Four-fermion production near the *W*-pair production threshold

Pietro Falgari

Institut für Theoretische Physik E, RWTH-Aachen

RADCOR 2007 Florence, October 1-5, 2007

In collaboration with:

M. Beneke, C. Schwinn, A. Signer, G. Zanderighi

- Introduction
- Effective Field Theory Formalism
- Born-level results
- Radiative corrections
- Uncertainties on W-mass determination
- Conclusion

< ∃ > < ∃ >

2

Pietro Falgari (TPE, RWTH-Aachen)

2

The masses of the top quark, the *W* boson and yet undiscovered particles like supersymmetric partners could be accurately measured using threshold scan at a future e^-e^+ linear collider

3

A B > A B >

< < >> < <</>

The masses of the top quark, the *W* boson and yet undiscovered particles like supersymmetric partners could be accurately measured using threshold scan at a future e^-e^+ linear collider

Measurement of M_W of particular interest!

- Key observable for SM precision tests
- Combined with other SM parameter measurements constrains contributions from New Physics

The masses of the top quark, the *W* boson and yet undiscovered particles like supersymmetric partners could be accurately measured using threshold scan at a future e^-e^+ linear collider

Measurement of M_W of particular interest!

- Key observable for SM precision tests
- Combined with other SM parameter measurements constrains contributions from New Physics

Measurements of the four-fermion production cross section near the *W*-pair production threshold could reduce δM_W to ≈ 6 MeV (*G. Wilson, 2nd ECFA/DESY Study, 1498-1505, Desy LC note LC-PHSM-2001-009*)

The masses of the top quark, the *W* boson and yet undiscovered particles like supersymmetric partners could be accurately measured using threshold scan at a future e^-e^+ linear collider

Measurement of M_W of particular interest!

- Key observable for SM precision tests
- Combined with other SM parameter measurements constrains contributions from New Physics

Measurements of the four-fermion production cross section near the *W*-pair production threshold could reduce δM_W to ≈ 6 MeV (*G. Wilson, 2nd ECFA/DESY Study, 1498-1505, Desy LC note LC-PHSM-2001-009*)

Theoretical uncertainties must be reduced to $\sim 0.1\%!$

₩

Accurate theoretical predictions for $e^-e^+ \rightarrow 4f$ in the energy range $\sqrt{s} \approx 155 - 170 \text{ GeV}$ strongly motivated by future phenomenological applications

Pietro Falgari (TPE, RWTH-Aachen)

2

<ロト < 四ト < 三ト < 三ト

Precise theoretical descriptions of processes involving intermediate unstable particles requires addressing two main theoretical issues:

- Systematic inclusion of finite-width effects (may lead to gauge-invariance violation)
- Calculation of EW and QCD radiative corrections (difficult for multiparticle final states)

() <) <)</p>

Precise theoretical descriptions of processes involving intermediate unstable particles requires addressing two main theoretical issues:

- Systematic inclusion of finite-width effects (may lead to gauge-invariance violation)
- Calculation of EW and QCD radiative corrections (difficult for multiparticle final states)

Two methods available at present for a description of four-fermion production near the *W*-pair production threshold with accuracy better than 1%

Precise theoretical descriptions of processes involving intermediate unstable particles requires addressing two main theoretical issues:

- Systematic inclusion of finite-width effects (may lead to gauge-invariance violation)
- Calculation of EW and QCD radiative corrections (difficult for multiparticle final states)

Two methods available at present for a description of four-fermion production near the *W*-pair production threshold with accuracy better than 1%

• Complete $O(\alpha) e^-e^+ \rightarrow 4f$ in Complex Mass Scheme

(A.Denner, S. Dittmaier, M. Roth, L. H. Wieders, Phys. Lett. B612:223-232, 2005)

Effective Field Theory Approach

(M. Beneke, A. P. Chapovsky, A. Signer, G. Zanderighi, Phys. Rev. Lett. 93:01162, 2004)

Precise theoretical descriptions of processes involving intermediate unstable particles requires addressing two main theoretical issues:

- Systematic inclusion of finite-width effects (may lead to gauge-invariance violation)
- Calculation of EW and QCD radiative corrections (difficult for multiparticle final states)

Two methods available at present for a description of four-fermion production near the *W*-pair production threshold with accuracy better than 1%

() Complete $O(\alpha) e^-e^+ \rightarrow 4f$ in Complex Mass Scheme

(A.Denner, S. Dittmaier, M. Roth, L. H. Wieders, Phys. Lett. B612:223-232, 2005)

• Consistent gauge-invariant inclusion of finite-width effects

(M. Beneke, A. P. Chapovsky, A. Signer, G. Zanderighi, Phys. Rev. Lett. 93:01162, 2004)

