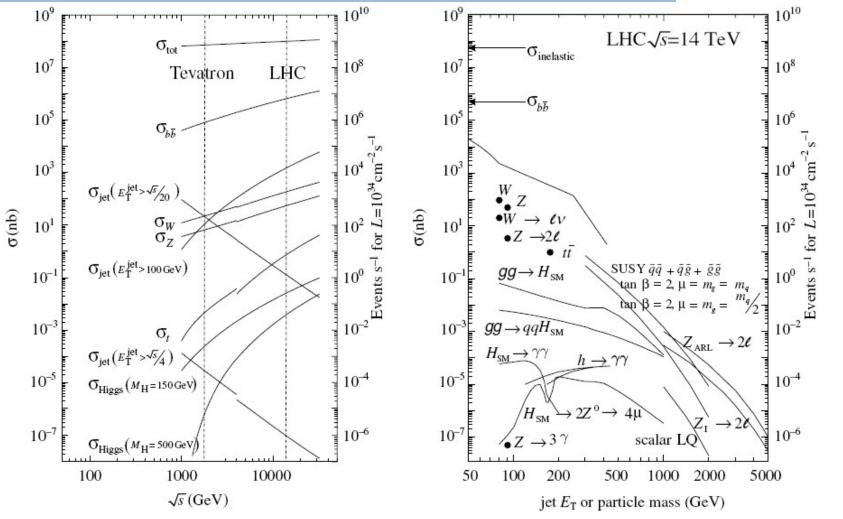
- Obtain about 3 4 fb⁻¹/day (40% stable beams)
- About 250 to 300 fb⁻¹/year

 High peak luminosity
 Minimize pile-up in experiments and provide "constant" luminosity

Baseline parameters of HL for reaching 250 -300 fb⁻¹/year

25 ns is the option

However:

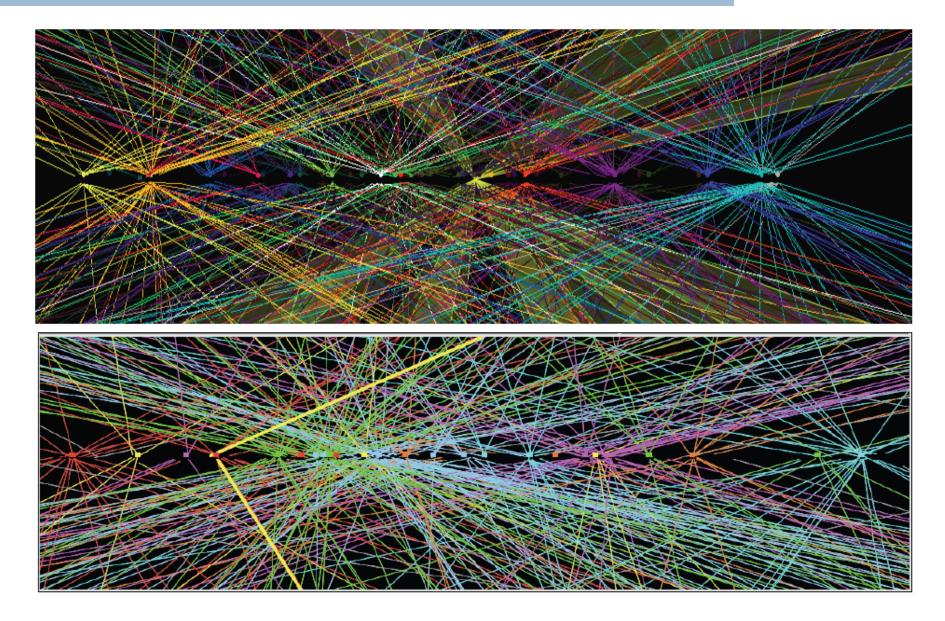

50 ns should be kept as alive and possible because we DO NOT have enough experience on the actual limit *(e-clouds, I_{beam})*

