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Some “historical” physical problems
Reliable description of rising “hard” cross sections
and structure functions at high energies
Precise determination of parton splitting functions at small-x
while keeping their well known behaviour at larger-x;
Providing a small-x resummation in matrix form:
quarks and gluons are treated on the same ground and
in a collinear factorization scheme as close as possible to MS

Outline
Generalizing BFKL and DGLAP evolutions
Criteria and mechanism of matrix kernel construction
Resummed results and partonic splitting function matrix
Conclusions
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Generalizing BFKL and DGLAP eqs
The BFKL equation (1976) predicts rising cross-sections but

Leading log predictions overestimate the hard Pomeron
exponent, while NLL corrections are large, negative, and may
make it ill-defined (Fadin, Lipatov; Camici, Ciafaloni: 1998)
Low order DGLAP evolution is consistent with rise of HERA SF,
with marginal problems (hints of negative gluon density)
Need to reconcile BFKL and DGLAP approaches

Collinear + small-x Resummations
In the last decade, various (doubly) resummed approaches
(CCS + CCSS; Altarelli, Ball, Forte; Thorne, White ...)
Main idea: to incorporate RG constraints in the BFKL kernel
Output: effective (resummed) BFKL eigenvalue χeff (γ) or the
“dual” DGLAP anomalous dimension Γeff (ω) (+ running αs)
So far, only the gluon channel is treated self-consistently; the
quark channel is added by k-factorization of the q − q̄ dipole
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The matrix approach
Generalizes DGLAP self-consistent evolution for quarks and
gluons in k-factorized matrix form, so as to be consistent, at small
x, with BFKL gluon evolution
Defines, by construction, some unintegrated partonic densities at
any x, and provides the resummed Hard Pomeron exponent and
the Splitting Functions matrix

Main construction criteria for the matrix kernel
Should incorporate exactly NLO DGLAP matrix evolution and the
NLx BFKL kernel
Should satisfy RG constraints in both ordered and antiordered
collinear regions, and thus the γ ↔ 1 − γ + ω symmetry (below)
Is assumed to satisfy the Minimal-pole Assumption in the γ- and
ω- expansions (see below)
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BFKL vs. DGLAP evolution
Recall: DGLAP is evolution equation for PDF fa(Q2)in hard scale Q2

and defines the anomalous dimension matrix Γ(ω), with the moment
index ω = ∂/∂Y conjugated to Y = log 1/x

∂

∂t
fa =

∂

∂ log Q2
fa = [Γ(ω)]abfb

BFKL is evolution equation in Y for unintegrated PDF F(Y, k2), and
defines the kernel K(γ), with γ = ∂/∂t conjugated to t = log k

2

ωF =
∂

∂Y
F = K(γ)F

If k-factorization is used, DGLAP evolution of
the Green’s function G corresponds to either
the ordered k � k′ � ...k0 or the antiordered
momenta, while BFKL incorporates all possi-
ble orderings
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Matrix Kernel Construction
At frozen αs, our RG-improved matrix kernel is expanded in the form
K(ᾱs, γ, ω) = ᾱsK0(γ, ω) + ᾱ2

sK1(γ, ω) and satisfies the minimal-pole
assumption in the γ- and ω- expansions (γ = 0 ↔ ordered k’s)

K(ᾱs, γ, ω) = (1/γ) K(0)(ᾱs, ω) + K(1)(ᾱs, ω) + O(γ)

= (1/ω) 0K(ᾱs, γ) + 1K(ᾱs, γ) + O(ω)

from which DGLAP anomalous dimension matrix Γ and BFKL kernel χ:

Γ0 = K
(0)
0 (ω); Γ1 = K

(0)
1 (ω) + K

(1)
0 (ω)Γ0(ω); ...

χ0 = [0K0(γ)]gg; χ1 = [0K1(γ) + 0K0(γ) 1K0(γ)]gg; ...