• Gauge-invariant expansion around the complex pole (systematization to threshold of the Double Pole Approximation)

Precise theoretical descriptions of processes involving intermediate unstable particles requires addressing two main theoretical issues:

- Systematic inclusion of finite-width effects (may lead to gauge-invariance violation)
- Calculation of EW and QCD radiative corrections (difficult for multiparticle final states)

Two methods available at present for a description of four-fermion production near the *W*-pair production threshold with accuracy better than 1%

() Complete $O(\alpha) e^-e^+ \rightarrow 4f$ in Complex Mass Scheme

(A.Denner, S. Dittmaier, M. Roth, L. H. Wieders, Phys. Lett. B612:223-232, 2005)

- Consistent gauge-invariant inclusion of finite-width effects
- Valid for arbitrary center-of-mass energies
- 2 Effective Field Theory Approach

(M. Beneke, A. P. Chapovsky, A. Signer, G. Zanderighi, Phys. Rev. Lett. 93:01162, 2004)

- Gauge-invariant expansion around the complex pole (systematization to threshold of the Double Pole Approximation)
- Specific for the threshold region

Precise theoretical descriptions of processes involving intermediate unstable particles requires addressing two main theoretical issues:

- Systematic inclusion of finite-width effects (may lead to gauge-invariance violation)
- Calculation of EW and QCD radiative corrections (difficult for multiparticle final states)

Two methods available at present for a description of four-fermion production near the *W*-pair production threshold with accuracy better than 1%

() Complete $O(\alpha) e^-e^+ \rightarrow 4f$ in Complex Mass Scheme

(A.Denner, S. Dittmaier, M. Roth, L. H. Wieders, Phys. Lett. B612:223-232, 2005)

- · Consistent gauge-invariant inclusion of finite-width effects
- Valid for arbitrary center-of-mass energies
- Computation of $O(\alpha)$ corrections technically demanding
- 2 Effective Field Theory Approach

(M. Beneke, A. P. Chapovsky, A. Signer, G. Zanderighi, Phys. Rev. Lett. 93:01162, 2004)

- Gauge-invariant expansion around the complex pole (systematization to threshold of the Double Pole Approximation)
- Specific for the threshold region
- Computationally simple + final analytic expressions

Precise theoretical descriptions of processes involving intermediate unstable particles requires addressing two main theoretical issues:

- Systematic inclusion of finite-width effects (may lead to gauge-invariance violation)
- Calculation of EW and QCD radiative corrections (difficult for multiparticle final states)

Two methods available at present for a description of four-fermion production near the *W*-pair production threshold with accuracy better than 1%

Occupiete $O(\alpha) e^-e^+ \rightarrow 4f$ in Complex Mass Scheme

(A.Denner, S. Dittmaier, M. Roth, L. H. Wieders, Phys. Lett. B612:223-232, 2005)

- · Consistent gauge-invariant inclusion of finite-width effects
- Valid for arbitrary center-of-mass energies
- Computation of $O(\alpha)$ corrections technically demanding
- 2 Effective Field Theory Approach

(M. Beneke, A. P. Chapovsky, A. Signer, G. Zanderighi, Phys. Rev. Lett. 93:01162, 2004)

- Gauge-invariant expansion around the complex pole (systematization to threshold of the Double Pole Approximation)
- Specific for the threshold region
- Computationally simple + final analytic expressions
- At the moment only for inclusive observables

Pietro Falgari (TPE, RWTH-Aachen)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2

The process is characterized by two well-separated scales: $\Lambda^2 \equiv M_W^2 \gg M_W \Gamma_W \equiv \lambda^2 \rightarrow$ Effective Field Theory (EFT) techniques are used to integrate out the large scale M_W^2

The process is characterized by two well-separated scales: $\Lambda^2 \equiv M_W^2 \gg M_W \Gamma_W \equiv \lambda^2$ \rightarrow Effective Field Theory (EFT) techniques are used to integrate out the large scale M_W^2

- Effective Lagrangian describing long-distance degrees of freedom $(k^2 m_p^2 \lesssim M_W \Gamma_W)$
 - resonant Ws $(k^2 M_W^2 \sim M_W \Gamma_W)$
 - potential $(k^2 \sim M_W \Gamma_W)$ and soft $(k^2 \sim \Gamma_W^2)$ photons
 - high-energetic external fermions $(k^2 = 0)$
- Matching coefficients determined by short-distance physics $(k^2 - m_n^2 \sim M_W^2)$
 - non-resonant Ws $(k^2 M_W^2 \sim M_W^2)$
 - light degrees of freedom with large virtualities $(k^2 \sim M_W^2)$
 - heavy degrees of freedom (Z boson, Higgs, top quark)