Continuous global optimisation with LIU

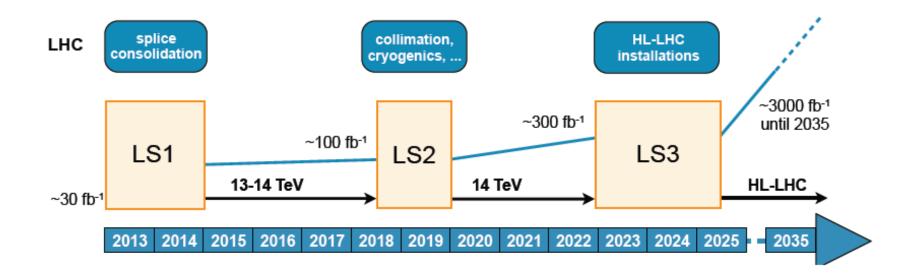
	25 ns	50 ns
# Bunches	2808	1404
p/bunch [10 ¹¹]	2.0 (1.01 A)	3.3 (0.83 A)
ϵ_{L} [eV.s]	2.5	2.5
σ_{z} [cm]	7.5	7.5
σ _{δp/p} [10 ⁻³]	0.1	0.1
γε _{x,y} [μm]	2.5	3.0
β^* [cm] (baseline)	15	15
X-angle [µrad]	590 (12.5 σ)	590 (11.4 σ)
Loss factor	0.30	0.33
Peak lumi [10 ³⁴]	6.0	7.4
Virtual lumi [10 ³⁴]	20.0	22.7
T _{leveling} [h] @ 5E34	7.8	6.8
#Pile up @5E34	123	247

The detectors challenge

7 – 11 orders of magnitude between inelastic and "interesting" - "discovery" physics event rate


The detectors challenge

In order to exploit the LHC potential, experiments have to maintain full sensitivity for discovery, while keeping their capabilities to perform precision measurements at low p_T , in the presence of:


- Pileup
 - $\langle PU \rangle \approx 50$ events per crossing by LS2
 - $\langle PU \rangle \approx 60$ events per crossing by LS3
 - <PU> \approx 140 events per crossing by HL-LHC
- Radiation damage
 - Requires work to maintain calibration
 - Limits performance-lifetime of the detectors
 - Light loss (calorimeters)
 - Increased leakage current (silicon detectors)

Try to visualize x5!

ATLAS Upgrade Roadmap

ATLAS Phase-0

New inner pixel layer Detector consolidation 2015: FTK deployment

ATLAS Phase-1

Improve L1 Trigger, NSW and LAr electronics to cope with higher rates

A long and exciting road ahead !

ATLAS Phase-2

Prepare for 140-200 pile-up events Replace Inner Tracker New L0/L1 trigger scheme Upgrade muon/calorimeter electronics Upgrade of DAQ detector readout

CMS Phase II Upgrade

New Tracker

- Radiation tolerant high granularity less material
- Tracks in hardware trigger (L1)
- Coverage up to η ~ 4

Muons

- Replace DT FE electronics
- Complete RPC coverage in forward region (new GEM/RPC technology)
- Investigate Muon-tagging up to $\eta\sim 3$

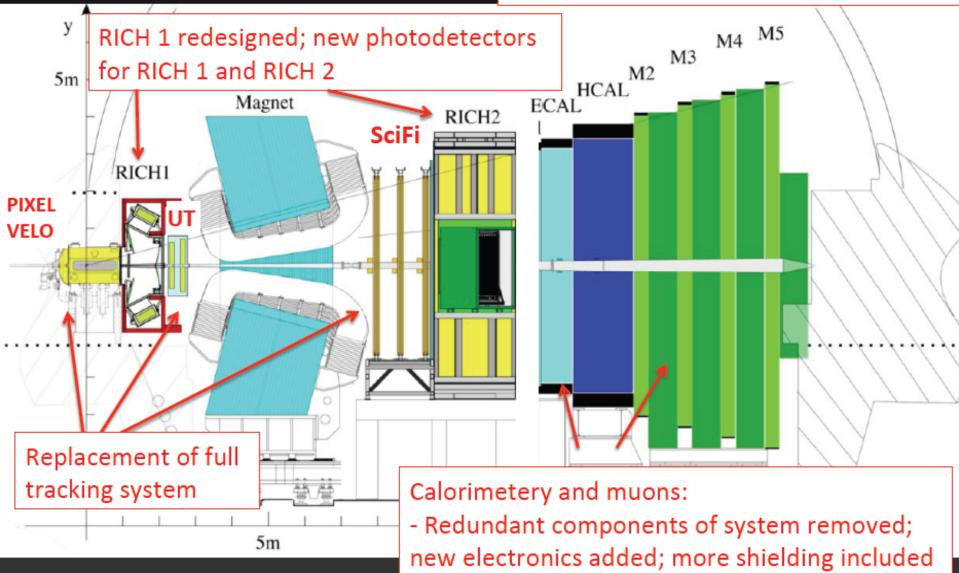
Barrel ECAL

- Replace FE electronics
- Cool detector/APDs

Trigger/DAQ

- L1 (hardware) with tracks and rate up ~ 750 kHz
- L1 Latency 12.5 μs
- HLT output rate 7.5 kHz

