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Mass Generation in Non-Abelian Gauge Theories

Linear Representation of the Gauge Group 
                   → Higgs Mechanism

✔ Physical Unitarity
✔ Power-counting Renormalizability
✔ (at least one) additional physical scalar particle



  

Mass Generation in Non-Abelian Gauge Theories

Non-Linear Representation of the Gauge Group 
               → Stückelberg Mechanism

✔ Mass through the coupling with 
  the flat connection

✔ Physical Unitarity  [R.Ferrari, A.Q., JHEP 0411:019,2004]

✔ No additional physical scalar particle



  

Mass Generation in Non-Abelian Gauge Theories

Non-Linear Representation of the Gauge Group 
               → Stückelberg Mechanism

Not power-counting renormalizable

How to subtract the divergences?
How many physical parameters 

are there?
Is the model unique?



  

How to subtract the divergences?

Lessons from the Nonlinear Sigma Model:
The Local Functional Equation

Enforce the invariance of the path-integral 
SU(2) Haar measure under local left 

group transformations

Defining local functional equation
for the 1-PI vertex functional 



  

How to subtract the divergences?

Lessons from the Nonlinear Sigma Model:
The Hierarchy Principle

Solution of the recursion generated by the 
local functional equation

[D.Bettinelli, A.Q, R.Ferrari, JHEP0703:065,2007]

All the amplitudes involving at least one pion 
(descendant amplitudes) are fixed once those 
involving only insertions of the flat connection 

and the nonlinear sigma model constraint 
(ancestor amplitudes) are given.



  

How to subtract the divergences?

Lessons from the Nonlinear Sigma Model:
The Weak Power-Counting Theorem

There is an infinite number of divergent amplitudes
 involving pions already at one loop

At every loop order there is only
a finite number of divergent ancestor amplitudes



  

Symmetries of nonlinearly realized Yang-Mills

 BRST symmetry  →  Slavnov-Taylor identity       
                                  (Physical Unitarity)

 Stability equations (B-equation, ghost equation) 

Is this enough to implement the 
hierarchy?

The answer is no.

Due to the antisymmetric character of the ghost fields     
the ST identity only fixes suitable antisymmetrized 
combinations of the pseudo-Goldstone amplitudes.

Try with the standard framework of gauge theories



  

A counter-example



  

Symmetries of nonlinearly realized Yang-Mills

One also needs a local functional equation
along the same lines of the 

nonlinear sigma model

Introduce a background connection
and use a background (Landau) gauge-

fixing



  

Symmetries of nonlinearly realized Yang-Mills

The local functional equation
(bilinear!)



  

Bleaching

Introduce variables invariant 

under the linearized local functional equation 

(bleached variables)



  

Bleaching/2

By using bleached variables only 

there are too many invariants

(like off-diagonal mass terms). 

Way out: enforce also   

global SUR(2) invariance



  

Symmetries of nonlinearly realized Yang-Mills

A summary

✔ Slavnov-Taylor identity
✔ Local functional equation
✔ B-equation (Landau gauge equation)

            (the ghost equation follows 
             as a consequence of the above identities)

         to be solved in the ℏ expansion



  

Symmetries of nonlinearly realized Yang-Mills



  

Feynman rules in the Landau gauge

The classical gauge-invariant action ...

... plus gauge-fixing terms plus couplings of antifields
with BRST transformations plus sources

for the local left transformations



  

Feynman rules in the Landau gauge

The tree-level vertex functional



  

Weak Power-Counting Formula

There is a week power-counting formula
for the ancestor amplitudes



  

Properties of the perturbative series

✔  In the Landau gauge the unphysical modes 
   stay massless as a consequence 
   of the Landau gauge equation

✔ One can drop all tadpole diagrams in DR     
  (since in the Landau gauge all tadpole diagrams are   
   massless)  



  

One Loop 

At one loop level 
the relevant symmetries are

✔ the linearized ST identity

✔ the linearized local functional equation

✔ the Landau gauge equation

Compatibility condition



  

One Loop Solution

In the bleached variables the linearized

local functional equation reads  

Then one needs to solve a cohomological 

problem in the space of bleached variables  



  

Bleached Variables/1

Gauge 
variables

Variables
in the adj. representation
under the local left 
transformations



  

Bleached Variables/2

SU(2) doublets 



  

Linearized ST Transforms of Bleached Variables/1



  

Linearized ST Transforms of Bleached Variables/2

The linearized ST transforms of bleached 
variables are bleached.



  

One Loop Invariants

Cohomologically non-trivial



  

One Loop Invariants

Cohomologically trivial



  

Perturbative Solution in D dimensions

Only the pole parts are subtracted by adopting 

the counterterm structure  

The amplitudes must be normalized as  



  

Perturbative Solution in D dimensions/2

This subtraction scheme is symmetric

to all orders in the loop expansion.

Notice that the normalization introduces 

non-trivial finite parts required for the 

fulfillment of the functional identities.



  

Perturbative Solution in D dimensions/3

Projections 
of the one-loop 
invariants on 
the ancestor 
amplitudes



  

Perturbative Solution in D dimensions/4

The counterterms



  

Perturbative Solution in D dimensions/5

The self-mass



  

Perturbative Solution in D dimensions/6

Some checks



  

Perturbative Solution in D dimensions/7

The self-mass

This separation between Feynman diagrams of the linear 
and the nonlinear theory does not hold in general. 



  

Uniqueness of the tree-level vertex functional

The Stückelberg action is the only one fulfilling 

the weak power-counting formula.

The invariants I1,..., I5  
contains vertices with two 
phi's, two A's and two 
derivatives.
They give rise to one-loop 
diagrams with degree of 
divergence equal to 4 and 
any number of external legs.



  

Stability?

The removal of the divergences can be 
implemented through a canonical 
transformation on the classical action
order by order in the  expansion.ℏ

In this sense (see Weinberg & Gomis 1996) 
this is a stable theory.



  

The number of physical parameters

Are the coefficients of the invariants I
j 
 

compatible with the weak power-counting bound 

additional bona fide parameters?

They are not, since they cannot be inserted back 

into the tree-level vertex functional without 

violating either the symmetries or the weak 

power-counting theorem.



  

The number of physical parameters/1

The physical parameters are the mass M and

the gauge coupling constant g.

Since the scale of radiative corrections Λ

cannot be reabsorbed by a change in M and g,

Λ must also be considered 

as a further physical parameter.

 



  

The number of physical parameters/2

Lessons from the nonlinear sigma model 

The most general action compatible with the 
defining local functional equation and the 

weak power-counting theorem is

under the assumption that 
Gauge-
invariant local 
function 
depending 
only on J



  

Conclusions and Outlook

✔  Nonlinearly realized massive Yang-Mills theory 

   can be symmetrically subtracted to all orders    

   in the ℏ expansion

✔  The tools: hierarchy, 
                  weak power-counting, 
                  functional equations



  

Conclusions and Outlook

✔  The number of physical parameters is finite. 

   Hence the model can be tested against

   experiments.

✔  Is there a renormalization group equation
   in the proposed subtraction scheme?

✔  Extension to SU(2) x U(1)


