NLO QCD corrections to $Wb\bar{b}/Zb\bar{b}$ production at hadron colliders

Laura Reina

RADCOR 07, Florence, October 2007

- Motivations: $Wb\bar{b}/Zb\bar{b}$ main background to
 - $\rightarrow WH/ZH$ associated production;
 - \rightarrow single-top production.
- $Wb\bar{b}/Zb\bar{b}$ NLO QCD calculation, b massive.
- Numerical results: inclusive/exclusive cross-sections (Tevatron).
- Summary and outlook.

In collaboration with F. Febres Cordero and D. Wackeroth

Motivations

Associated production of SM Higgs with weak vector bosons

- $\longrightarrow \text{NNLO QCD corrections have been calculated}$ for the signal [O.Brien, A.Djouadi and R.Harlander, 2004] $\longrightarrow O(\alpha) \text{ EW corrections have been calculated for}$ the signal [M.L.Ciccolini, S.Dittmaier and M.Kramer, 2003]
- \rightarrow Results for WH associated production, August 2007

 \rightarrow Results for ZH associated production, August 2007

SM Single-Top production

→ NLO QCD corrections have been thoroughly studied [T.Stelzer, Z.Sullivan and S.Willenbrock, 1998;
 B.W.Harris, E.Laenen, L.Phaf, Z.Sullivan and S.Weinzierl, 2002;
 ...]
 → NLO EW corrections have been calculated for the (SM and MSSM) signal [M.Beccaria, G.Macorini,

F.M.Renard and C.Verzegnassi, 2006]

\rightarrow CDF data sample, October 2006

$\rightarrow D0$ evidence of single-top, March 2007

The Calculation

$Wb\bar{b}/Zb\bar{b}$ production

• NLO calculation, with $m_b = 0$ approximation available in MCFM [J.Campbell and R.K.Ellis]

 \rightarrow Kinematical cuts were imposed in the massless approximation in order to simulate mass effects:

$$p_{b,\bar{b}}^T > m_b$$
 and $(p_b + p_{\bar{b}})^2 > 4m_b^2$.

 \rightarrow Error on the differential cross section from $m_b = 0$ approximation expected to be small (~ 10% from LO estimates) but relevant, difficult to quantify due to non trivial contribution of m_b coming from phase space and matrix elements.

Calculation with full m_b effects

Including $\mathcal{O}(\alpha_s)$ corrections

$$\hat{\sigma}_{ij}^{\text{NLO}}(x_1, x_2, \mu) = \alpha_s^2(\mu) \left\{ f_{ij}^{\text{LO}}(x_1, x_2) + \frac{\alpha_s(\mu)}{4\pi} f_{ij}^{\text{NLO}}(x_1, x_2, \mu) \right\} \\ \equiv \hat{\sigma}_{ij}^{\text{LO}}(x_1, x_2, \mu) + \delta \hat{\sigma}_{ij}^{\text{NLO}}(x_1, x_2, \mu) ,$$

$$\delta \hat{\sigma}_{ij}^{\mathrm{NLO}} = \hat{\sigma}_{ij}^{\mathrm{virt}} + \hat{\sigma}_{ij}^{\mathrm{real}} .$$

- Virtual Corrections: consist of one-loop diagrams interfered with LO amplitude
 - $-Wb\overline{b}$: one subprocess, $q\overline{q}' \to Wb\overline{b}$
 - $Zb\overline{b}$: two subprocesses, $q\overline{q} \rightarrow Zb\overline{b}$ and $gg \rightarrow Zb\overline{b}$
- Real Corrections: consist of tree level diagrams with one extra parton
 - $-Wb\overline{b} + k$: two subprocess, $q\overline{q}' \to Wbb + g$ and $q(\overline{q})g \to Wb\overline{b} + q'(\overline{q}')$
 - $Zb\overline{b} + k$: three subprocesses, $q\overline{q} \to Zb\overline{b} + g$, $gg \to Zb\overline{b} + g$ and $q(\overline{q})g \to Zb\overline{b} + q(\overline{q})$