The process is characterized by two well-separated scales: $\Lambda^2 \equiv M_W^2 \gg M_W \Gamma_W \equiv \lambda^2$ \rightarrow Effective Field Theory (EFT) techniques are used to integrate out the large scale M_W^2

- Effective Lagrangian describing long-distance degrees of freedom $(k^2 m_p^2 \lesssim M_W \Gamma_W)$
 - resonant Ws $(k^2 M_W^2 \sim M_W \Gamma_W)$
 - potential $(k^2 \sim M_W \Gamma_W)$ and soft $(k^2 \sim \Gamma_W^2)$ photons
 - high-energetic external fermions $(k^2 = 0)$
- Matching coefficients determined by short-distance physics $(k^2 - m_p^2 \sim M_W^2)$
 - non-resonant Ws $(k^2 M_W^2 \sim M_W^2)$
 - light degrees of freedom with large virtualities $(k^2 \sim M_W^2)$
 - heavy degrees of freedom (Z boson, Higgs, top quark)

$$\mathcal{L}_{\text{EFT}} = \sum_{\mp} \Omega_{\mp}^{i*} \left(iD^0 + \frac{\vec{D}^2}{2M_W} + i\frac{\Gamma_W^{(0)}}{2} - \frac{(\vec{D}^2 - iM_W\Gamma_W^{(0)})^2}{8M_W^3} + i\frac{\Gamma_W^{(1)}}{2} + ... \right) \Omega_{\mp}^i + \frac{g^2 C_P}{2M_W^2} (\bar{e}_L \gamma^{[i} in^{j]} e_L) (\Omega_{-}^{i*} \Omega_{+}^{j*}) + \frac{K_{4e}}{2M_W^2} (\bar{e}_L \gamma^{\mu} e_L) (\bar{e}_L \gamma_{\mu} e_L) + ...$$

Pietro Falgari (TPE, RWTH-Aachen)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2

EFT calculation organized as a simultaneous expansion of the matrix elements in powers of α , α_s , the ratios Γ_W/M_W and the non-relativistic energy of the Ws $E/M_W \equiv (\sqrt{s} - 2M_W)/M_W$

$$lpha_s^2 \sim lpha_{ew} \sim rac{\Gamma_W}{M_W} \sim rac{E}{M_W}$$

EFT calculation organized as a simultaneous expansion of the matrix elements in powers of α , α_s , the ratios Γ_W/M_W and the non-relativistic energy of the Ws $E/M_W \equiv (\sqrt{s} - 2M_W)/M_W$

$$lpha_s^2 \sim lpha_{ew} \sim rac{\Gamma_W}{M_W} \sim rac{E}{M_W}$$

For counting purposes the expansion parameters are collectively indicated as δ !

$$\sigma(s) = \sum_{n \ge 0} \sigma^{(n/2)}(s)$$
 where $\frac{\sigma^{(n/2)}(s)}{\sigma^{(0)}(s)} \sim \delta^{n/2}$

EFT calculation organized as a simultaneous expansion of the matrix elements in powers of α , α_s , the ratios Γ_W/M_W and the non-relativistic energy of the Ws $E/M_W \equiv (\sqrt{s} - 2M_W)/M_W$

$$lpha_s^2 \sim lpha_{ew} \sim rac{\Gamma_W}{M_W} \sim rac{E}{M_W}$$

For counting purposes the expansion parameters are collectively indicated as δ !

$$\sigma(s) = \sum_{n \ge 0} \sigma^{(n/2)}(s)$$
 where $\frac{\sigma^{(n/2)}(s)}{\sigma^{(0)}(s)} \sim \delta^{n/2}$

EFT formalism applied to the calculation of total cross-section for $e^+e^- \rightarrow \mu^- \overline{\nu}_{\mu} u dX$ up to NLO in $\alpha_s^2 \sim \alpha_{ew} \sim \Gamma_W/M_W \sim E/M_W$ (*M. Beneke, P. Falgari, C. Schwinn, A. Signer, G. Zanderighi, ArXiv:0707.0773[hep-ph]*)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pietro Falgari (TPE, RWTH-Aachen)

2

<ロト < 四ト < 三ト < 三ト

The cross section is extracted from appropriate cuts of the forward-scattering amplitude!