Other R&D

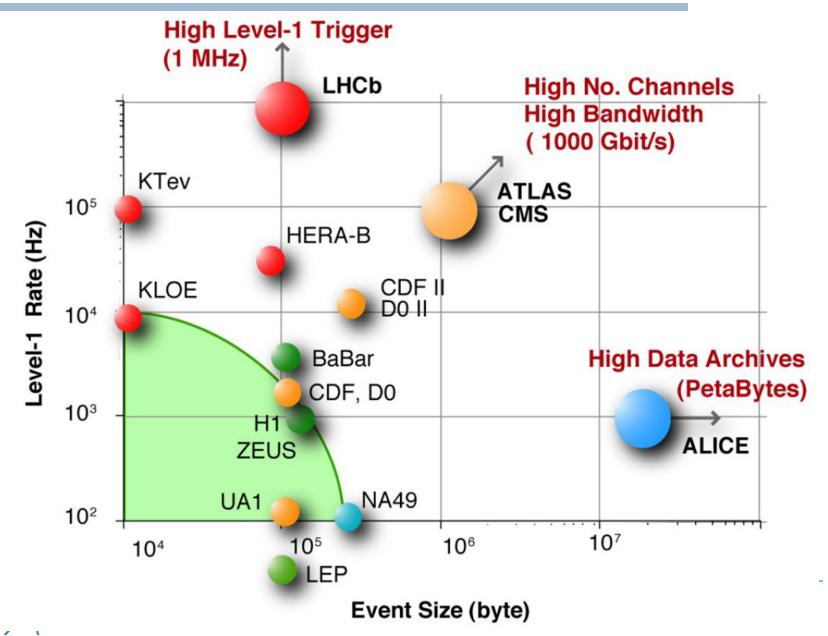

- Fast-timing for in-time pileup suppression
- Pixel trigger

New Endcap Calorimeters

- Radiation tolerant
- High granularity

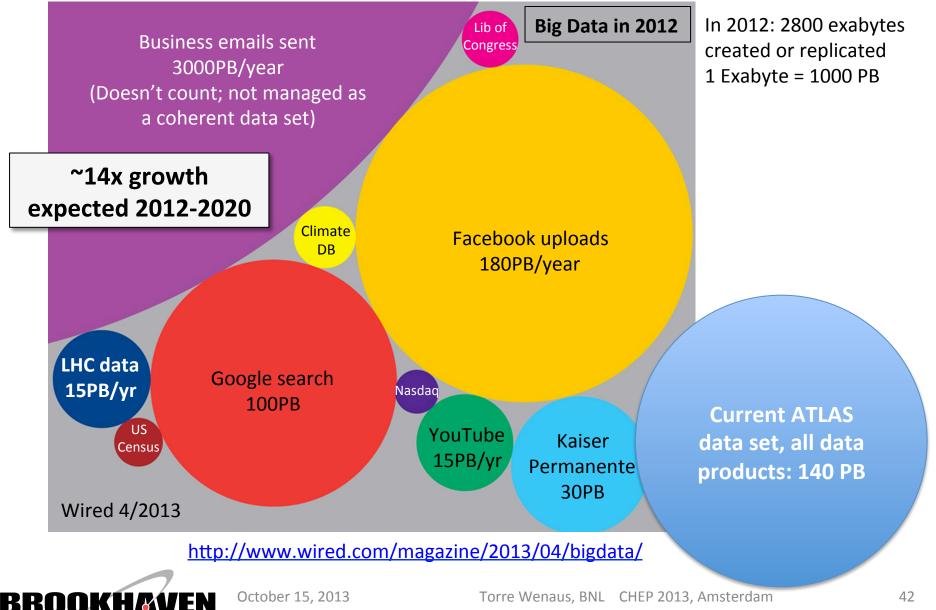
LHCb Upgrade

All subdetectors are read out at 40 MHz



ALICE Upgrade

- New Inner Tracking System (ITS) improved pointing precision Muon Forward Tracker (MFT) new Si tracker less material -> thinnest tracker at Improved MUON pointing precision the LHC MUON ARM continuous Time Projection Chamber (TPC) readout New Micropattern gas electronics detector technology continuous readout New Central Trigger Processor (CTP) Data Acquisition (DAQ)/ High Level Trigger (HLT) new architecture on line tracking & data c) by St. Rossegger compression TOF, TRD New Trigger 50kHz Pbb event rate
 - Faster readout