Such expressions used to constrain K0 and K1 iteratively to yield the
known NLO/NLx evolution, and approximate momentum
conservation
RG constraints in both ordered and antiordered collinear regions are
met by the γ ↔ 1 + ω − γ symmetry of the kernel.
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The Matrix Kernel
K0 =

0

@

Γ0
qq(ω)χω

c (γ) Γ0
qg(ω)χω

c (γ)

+∆qg(γ, ω)

Γ0
gq(ω)χω

c (γ)
ˆ

Γ0
gg(ω) − 1

ω

˜

χω
c (γ) + 1

ω
χω

0
(γ)

1

A

K0 has simple poles in γ (in χω
c and χω

0
) and simple poles in ω in the gluon row

No ω-poles are present in the quark row, consistently with LO DGLAP and
reggeization of the quark at ω = −1. We keep this structure also in K1

At NLO Γ1
qq and Γ1

qg contain ᾱ
2

s

ω
. Instead of adding such terms in K1 (see above) we

add a proper non-singular ∆qg(γ, ω) term
K1 is obtained by adding NLO DGLAP matrix Γ1 and NLx BFKL kernel χ1 (in K1,gg)
with the subtractions due to the γ- and ω- expansions explained before
In (k, x) space one has the k ↔ k

′ and x ↔ xk2/k′2 symmetry of the matrix
elements and running coupling is introduced

K(k, k′; x) = ᾱs(k
2

>)K0(k, k′; x) + ᾱ2

s (k2

>)K1(k, k′; x)

(the scale k
2
> ≡ max(k2, k′2) is replaced by (k − k

′)2 in front of the BFKL kernel χω
0

)
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Remarks
Reproducing both low order DGLAP and BFKL evolutions provides
novel Consistency Relations between the matrix k-factorization
scheme and MS. They are satisfied at NLO/NLx accuracy

A small violation would appear at NNLO: the simple- pole assumption
in ω-space implies that [Γ2]gq = (CF /CA)[Γ2]gg at order α3

s/ω
2,

violated by (nf/N2
c )-suppressed terms (≤ 0.5 % for nf ≤ 6) in MS

(taken from Moch,Vermaseren, Vogt 2004)
Note a source of ambiguity: integrated PDF are defined at γ ∼ 0, all
ω; but unintegrated ones are well defined by k-factorization around
different ω values: ω ∼ 0 (gluon) and ω ∼ −1 (quark)
We choose the NLO/NLx scheme: incorporates exact MS anomalous
dimension up to NLO and high-energy NLx BFKL kernel for the gluon
channel
Frozen coupling results are partly analytical, running coupling
splitting functions obtained by a numerical deconvolution method.
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Results: Hard Pomeron Exponent
Frozen-αs exponent ωs(αs). LO/NLx scheme has only gg entry in K1
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 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

ω
s
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NLx-NLO, nf = 4
NLx-NLO, nf = 0
NLx-LO  , nf = 0

1-channel B

Modest decrease from nf -dependence (running αs not included)
LO/NLx scheme joins smoothly the gluon-channel limit at nf = 0
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Effective Eigenvalue Functions (nf = 4)
There are two, frozen αs, resummed eigenvalue functions: ω = χ±(αs, γ)

-0.5
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-0.5  0  0.5  1  1.5  2

χ e
ff

γ

αs = 0.2   nf = 4
NLx-LO  
NLx-NLO

 0.3

 0.4

Fixed points at γ = 0, 2 and ω = 1 ⇒ momentum conservation
in both collinear and anti-collinear limits.
New subleading eigenvalue χ−
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Effective Eigenvalue Functions (nf = 0)
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Modest nf -dependence of χ+(αs, γ). NLx-LO scheme recovers the
known gluon-channel result (in agreement with ABF) at nf = 0.
Level crossing of χ− and χ+ in the nf = 0 limit
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Resummed Splitting Function Matrix
NLO+ scheme includes, besides NLO, also NNLO terms ∼ α3

s/ω
2
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scheme B (nf=0)

Infrared cutoff independence insures (matrix) collinear factorization
At intermediate x ' 10−3 resummed Pgg and Pgq show a shallow dip
Small-x rise of novel Pqg and Pqq delayed down to x ' 10−4

Scale uncertainty band (0.25<x2
µ<4) larger for the (small) Pqa entries
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At intermediate x ' 10−3 resummed Pgg and Pgq show a shallow dip
Small-x rise of novel Pqg and Pqq delayed down to x ' 10−4