The cross section is extracted from appropriate cuts of the forward-scattering amplitude! Leading-order forward-scattering amplitude obtained from the matrix element of lowest-order production operators:

$$i\mathcal{A}_{\rm Born}^{(0)} = \int d^4x \langle e^- e^+ | T[i\mathcal{O}_p^{(0)\dagger}(0)i\mathcal{O}_p^{(0)}(x)] | e^- e^+ \rangle = \left(e^{-\frac{M}{2}} \right) \left(e^{-\frac{M}{2$$

where $\mathcal{O}_p^{(0)} = i \frac{g^2}{2M_W^2} \overline{e}_L(\gamma^i n^j + \gamma^j n^i) e_L \Omega_-^{i*} \Omega_+^{j*}$ (with n^i the direction of the incoming electron).

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のQQ

Ο

The cross section is extracted from appropriate cuts of the forward-scattering amplitude! Leading-order forward-scattering amplitude obtained from the matrix element of lowest-order production operators:

$$i\mathcal{A}_{\rm Born}^{(0)} = \int d^4x \langle e^-e^+ | T[i\mathcal{O}_p^{(0)\dagger}(0)i\mathcal{O}_p^{(0)}(x)] | e^-e^+ \rangle = \left. \begin{array}{c} e \\ e \\ e \\ Q_p^{(0)}\mathcal{O}_p^{(0)} \\ Q \\ e \end{array} \right|^{e},$$

where $\mathcal{O}_p^{(0)} = i \frac{g^2}{2M_W^2} \overline{e}_L(\gamma^i n^j + \gamma^j n^i) e_L \Omega_-^{i*} \Omega_+^{j*}$ (with n^i the direction of the incoming electron).

The flavor-specific final state is selected by multiplying the imaginary part of \mathcal{A} with the leading-order branching ratios, $Br^{(0)}(W^- \to \mu^- \bar{\nu}_{\mu})Br^{(0)}(W^+ \to u\bar{d}) = 1/27$:

$$\sigma_{\rm Born}^{(0)} = \frac{1}{27s} {\rm Im} \mathcal{A}_{\rm Born}^{(0)} = -\frac{\pi \alpha^2}{27s_w^4 s} {\rm Im} \left[\sqrt{-\frac{(E+i\Gamma_W^{(0)})}{M_W}} \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Ο

Pietro Falgari (TPE, RWTH-Aachen)

→ ∃ → < ∃</p>

 \sqrt{NLO} From singly-resonant kinematical configurations

Radiative corrections

Pietro Falgari (TPE, RWTH-Aachen)

2

<ロト < 四ト < 三ト < 三ト

3

イロン イロン イヨン イヨン

• EW corrections to the production-vertex matching coefficient C_p , and EW and QCD corrections to the decay-vertex matching coefficient C_d

• EW corrections to the production-vertex matching coefficient C_p , and EW and QCD corrections to the decay-vertex matching coefficient C_d

• Radiative corrections in the effective field theory: potential $(q^2 \sim M_W \Gamma_W$: Coulomb correction) and soft-photon $(q^2 \sim \Gamma_W^2)$ exchange

• EW corrections to the production-vertex matching coefficient C_p , and EW and QCD corrections to the decay-vertex matching coefficient C_d

- Radiative corrections in the effective field theory: potential (q² ~ M_WΓ_W: Coulomb correction) and soft-photon (q² ~ Γ²_W) exchange
- Universal corrections from Initial State Radiation (ISR)

Pietro Falgari (TPE, RWTH-Aachen)

|□| ▶ ▲ 臣 ▶ ▲ 臣

2

•
$$O(\alpha)$$
 production vertex: $\frac{g^2 \alpha C_p^{(1)}}{4\pi M_W^2} (\bar{e}_L \gamma^{[i} i n^{j]} e_L) (\Omega_-^{i*} \Omega_+^{j*})$

Extracted from the one-loop corrections to the on-shell process $e^+e^- \rightarrow W^+W^-$ At lowest order set $s = 4M_W^2 \rightarrow$ only corrections to *t*-channel diagram survive!

•
$$O(\alpha)$$
 production vertex: $\frac{g^2 \alpha C_p^{(1)}}{4\pi M_W^2} (\bar{e}_L \gamma^{[i} i n^{j]} e_L) (\Omega_-^{i*} \Omega_+^{j*})$

Extracted from the one-loop corrections to the on-shell process $e^+e^- \rightarrow W^+W^-$ At lowest order set $s = 4M_W^2 \rightarrow$ only corrections to *t*-channel diagram survive!

• $O(\alpha)$ decay vertices

Extracted from EW virtual and real corrections to the decays $W^- \rightarrow \mu^- \bar{\nu}_{\mu}$ and $W^+ \rightarrow u\bar{d}$

•
$$O(\alpha)$$
 production vertex: $\frac{g^2 \alpha C_p^{(1)}}{4\pi M_W^2} (\bar{e}_L \gamma^{[i} i n^{j]} e_L) (\Omega_-^{i*} \Omega_+^{j*})$

Extracted from the one-loop corrections to the on-shell process $e^+e^- \rightarrow W^+W^-$ At lowest order set $s = 4M_W^2 \rightarrow$ only corrections to *t*-channel diagram survive!