Virtual corrections: calculating $\hat{\sigma}_{ij}^{\text{virt}}$

$$\hat{\sigma}_{ij}^{\text{virt}} = \int d\left(PS_3\right) \overline{\sum} |\mathcal{A}_{\text{virt}}(ij \to W/Z \ b\bar{b})|^2$$

where:

$$\overline{\sum} |\mathcal{A}_{\text{virt}}(ij \to W/Z \ b\bar{b})|^2 = \sum_D \overline{\sum} \left(\mathcal{A}_0 \mathcal{A}_D^{\dagger} + \mathcal{A}_0^{\dagger} \mathcal{A}_D \right) = \sum_D \overline{\sum} 2\mathcal{R}e \left(\mathcal{A}_0 \mathcal{A}_D^{\dagger} \right) \ .$$

- \longrightarrow Use dimensional regularization to regularize UV and IR divergencies.
- \longrightarrow UV divergencies are canceled by a suitable set of counterterms.
- \rightarrow Calculate each diagram as linear combination of Dirac structures with coefficients that depend on both tensor and scalar integrals.
- → Tensor integrals reduced analytically to scalar integrals and organized to avoid spurious divergences due to appearance of inverse power of Gram Determinant.
- \longrightarrow IR divergencies will cancel with $\hat{\sigma}_{ij}^{\text{real}}$.

Virtual corrections: calculating $\hat{\sigma}_{ij}^{\mathrm{virt}}$ - The $Wb\bar{b}$ Diagrams

 \rightarrow Counting: 2 diagrams at LO - \sim 30 at NLO - 2 pentagons

Virtual corrections: calculating $\hat{\sigma}_{ij}^{\text{virt}}$ The $gg \to Zb\bar{b}$ Diagrams

 \rightarrow Counting: 8 diagrams at LO - ~ 100 at NLO - 12 pentagons

Real corrections: calculating $\hat{\sigma}_{ij}^{\text{real}}$

$$\hat{\sigma}_{ij}^{\text{real}} = \int d\left(PS_4\right) \overline{\sum} |\mathcal{A}_{\text{real}}(ij \to W/Z \ b\bar{b} + k)|^2$$

- \longrightarrow IR divergencies associated with the integration over the PS of the extra parton, can be extracted using the so called Phase Space Slicing (PSS) method with *two cutoffs*.
- \longrightarrow PSS with two cutoffs uses two unphysical parameters, δ_s and δ_c to isolate soft and collinear divergent regions, where IR singularities are extracted analytically.
- \longrightarrow Same soft/collinear structure as $Ht\bar{t}/Hb\bar{b}$, tested against one-cutoff PSS and dipole subtraction method.
- \longrightarrow Physical quantities are independent of δ_s and δ_c , for small enough values of these parameters.

Real corrections: calculating $\hat{\sigma}_{ij}^{\text{real}}$ Independence of the total cross section of δ_s and δ_c cuts

 \rightarrow In the following we will fix $\delta_s = 10^{-3}$ and $\delta_c = 10^{-5}$

Numerical Results, Tevatron

General Setup

- \rightarrow For the Wqq' vertex we take the following CKM matrix elements: $V_{ud} = V_{cs} = 0.975$ and $V_{us} = V_{cd} = 0.222$, while we neglect contribution of the third generation (suppressed by corresponding PDFs or CKM matrix elements).
- \longrightarrow PDF: for LO results we use 1-loop evolution of α_s and CTEQ6L1, while for NLO results 2-loop evolution of α_s and CTEQ6M.
- \longrightarrow Mass Values: we use for the weak bosons $M_Z = 91.1876$ GeV and $M_W = 81.410$ GeV, a fixed bottom-quark mass $m_b = 4.62$ GeV and fixed top-quark mass $m_t = 170.9$ GeV (entering through virtual corrections).

b-jet identification

 \rightarrow We use the k_T jet algorithm with R = 0.7 and study two cases:

- → Inclusive Cross Section: events with two $(b + \overline{b})$ or three $(b + \overline{b} + j)$ jets resolved contribute to the cross section.
- → Exclusive Cross Section: only events with two $(b + \overline{b})$ jets resolved contribute to the cross section.