Detectors (FIT)

The data challenge

From: Torre Wenaus, CHEP 2013

Data Management Where is LHC in Big Data Terms?

100 km tunnel infrastructure in Geneva area – design driven by pp-collider requirements with possibility of e+-e- (TLEP) and p-e (VLHeC)

Geneva

Saleve

Conceptual Design Report and cost review for the next ESU (≥2018)

FCC Design Study Kick-off Meeting: 12-14. February 2014 in Geneva international collaboration established, design study proceeding fast

FCC-hh: 100 TeV

• etc.

- □ explore directly the 10-50 TeV E-scale
- provide conclusive exploration of EWSB dynamics
- □ study nature the Higgs potential and EW phase transition
- say final word about heavy WIMP dark matter

FCC-ee: 90-350 GeV

- □ indirect sensitivity to E scales up to O(100 TeV) by measuring most Higgs couplings to O(0.1%), improving the precision of EW parameters measurements by ~20-200, $\Delta M_W < 1 \text{ MeV}, \Delta m_{top} \sim 10 \text{ MeV}$, etc.
- sensitivity to very-weakly coupled physics (e.g. light, weakly-coupled dark matter)
 etc.

FCC-ep: ~ 3.5 TeV

- \Box unprecedented measurements of PDF and α_s
- □ new physics: leptoquarks, eeqq contact interactions, etc.
- □ Higgs couplings (e.g. Hbb to ~ 1%)

• etc.

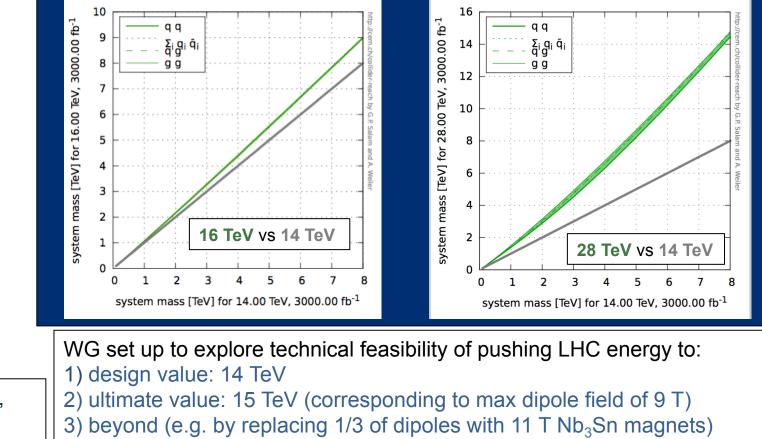
Machines are complementary and synergetic, e.g. from measurement of ttH/ttZ ratio, and using ttZ coupling and H branching ratio from FCC-ee, FCC-hh can measure ttH to $\sim 1\%$

The challenge is not only the machine...

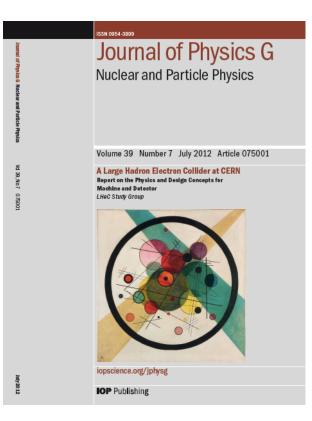
Detectors R&D :

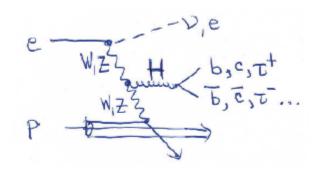
- Ultra-light, ultra-fast, ultra-granular, rad-hard, low-power Si trackers
- 10⁸ channel imaging calorimeters (power consumption and cooling at high-rate machines,..)
- big-volume 5-6 T magnets (~2 x magnetic length and bore of ATLAS and CMS, ~50 GJ stored energy) to reach momentum resolutions of ~10% for p~20 TeV muons

Theory:


- improved theoretical calculations (higher-order EW and QCD corrections) needed to match present and future experimental precision on EW observables, Higgs mass and branching ratios.
- Work together with experiments on model-independent analyses in the framework of Effective Field Theory

Higher \sqrt{s} in the LHC tunnel ?