• $O(\alpha)$ decay vertices

Extracted from EW virtual and real corrections to the decays $W^- \rightarrow \mu^- \bar{\nu}_{\mu}$ and $W^+ \rightarrow u\bar{d}$

QCD corrections are taken into account by multiplying the cross sections with the universal factor for massless quarks $\delta_{\text{QCD}} = 1 + \alpha_s/\pi + 1.409\alpha_s^2/\pi^2$

Pietro Falgari (TPE, RWTH-Aachen)

Radiative corrections in the EFT

Pietro Falgari (TPE, RWTH-Aachen)

> < = > < = >

2

Radiative corrections in the EFT

Coulomb corrections

Arise from exchange of potential photons $(q^2 \sim M_W \Gamma_W)$ between the Ws: n^{th} Coulomb correction scales as $\alpha^n (M_W / \Gamma_W)^{n/2} \sim \alpha^{n/2} \rightarrow$ first and second correction must be included!

Radiative corrections in the EFT

Coulomb corrections

Arise from exchange of potential photons $(q^2 \sim M_W \Gamma_W)$ between the Ws: nth Coulomb correction scales as $\alpha^n (M_W/\Gamma_W)^{n/2} \sim \alpha^{n/2} \rightarrow$ first and second correction must be included!

Soft-photon corrections

Arise from soft photons $(q^2 \sim \Gamma_W^2)$ exchange between different subprocesses Large cancellations due to residual gauge-invariance of the EFT Lagrangian!

Initial State Radiation

Pietro Falgari (TPE, RWTH-Aachen)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2

In the limit $m_e = 0$ the total cross section is not infrared safe (uncancelled $1/\varepsilon$ poles)! Infrared-safety is recovered after the inclusion of *collinear modes* $(q^2 \leq m_e^2)$:

Initial State Radiation

In the limit $m_e = 0$ the total cross section is not infrared safe (uncancelled $1/\varepsilon$ poles)! Infrared-safety is recovered after the inclusion of *collinear modes* $(q^2 \leq m_e^2)$:

$$\sigma^{(1)} = \frac{\alpha^3}{27 s_w^4 s} \operatorname{Im} \left\{ -\sqrt{-\frac{E + i\Gamma_W^{(0)}}{M_W}} \left(4 \ln \left(-\frac{4(E + i\Gamma_W^{(0)})}{M_W} \right) \ln \left(\frac{2M_W}{m_e} \right) \right. \\ \left. -5 \ln \left(\frac{2M_W}{m_e} \right) + \operatorname{Re} \left[c_p^{(1, \text{fin})} \right] + \frac{\pi^2}{4} + 3 \right) \right\} + \Delta \sigma^{(1)}_{\text{Coulomb}} + \Delta \sigma^{(1)}_{\text{decay}}$$

Initial State Radiation

In the limit $m_e = 0$ the total cross section is not infrared safe (uncancelled $1/\varepsilon$ poles)! Infrared-safety is recovered after the inclusion of *collinear modes* $(q^2 \leq m_e^2)$:

$$\sigma^{(1)} = \frac{\alpha^3}{27 s_w^4 s} \operatorname{Im} \left\{ -\sqrt{-\frac{E+i\Gamma_W^{(0)}}{M_W}} \left(4\ln\left(-\frac{4(E+i\Gamma_W^{(0)})}{M_W}\right) \ln\left(\frac{2M_W}{m_e}\right) -5\ln\left(\frac{2M_W}{m_e}\right) + \operatorname{Re} \left[c_p^{(1,\operatorname{fin})}\right] + \frac{\pi^2}{4} + 3\right) \right\} + \Delta\sigma^{(1)}_{\operatorname{Coulomb}} + \Delta\sigma^{(1)}_{\operatorname{decay}}$$

Leading logs (~ $\alpha^n \ln^n \left(\frac{2M_W}{m_e}\right)$) can be resummed to all orders!

$$\sigma^{\rm NLO}(s) = \int_0^1 dx_1 \int_0^1 dx_2 \Gamma_{ee}^{\rm LL}(x_1) \Gamma_{ee}^{\rm LL}(x_2) \hat{\sigma}(x_1 x_2 s)$$

where Γ_{ee}^{LL} is the electron structure function in Leading Log (LL) approximation and

$$\hat{\sigma}(s) = \sigma_{\text{Born}}(s) + \hat{\sigma}^{(1)}(s) = \sigma_{\text{Born}}(s) + \sigma^{(1)}(s) - 2\int_{0}^{1} dx \Gamma_{ee}^{\text{LL},(1)}(x) \sigma_{\text{Born}}^{(0)}(xs)$$

