One-loop electroweak corrections to Z+jet production [$e^+e^- \rightarrow$ 3 jets]

Carlo M. Carloni Calame

CERN, NExT & Southampton

RADCOR 2007 October 1-5, 2007

in collaboration with S. Moretti, F. Piccinini and D. Ross

C. Carloni (CERN, NExT & Soton)

- ⋆ Motivations for ILC & LHC
- * Factorizable weak corrections
- ⋆ The complete EW one-loop calculation
 - calculation details
 - preliminary results (technical checks & physics)
- ⋆ Conclusions

Motivations

★ at e^+e^- colliders ($e^+e^- \rightarrow \gamma^*/Z \rightarrow 3$ jets)

- $e^+e^- \rightarrow$ 3 jets was the "golden" process for QCD measurements and tests at LEP
- precise measurement of α_s (O(1%) at LEP/SLC, O(0.1%) at GigaZ)
- EW effects can induce asymmetries in 3 jets observables
- O(α) EW RC roughly expected as large as NNLO QCD at high energies (Sudakov double-logs)
- \star at hadron colliders ($pp \rightarrow \gamma^*/Z \rightarrow \ell^+ \ell^- + \text{jet}$)
 - measurement of PDFs via $p_{\perp}^{\gamma/Z}$ spectrum, in particular the gluon PDF
 - large effects of EW Sudakov logs in $Z+{\rm jet}$ observables, e.g. at high p_{\perp}^Z where BSM physics can show up
 - detector calibration for jets measurements
- SM effects must be well under control to match the experimental accuracy and to disentangle SM from BSM physics

Restricting to EW corrections

- ★ Maina, Moretti, Ross, JHEP 0304:056 (2003)
 - factorizable weak corrections to $e^+e^- \rightarrow 3$ jets (no real & virtual QED, no RC connecting initial and final state), effects studied at $\sqrt{s} = M_Z$
- * Maina, Moretti, Ross, PLB 593 (2004), Erratum PLB 614 (2005)
 - purely weak corrections to $pp \to Z$ or $\gamma+$ jet at high $p_T^{\gamma/Z}.~\gamma$ and Z on-shell
- ★ Kuhn, Kulesza, Pozzorini, Schulze, PLB 609 (2005)
 - logarithmic weak corrections to $pp\to Z+$ jet (high $p_{\perp}^Z)$ at one and two loop order with LL and NLL accuracy

・ 何 ト ・ ヨ ト ・ ヨ

Weak factorizable RC at $\sqrt{s} = M_Z$

Maina et al., PLB

- weak corrections have a O(1%) effect, which could be not negligible for α_s determination at GigaZ at the 0.1% level
- larger effect for the $b\bar{b}$ sub-sample (due to top in the loops)

C. Carloni (CERN, NExT & Soton)

Weak RC to $\gamma/Z+jet$

Maina et al., JHEP

 large corrections (O(10%)) in the high boson p⊥ tail, where SM is a background to new physics signatures

C. Carloni (CERN, NExT & Soton)

EW RC to $e^+e^- \rightarrow 3$ jets

RADCOR '07 6 / 23

- we calculated the complete 1-loop EW corrections to $e^+e^- \rightarrow 3$ jets
 - QED can give a sizeable effect if realistic event selection criteria are considered
 - non-factorizable RC can be not negligible far from M_Z
 - non-factorizable RC can have a not trivial impact on asymmetries
- by crossing symmetry, EW RC to $pp \rightarrow \ell^+ \ell^- +$ jet are straighfordwardly obtained
- the precise control of SM effects is mandatory for precision physics and new physics searches

The 1-loop diagrams to be evaluated are:

• e^+e^- vertices

• $q\bar{q}$ and gluon vertices and fermion self-energies

C. Carloni (CERN, NExT & Soton)

box diagrams (factorizable and not factorizable) ~~~~~ 0000 W (a) ₹^M ~~~~~ (b) (c) M_1 M_1

• pentagons and gauge-bosons self-energies

11/23

Calculation details

- the calculation has been performed in the limit $m_{ext}^2/s
 ightarrow 0$
- collinear singularities cured with a small fermion & quark mass
- infrared divergencies regularized with a finite photon mass λ
- virtual corrections
 - * amplitudes evaluated with helicity techniques and manipulated with FORM (Vermaseren)
 - ⋆ two independend calculations
 - up to 4-point functions: reduction of tensor integrals with Passarino-Veltman reduction
 - 5-point functions, reduction according to PV or to Denner-Dittmaier (as coded in a our own library or in LoopTools (Hahn))
 - ★ so far, good agreement among different implementations
- also the squared amplitude for the real emission process $e^+e^-\to q\bar{q}g\gamma$ has been calculated
 - ★ with **ALPHA** (Moretti & Caravaglios)
 - ★ with мардаарн (Maltoni, Stelzer et al.)