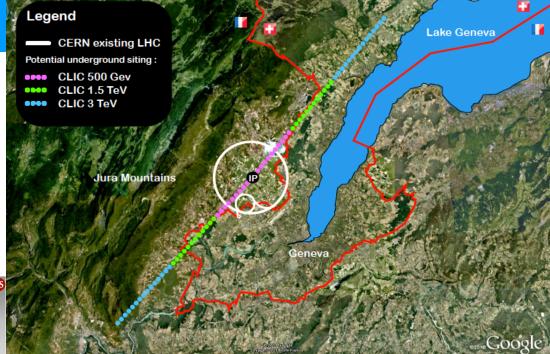

- → Identify open risks, needed tests and technical developments, trade-off between energy and machine efficiency/availability
- \rightarrow Report on 1) end 2016, 2) end 2017, 3) end 2018 (in time for ES)

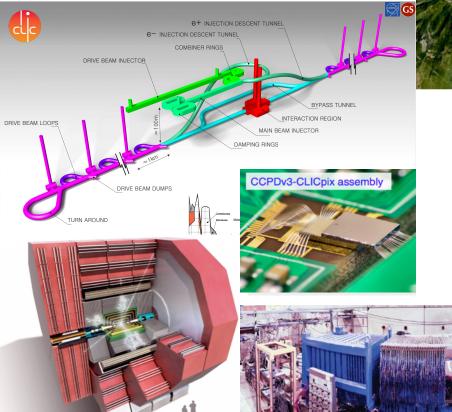

HE-LHC (part of FCC study): ~16 T magnets in LHC tunnel (→ √s~ 30 TeV)
uses existing tunnel and infrastructure; can be built at fixed budget
strong physics case if new physics from LHC/HL-LHC

powerful demonstration of the FCC-hh magnet technology

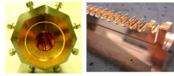
Various options, with increasing amount of HW changes, technical challenges, cost, and physics reach