Pietro Falgari (TPE, RWTH-Aachen)

Radiative corrections in the G_{μ} -scheme: $\alpha = \alpha_{G_{\mu}} \equiv \sqrt{2}G_{\mu}M_W^2 s_w^2/\pi$ $(M_W = 80.377 \text{ GeV}, M_Z = 91.188 \text{ GeV}, M_H = 115 \text{ GeV}, m_t = 174.2 \text{ GeV})$

3

Radiative corrections in the G_{μ} -scheme: $\alpha = \alpha_{G_{\mu}} \equiv \sqrt{2}G_{\mu}M_W^2 s_w^2/\pi$ $(M_W = 80.377 \text{ GeV}, M_Z = 91.188 \text{ GeV}, M_H = 115 \text{ GeV}, m_t = 174.2 \text{ GeV})$

Two issues:

B b 4

3

Radiative corrections in the G_{μ} -scheme: $\alpha = \alpha_{G_{\mu}} \equiv \sqrt{2}G_{\mu}M_W^2 s_w^2/\pi$ ($M_W = 80.377 \text{ GeV}, M_Z = 91.188 \text{ GeV}, M_H = 115 \text{ GeV}, m_t = 174.2 \text{ GeV}$)

Two issues:

• The ISR convolution receives contribution from regions where the EFT approximation breaks down \rightarrow use the full result for the Born cross section and set the radiative corrections to 0 below the cutoff $\sqrt{s} = 155 \text{ GeV}$

э

Radiative corrections in the G_{μ} -scheme: $\alpha = \alpha_{G_{\mu}} \equiv \sqrt{2}G_{\mu}M_W^2 s_w^2/\pi$ ($M_W = 80.377 \text{ GeV}, M_Z = 91.188 \text{ GeV}, M_H = 115 \text{ GeV}, m_t = 174.2 \text{ GeV}$)

Two issues:

- The ISR convolution receives contribution from regions where the EFT approximation breaks down \rightarrow use the full result for the Born cross section and set the radiative corrections to 0 below the cutoff $\sqrt{s} = 155 \text{ GeV}$
- Large logs are under controll only at LL level \rightarrow convolute the ISR with the complete NLO partonic cross section or only with the Born result (difference formally NLL): $\sigma^{\text{NLO(ISR-Tree})} = \int_{0}^{1} dx_1 dx_2 \Gamma_{ee}^{\text{LL}}(x_1) \Gamma_{ee}^{\text{LL}}(x_2) \sigma_{\text{Born}} + \hat{\sigma}^{(1)}$

Radiative corrections in the G_{μ} -scheme: $\alpha = \alpha_{G_{\mu}} \equiv \sqrt{2}G_{\mu}M_W^2 s_w^2/\pi$ ($M_W = 80.377 \text{ GeV}, M_Z = 91.188 \text{ GeV}, M_H = 115 \text{ GeV}, m_t = 174.2 \text{ GeV}$)

Two issues:

- The ISR convolution receives contribution from regions where the EFT approximation breaks down \rightarrow use the full result for the Born cross section and set the radiative corrections to 0 below the cutoff $\sqrt{s} = 155 \text{ GeV}$
- Large logs are under controll only at LL level \rightarrow convolute the ISR with the complete NLO partonic cross section or only with the Born result (difference formally NLL): $\sigma^{\text{NLO(ISR-Tree})} = \int_{0}^{1} dx_1 dx_2 \Gamma_{ee}^{\text{LL}}(x_1) \Gamma_{ee}^{\text{LL}}(x_2) \sigma_{\text{Born}} + \hat{\sigma}^{(1)}$

	$\sigma(e^-e^+ \to \mu^- \bar{\nu}_\mu u \bar{d} X)$ (fb)				
\sqrt{s} [GeV]	Born	Born(ISR)	NLO	NLO(ISR-tree)	
158	61.67(2)	45.64(2)	49.19(2)	50.02(2)	
		[-26.0%]	[-20.2%]	[-18.9%]	
161	154.19(6)	108.60(4)	117.81(5)	120.00(5)	
		[-29.6%]	[-23.6%]	[-22.2%]	
164	303.0(1)	219.7(1)	234.9(1)	236.8(1)	
		[-27.5%]	[-22.5%]	[-21.8%]	
167	408.8(2)	310.2(1)	328.2(1)	329.1(1)	
		[-24.1%]	[-19.7%]	[-19.5%]	
170	481.7(2)	378.4(2)	398.0(2)	398.3(2)	
		[-21.4%]	[-17.4%]	[-17.3%]	