A B b 4 B b

Cross section calculation

As usual, the cross section is split into two parts

• $e^+e^- \rightarrow q\bar{q}g$

$$\sigma_{2\to3} = \int d\Phi_3 \left(\left| \mathcal{M}_0 \right|^2 + 2\Re [\mathcal{M}_0^* \mathcal{M}_\alpha^{virt}(\lambda)] \right)$$

•
$$e^+e^- \rightarrow q\bar{q}g\gamma$$

 $\sigma_{2\rightarrow4} = \int_{\lambda<\omega} d\Phi_4 |\mathcal{M}^{real}_{\alpha}|^2 =$

 $\int_{\lambda < \omega < k_0} d\Phi_4 |\mathcal{M}_{\alpha}^{real}|^2 + \int_{k_0 < \omega} d\Phi_4 |\mathcal{M}_{\alpha}^{real}|^2 = \delta_s(\lambda, k_0)\sigma_0 + \sigma_{2 \to 4}^{hard}(k_0)$

- $\sigma_{2\to3} + \sigma_{2\to4} \equiv \sigma^{SV}(k_0) + \sigma^{hard}(k_0)$ has to be independent from the unphysical parameters λ and k_0
- the integral over 2 \rightarrow 3 and 2 \rightarrow 4 phase space is performed with a Monte Carlo generator

Results

- all the results are preliminary
- test simulation for an e^+e^- collider running at $\sqrt{s} = 300 \text{ GeV}$
- cuts & parameters:
 - $\star\,$ momenta clustered into jets according to the Durham algorithm, i.e. if $y_{ij} < y_{min},$ where

$$y_{ij} = 2\frac{\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{s}$$

- $\star\,$ photon (in 2 \rightarrow 4) recombined according to the same algorithm
- * at least 3 "hadronic" jets requested
- $\star \ y_{min} = 0.005, \quad 30^{\circ} < heta_{
 m jets} < 150^{\circ}, \quad M_{
 m 3 \ jets} > 0.75 \ \sqrt{s}$
- $\star \ lpha_s =$ 0.118, $\ lpha_{em} =$ 1/128, $M_Z =$ 91.18 GeV, $M_W =$ 80.4 GeV
- summed over final state quarks ($q\bar{q} = u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, b\bar{b}$)
- the effect of the weak factorizable corrections far from the *Z* peak is shown for comparison purpose only

• integrated cross sections

	σ (pb)	δ (%)
Born	0.73836(3)	
complete $\mathcal{O}(\alpha)$	0.7200(2)	-2.48
$\mathcal{O}(\alpha)$ weak fact.	0.7146(1)	-3.22

• independence of σ^{SV} from the photon mass (λ)

λ^2 (GeV ²)	10^{-5}	10^{-10}	10^{-15}
σ^{SV} (pb)	0.2863(2)	0.2866(2)	0.2866(2)

• independence of σ^{real} from the soft-hard separator (k_0)

$2k_0/\sqrt{s}$	10 ⁻³	10 ⁻⁴	10 ⁻⁵
σ_{real} (pb)	0.4892(2)	0.4895(2)	0.4896(2)

Quark angle

C. Carloni (CERN, NExT & Soton)

EW RC to $e^+e^- \rightarrow 3$ jets

RADCOR '07 16 / 23

Quark energy

C. Carloni (CERN, NExT & Soton)

EW RC to $e^+e^- \rightarrow 3$ jets

RADCOR '07 17 / 23

$q\bar{q}$ invariant mass

C. Carloni (CERN, NExT & Soton)

EW RC to $e^+e^- \rightarrow 3$ jets

RADCOR '07 18 / 23

Leading jet angle

asymmetry induced by photonic real corrections

C. Carloni (CERN, NExT & Soton)

EW RC to $e^+e^- \rightarrow 3$ jets

RADCOR '07 19 / 23

Leading jet energy

C. Carloni (CERN, NExT & Soton)

EW RC to $e^+e^- \rightarrow 3$ jets

RADCOR '07 20 / 23

Thrust

EW RC to $e^+e^- \rightarrow 3$ jets

RADCOR '07 21 / 23

Thrust

 effects at some 1% level on thrust distribution. Non-trivial effect of QED + non-factorizable weak corrections

C. Carloni (CERN, NExT & Soton)

EW RC to $e^+e^- \rightarrow 3$ jets

RADCOR '07 22 / 23

Conclusions

- $\star\,$ the complete one-loop EW corrections to $e^+e^- \rightarrow$ 3 jets have been calculated
 - each contribution calculated independently twice
 - so far, good agreement between different implementations
 - the calculation is implemented in a Monte Carlo event generator
- * at 300 GeV, weak factorizable and weak non-factorizable + QED corrections give effects of the same size, e.g. on thrust distribution
- EW RC are expected to be even more relevant in presence of polarized beams, unlike QCD RC
- these corrections are important in view of precision physics and BSM searches at ILC
- ⋆ work in progress:
 - further (technical & stability) checks
 - inclusion of ISR higher-order (avoiding double counting) and beamstralhung effects
 - conclude the phenomenological study for $e^+e^- \rightarrow$ 3 jets
 - crossing the process to study EW RC to Z+jet at hadron colliders