LHeC, not only PDFs

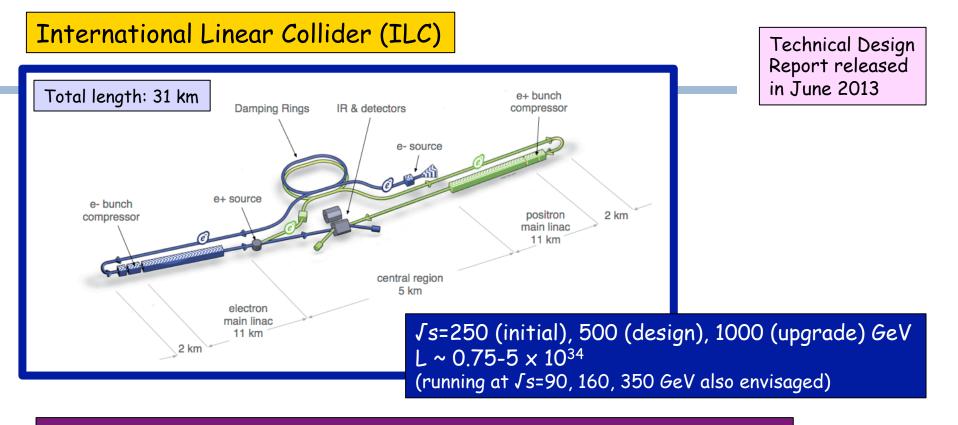



Continuing activity on Physics Detector ERL

Goal: L~1034 cm-2s-1

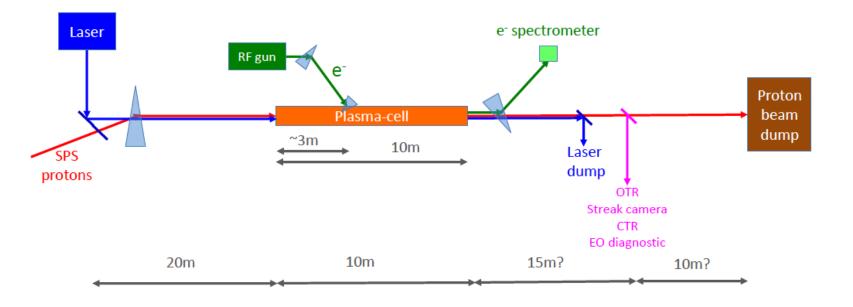


The CLIC project



CALICE tungsten-DHCAL

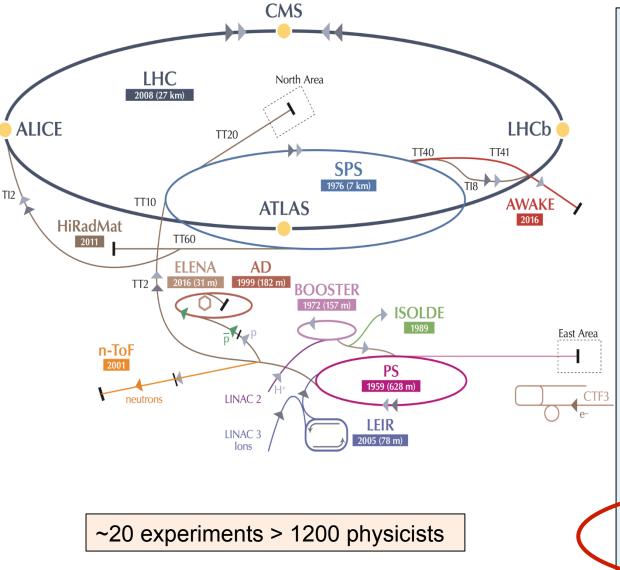
Complete module, PETs (above), Acc. Structure (right)


Main challenges:

- ~ 15000 SCRF cavities (1700 cryomodules), 31.5 MV/m gradient
- □ 1 TeV machine requires extension of main Linacs (50 km) and 45 MV/m
- Positron source; suppression of electron-cloud in positron damping ring
- Final focus: squeeze and collide nm-size beams

 Japan interested to host → decision ~2018 based also on ongoing international discussions Mature technology: 20 years of R&D experience worldwide (e.g. European xFEL at DESY is 5% of ILC, gradient 24 MV/m, some cavities achieved 29.6 MV/m)
 → Construction could technically start ~2019, duration ~10 years → physics could start ~2030

Disruptive Technologies: Wakefield Acceleration



a 1

AIVAKE

A compelling scientific programme beyond the LHC

AD: Antiproton Decelerator for antimatter studies

CAST, OSQAR: axions

CLOUD: impact of cosmic rays on aeorosols and clouds \rightarrow implications on climate

COMPASS: hadron structure and spectroscopy

ISOLDE: radioactive nuclei facility

NA61/Shine: ions and neutrino targets

NA62: rare kaon decays

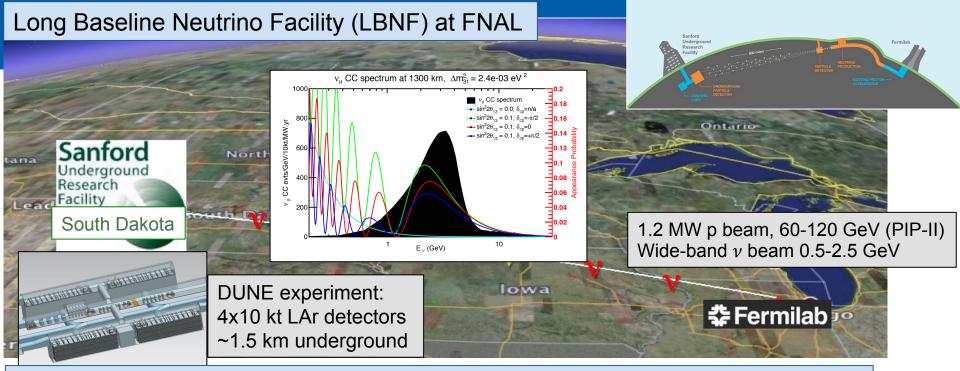
NA63: radiation processes in strong EM fields