Pietro Falgari (TPE, RWTH-Aachen)

★ ∃ >

Comparison with the full $e^+e^- \rightarrow 4f$ result (Denner, Dittmaier, Roth, Wieders, Phys. Lett. B612: 223-232,2005)

Comparison with the full $e^+e^- \rightarrow 4f$ result (Denner, Dittmaier, Roth, Wieders, Phys. Lett. B612: 223-232,2005)

• Strict NLO electroweak corrections

	$\sigma(e^-e^+ \to \mu^- \bar{\nu}_\mu u \bar{d} X)$ (fb)			
\sqrt{s} [GeV]	Born	NLO(EFT)	ee4f	DPA
161	150.05(6)	104.97(6)	105.71(7)	103.15(7)
170	481.2(2)	373.74(2)	377.1(2)	376.9(2)

Comparison with the full $e^+e^- \rightarrow 4f$ result (Denner, Dittmaier, Roth, Wieders, Phys. Lett. B612: 223-232,2005)

• Strict NLO electroweak corrections

	$\sigma(e^-e^+ \to \mu^- \bar{\nu}_\mu u \bar{d} X)$ (fb)			
\sqrt{s} [GeV]	Born	NLO(EFT)	ee4f	DPA
161	150.05(6)	104.97(6)	105.71(7)	103.15(7)
170	481.2(2)	373.74(2)	377.1(2)	376.9(2)

• QCD corrections and higher-order ISR

	$\sigma(e^-e^+ o \mu^- \bar{ u}_\mu u \bar{d} X)$ (fb)			
\sqrt{s} [GeV]	Born(ISR)	NLO(EFT)	ee4f	DPA
161	107.06(4)	117.38(4)	118.12(8)	115.48(7)
170	381.0(2)	399.9(2)	401.8(2)	402.1(2)

Difference between EFT and full four-fermion result $\sim 0.6\%$ in the range 160 - 170 GeV!

Pietro Falgari (TPE, RWTH-Aachen)

• • • • • • •

æ

Dominant remaining theoretical uncertainties come from:

(日) (日) (日)

э

Dominant remaining theoretical uncertainties come from:

• Incomplete Next-to-Leading-Log (NLL) treatment of ISR

Dominant remaining theoretical uncertainties come from:

- Incomplete Next-to-Leading-Log (NLL) treatment of ISR
 - Convolution of the complete NLO fixed-order cross section with the structure functions
 - NLL resummation of the structure function (not done yet): $\Gamma_{ee} = \Gamma_{ee}^{LL} + \Gamma_{ee}^{NLL} + \dots$

Dominant remaining theoretical uncertainties come from:

- Incomplete Next-to-Leading-Log (NLL) treatment of ISR
 - Convolution of the complete NLO fixed-order cross section with the structure functions
 - NLL resummation of the structure function (not done yet): $\Gamma_{ee} = \Gamma_{ee}^{LL} + \Gamma_{ee}^{NLL} + \dots$
- Higher-order ($N^{3/2}LO$) corrections to the partonic cross-section

Dominant remaining theoretical uncertainties come from:

- Incomplete Next-to-Leading-Log (NLL) treatment of ISR
 - Convolution of the complete NLO fixed-order cross section with the structure functions
 - NLL resummation of the structure function (not done yet): $\Gamma_{ee} = \Gamma_{ee}^{LL} + \Gamma_{ee}^{NLL} + \dots$
- Higher-order ($N^{3/2}LO$) corrections to the partonic cross-section
 - O(α)-improved four-electron operators from radiative corrections to singly-resonant diagrams. Included in the full four-fermion calculation
 - Interference of Coulomb correction with higher-dimensional production operators. Included in the full four-fermion calculation
 - Interference of Coulomb correction with soft corrections or O(α) matching coefficients
 - Third Coulomb correction (Known but negligible)

< ∃ > < ∃

2

Assume six experimental points O_i at $\sqrt{s_i} = 160, 161, 162, 163, 164, 170 \text{ GeV}$ $(O_i = \sigma_{\text{EFT}}^{\text{NLO}}(s_i; M_W = 80.377 \text{ GeV}))$

Determine the uncertainty δM_W on the W mass for different theoretical prediction E_i minimizing the function

$$\chi^{2}(\delta M_{W}) = \sum_{i=1}^{6} \frac{(O_{i} - E_{i}(\delta M_{W}))^{2}}{2\rho O_{i}}$$

Assume six experimental points O_i at $\sqrt{s_i} = 160, 161, 162, 163, 164, 170 \text{ GeV}$ $(O_i = \sigma_{\text{EFT}}^{\text{NLO}}(s_i; M_W = 80.377 \text{ GeV}))$