Same convention used by MCFM (used to obtain the results for $m_b = 0$).

- \longrightarrow *b*-jet kinematical cuts:
 - → Transverse momentum of the *b*-jets: $p_t > p_{t, min}$ (15 GeV) for both *b* and \overline{b} jets.
 - \rightarrow Pseudorapidity: $|\eta| < \eta_{max}$ (2) for both b and \overline{b} jets.

Summary of LO and NLO total cross sections

massive and massless calculation, setting $\mu_r = \mu_f = M_V + 2m_b \ (V = W, Z)$.

Cross Section, $Wb\bar{b}$	$m_b \neq 0 \; (\text{pb}) \; [\text{ratio}]$	$m_b = 0 \text{ (pb) [ratio]}$
$\sigma^{ m LO}$	2.20[-]	2.38[-]
$\sigma^{ m NLO}$ inclusive	3.20[1.45]	3.45[1.45]
$\sigma^{\rm NLO}$ exclusive	2.64[1.2]	2.84[1.2]

Cross Section, $Zb\bar{b}$	$m_b \neq 0 \; (\text{pb}) \; [\text{ratio}]$	$m_b = 0 \text{ (pb) [ratio]}$
$\sigma^{ m LO}$	2.21[-]	2.37[-]
$\sigma^{\rm NLO}$ inclusive	3.34[1.51]	3.64[1.54]
$\sigma^{ m NLO}$ exclusive	2.75[1.24]	3.01[1.27]

Scale dependence and theoretical uncertainty

Wbb: PRD 74 (2006) 034007

Zbb: PRELIMINARY

- \rightarrow Bands obtained by varying both μ_R and μ_F between $\mu_0/2$ and $4\mu_0$ (with $\mu_0 = m_b + M_V/2$ (V = W, Z)).
 - LO uncertainty $\sim 40\%$.
 - Inclusive NLO uncertainty $\sim 20\%$.
 - Exclusive NLO uncertainty $\sim 10\%$.

$Zb\overline{b}$, scale dependence: LO vs NLO and massless vs massive

PRELIMINARY

$Zb\overline{b}$: $m_{b\overline{b}}$ distributions, LO vs NLO

PRELIMINARY

$Zb\bar{b}$: $m_{b\bar{b}}$ distributions, massive vs massless

PRELIMINARY

Wbb/Zbb, $m_{b\bar{b}}$ distributions: testing rescaling

 $Zb\bar{b}$: PRELIMINARY

Not accurate in the low $m_{b\bar{b}}$ invariant mass region.

Summary

- We have calculated the NLO QCD corrections to $Wb\bar{b}/Zb\bar{b}$ production at hadron colliders including full bottom-quark mass effects.
- We observe considerable reduction of the theoretical uncertainty in the total cross section with respect to the LO calculation. Specifically the 40% LO uncertainty is reduced to 20% for inclusive NLO production and to 10% for exclusive NLO production for both $Wb\bar{b}$ and $Zb\bar{b}$.
- Mass effects reduce by 8% to 10% the total cross section, affecting in particular the low invariant mass region of the $b\bar{b}$ pair.
- Our results are of relevance to the search for a SM-like Higgs particle in the VH (V = W, Z) associated production channel and to the measurement of single-top production, both processes of great interest to the high energy community.

Outlook

- We will keep studying the phenomenological impact of our calculation.
- We are currently studying the impact of our calculation on searches for single-top production, where we also consider final states with less than two b-quarks (with J. Campbell, F. Maltoni, S. Willenbrock).
- We will implement our calculation for the LHC case. Since at the LHC gluon initiated processes are enhanced, we expect some fundamental differences to appear.
- Our calculation can be naturally extended to other important processes like $Zt\bar{t}, \gamma t\bar{t}$ and $\gamma b\bar{b}$ production.