n-TOF: n-induced cross-sections

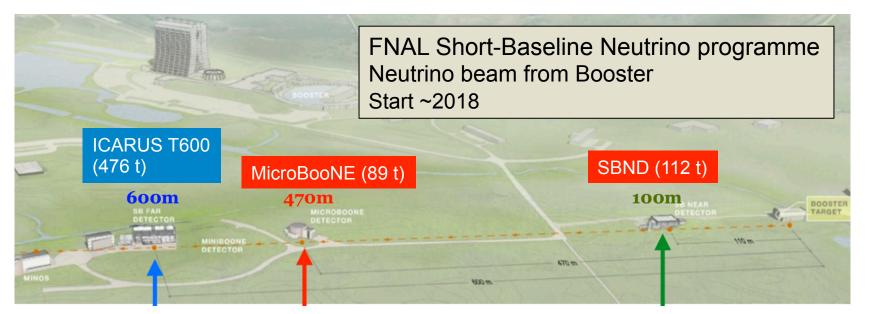
UA9: crystal collimation

Neutrino Platform: collaborating with experiments in US and lapan \rightarrow see later

Neutrino oscillations (e.g. $\nu_{\mu} \rightarrow \nu_{e}$) established (since 1998) with solar, atmospheric, reactor and accelerator neutrinos \rightarrow imply neutrinos have masses and mix Since then: great progress in understanding ν properties at various facilities all over the world


Nevertheless, several open questions:

- \Box Origin of ν masses (e.g. why so light compared to other fermions ?)
- □ Mass hierarchy: normal (ν_3 is heaviest) or inverted (ν_3 is lightest) ?
- Why mixing much larger than for quarks ?
- \Box CP violation (observed in quark sector): do ν and anti- ν behave in the same way?
- \Box Are there additional (sterile) ν (hints from observed anomalies)?

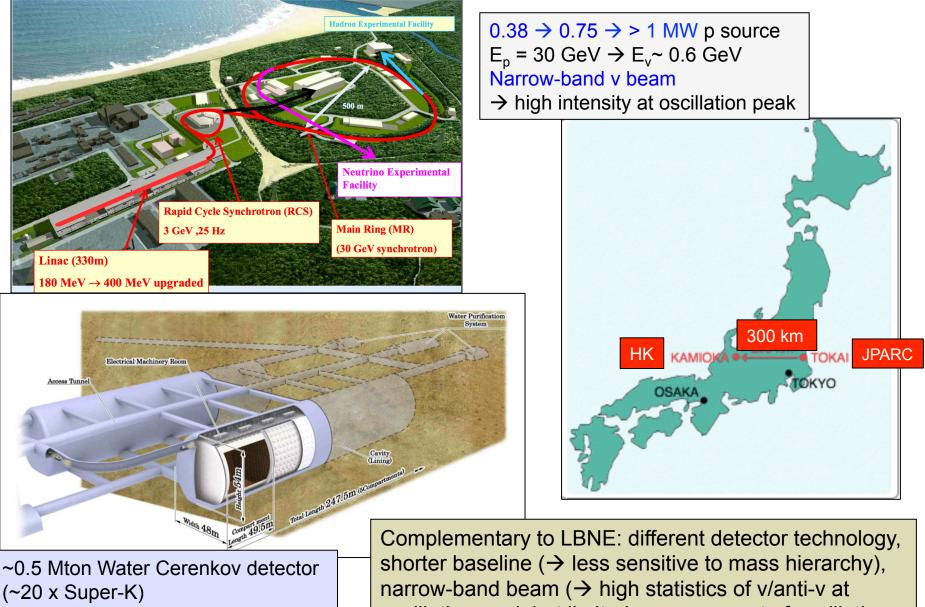

Accelerator experiments can address some of above questions studying $\nu_{\mu} \rightarrow \nu_{e}$ oscillations Need high-intensity p sources (> 1MW) and massive detectors, as ν are elusive particles and the searched-for effects tiny \rightarrow Next-generation facilities planned in US and Japan.

f) Rapid progress in neutrino oscillation physics, with significant European involvement, has established a strong scientific case for a long-baseline neutrino programme exploring CP violation and the mass hierarchy in the neutrino sector. *CERN should develop a neutrino programme to pave the way for a substantial European role in future long-baseline experiments. Europe should explore the possibility of major participation in leading long-baseline neutrino projects in the US and Japan.*

European Strategy 2013

Far site construction starts ~2017, 1st detector installed ~2022, beam from FNAL ~ 2026

A 25+ years Physics Program


On the beam:

- Perform a comprehensive investigation of neutrino oscillations to:
 - test CP violation in the lepton sector
 - determine the ordering of the neutrino masses
 - test the three-neutrino paradigm
- Perform a broad set of neutrino scattering measurements with the near detector

Exploit the large, high-resolution, underground far detector for nonaccelerator physics topics:

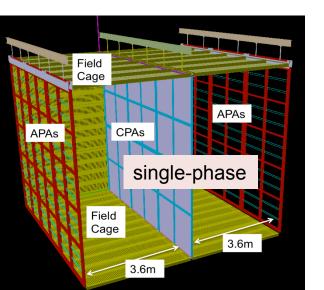
- atmospheric neutrino measurements
- searches for nucleon decay
- measurement of astrophysical neutrinos (especially those from a core-collapse supernova).

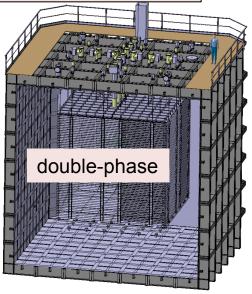
Hyper-Kamiokande, JPARC: construction could start ~2018

- ~ 1 km underground
- ~ 2.5^o off-axis \rightarrow narrow-band beam

oscillation peak but limited measurement of oscillation spectrum)

CERN Neutrino Platform

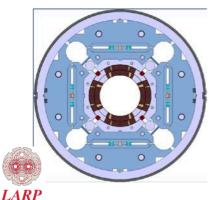

Mission:


- □ Provide charged beams and test space to neutrino community → North Area extension
- Support European participation in accelerator neutrino experiments in US and Japan:
- → R&D to demonstrate large-scale LAr technology (cryostats, cryogenics, detectors)
- \rightarrow Construction of one cryostat for DUNE detector modules
- → Construction of BabyMIND magnet: muon spectrometer for WAGASCI experiment at JPARC

Refurbishment of ICARUS T600 for short baseline programme \rightarrow ship to FNAL beg 2017

Construction and test of "full-scale" prototypes of DUNE drift cells: ~ $6x6x6 m^3$, ~ 700 tons

ready for beam tests in 2018 (before LS2)


FCC magnet technology: learning from LHC/HL-LHC

"Natural" continuation of LHC and HL-LHC programmes. Step-wise approach \rightarrow each step deployed and operated in a (big) accelerator:

- □ LHC: 8.3 T \rightarrow push to ultimate field of 9 T ?
- $\square \text{ HL-LHC: Nb}_3\text{Sn technology:}$
 - -- 11 T dipoles in dispersion suppression collimators
 - -- 12-13 T peak field low- β quads for ATLAS and CMS IR's

December 2015: short (1.8 m) Nb₃Sn two-in-one dipole reached 11.3 T (> nominal) without quenches

March 2016: short (1.5 m) Nb₃Sn quadrupole model (final aperture =150 mm) reached current 18 kA (nominal: 16.5 kA). CERN-US LARP Collaboration (2 coils from CERN + 2 coils from US)

11T Dipole Model

First double aperture magnet

November 2015

A "Physics Beyond Colliders" Study Group has been put in place

Mandate

Explore opportunities offered by CERN accelerator complex and infrastructure to address outstanding questions in particle physics through projects:

□ complementary to future high-energy colliders (HE-LHC, CLIC, FCC)
 □ exploiting unique capabilities of CERN accelerator complex and infrastructure
 □ complementary to other efforts in the world → optimise resources of the discipline globally
 Examples: searches for rare processes and very-weakly interacting particles, electric dipole moments, etc.

→ Enrich and diversify CERN's future scientific programme

- □ Will bring together accelerator scientists, experimental and theoretical physicists
- □ Kick-off meeting in Summer 2016
- □ Final report end 2018 \rightarrow in time for European Strategy

One of the goals is to involve interested worldwide community, and to create synergies with other laboratories and institutions in Europe (and beyond)

In summary

An exciting period in front of us:

- We have finished the inventory of the "known unknown"...
- ...but we have a vast space to explore (and a few tantalizing hints to probe)
- We have a solid physics program for the next 15
 20 years
- In this time period we have to prepare for the next steps, setting directions, technologies and political frames.

Experimental results will be dictating the agenda of the field.

We will need:

Flexibility

Preparedness

Visionary global policies

THANK YOU