Determine the uncertainty δM_W on the W mass for different theoretical prediction E_i minimizing the function

$$\chi^2(\delta M_W) = \sum_{i=1}^6 \frac{(O_i - E_i(\delta M_W))^2}{2\rho O_i}$$

• Missing NLL contributions (estimated from the difference in the two ISR implementations):

 $\delta M_W \approx 31 \mathrm{MeV}$

Assume six experimental points O_i at $\sqrt{s_i} = 160, 161, 162, 163, 164, 170 \text{ GeV}$ $(O_i = \sigma_{\text{EFT}}^{\text{NLO}}(s_i; M_W = 80.377 \text{ GeV}))$

Determine the uncertainty δM_W on the W mass for different theoretical prediction E_i minimizing the function

$$\chi^{2}(\delta M_{W}) = \sum_{i=1}^{6} \frac{(O_{i} - E_{i}(\delta M_{W}))^{2}}{2\rho O_{i}}$$

 Missing NLL contributions (estimated from the difference in the two ISR implementations):

 $\delta M_W \approx 31 \mathrm{MeV}$

O(α) corrections to the four-fermion effective vertex (included in the full four-fermion calculation):

 $\delta M_W \approx 8 \mathrm{MeV}$

Assume six experimental points O_i at $\sqrt{s_i} = 160, 161, 162, 163, 164, 170 \text{ GeV}$ $(O_i = \sigma_{\text{EFT}}^{\text{NLO}}(s_i; M_W = 80.377 \text{ GeV}))$

Determine the uncertainty δM_W on the W mass for different theoretical prediction E_i minimizing the function

$$\chi^{2}(\delta M_{W}) = \sum_{i=1}^{6} \frac{(O_{i} - E_{i}(\delta M_{W}))^{2}}{2\rho O_{i}}$$

 Missing NLL contributions (estimated from the difference in the two ISR implementations):

 $\delta M_W \approx 31 \mathrm{MeV}$

• *O*(*α*) corrections to the four-fermion effective vertex (included in the full four-fermion calculation):

$\delta M_W \approx 8 \mathrm{MeV}$

• Interference between Coulomb and soft and hard corrections: $(\sim (\Delta \sigma_{\text{soft}}^{(1)} + \Delta \sigma_{\text{production}}^{(1)}) / \sigma_{\text{Born}}^{(0)} \Delta \sigma_{\text{Coulomb}}^{(1)})$

 $\delta M_W \approx 5 \mathrm{MeV}$

Assume six experimental points O_i at $\sqrt{s_i} = 160, 161, 162, 163, 164, 170 \text{ GeV}$ $(O_i = \sigma_{\text{EFT}}^{\text{NLO}}(s_i; M_W = 80.377 \text{ GeV}))$

Determine the uncertainty δM_W on the W mass for different theoretical prediction E_i minimizing the function

$$\chi^{2}(\delta M_{W}) = \sum_{i=1}^{6} \frac{(O_{i} - E_{i}(\delta M_{W}))^{2}}{2\rho O_{i}}$$

• Missing NLL contributions (estimated from the difference in the two ISR implementations):

 $\delta M_W \approx 31 \text{MeV}$

O(α) corrections to the four-fermion effective vertex (included in the full four-fermion calculation):

 $\delta M_W \approx 8 \mathrm{MeV}$

• Interference between Coulomb and soft and hard corrections: $(\sim (\Delta \sigma_{\text{soft}}^{(1)} + \Delta \sigma_{\text{production}}^{(1)}) / \sigma_{\text{Born}}^{(0)} \Delta \sigma_{\text{Coulomb}}^{(1)})$

 $\delta M_W \approx 5 \mathrm{MeV}$

Conclusions

Pietro Falgari (TPE, RWTH-Aachen)

2

<ロト < 四ト < 三ト < 三ト

• In the threshold region the EFT approach represents a valid alternative to the full SM calculation (at least for total cross sections)

3

< □ > < 同 > < 回 > < 回 > < 回

- In the threshold region the EFT approach represents a valid alternative to the full SM calculation (at least for total cross sections)
- The dominant remaining theoretical uncertainty comes from an incomplete treatment of NLL initial-state radiation, and can be foreseeably removed
- In the threshold region the EFT approach represents a valid alternative to the full SM calculation (at least for total cross sections)
- The dominant remaining theoretical uncertainty comes from an incomplete treatment of NLL initial-state radiation, and can be foreseeably removed
- With further inputs from the full four-fermion calculation and higher-order corrections in the EFT framework the theoretical error on the W mass could be reduced to $\lesssim 5$ MeV