Scale uncertainty band (0.25<x2
µ<4) larger for the (small) Pqa entries
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Conclusions
We propose a small-x evolution scheme in matrix form

Quarks and gluons treated on the same ground
Splitting functions already (closely) in MS scheme

We fix the NLO/NLx matrix factorization scheme by
further requiring “symmetry” and “minimal poles”.
Hard Pomeron and leading eigenvalue function are
stable, with modest nf -dependence.
New subleading eigenvalue is obtained
Resummed splitting functions Pga show a shallow dip,
smallx increase of Pqa delayed to x ' 10

−4. Overall,
gentle matching of low order with resummation
Still need coefficients with comparable accuracy:
take first LO impact factors with “exact kinematics”
On the whole, it looks quite nice!

Marcello Ciafaloni A Matrix formulation for small-x RG improved evolution RadCor Conference, GGI (Florence), October 2007 – p.13/13



Conclusions
We propose a small-x evolution scheme in matrix form

Quarks and gluons treated on the same ground
Splitting functions already (closely) in MS scheme

We fix the NLO/NLx matrix factorization scheme by
further requiring “symmetry” and “minimal poles”.

Hard Pomeron and leading eigenvalue function are
stable, with modest nf -dependence.
New subleading eigenvalue is obtained
Resummed splitting functions Pga show a shallow dip,
smallx increase of Pqa delayed to x ' 10

−4. Overall,
gentle matching of low order with resummation
Still need coefficients with comparable accuracy:
take first LO impact factors with “exact kinematics”
On the whole, it looks quite nice!

Marcello Ciafaloni A Matrix formulation for small-x RG improved evolution RadCor Conference, GGI (Florence), October 2007 – p.13/13



Conclusions
We propose a small-x evolution scheme in matrix form

Quarks and gluons treated on the same ground
Splitting functions already (closely) in MS scheme

We fix the NLO/NLx matrix factorization scheme by
further requiring “symmetry” and “minimal poles”.
Hard Pomeron and leading eigenvalue function are
stable, with modest nf -dependence.
New subleading eigenvalue is obtained
Resummed splitting functions Pga show a shallow dip,
smallx increase of Pqa delayed to x ' 10

−4. Overall,
gentle matching of low order with resummation

Still need coefficients with comparable accuracy:
take first LO impact factors with “exact kinematics”
On the whole, it looks quite nice!

Marcello Ciafaloni A Matrix formulation for small-x RG improved evolution RadCor Conference, GGI (Florence), October 2007 – p.13/13



Conclusions
We propose a small-x evolution scheme in matrix form

Quarks and gluons treated on the same ground
Splitting functions already (closely) in MS scheme

We fix the NLO/NLx matrix factorization scheme by
further requiring “symmetry” and “minimal poles”.
Hard Pomeron and leading eigenvalue function are
stable, with modest nf -dependence.
New subleading eigenvalue is obtained
Resummed splitting functions Pga show a shallow dip,
smallx increase of Pqa delayed to x ' 10

−4. Overall,
gentle matching of low order with resummation
Still need coefficients with comparable accuracy:
take first LO impact factors with “exact kinematics”

On the whole, it looks quite nice!

Marcello Ciafaloni A Matrix formulation for small-x RG improved evolution RadCor Conference, GGI (Florence), October 2007 – p.13/13



Conclusions
We propose a small-x evolution scheme in matrix form

Quarks and gluons treated on the same ground
Splitting functions already (closely) in MS scheme

We fix the NLO/NLx matrix factorization scheme by
further requiring “symmetry” and “minimal poles”.
Hard Pomeron and leading eigenvalue function are
stable, with modest nf -dependence.
New subleading eigenvalue is obtained
Resummed splitting functions Pga show a shallow dip,
smallx increase of Pqa delayed to x ' 10

−4. Overall,
gentle matching of low order with resummation
Still need coefficients with comparable accuracy:
take first LO impact factors with “exact kinematics”
On the whole, it looks quite nice!

Marcello Ciafaloni A Matrix formulation for small-x RG improved evolution RadCor Conference, GGI (Florence), October 2007 – p.13/13


	
	
	Generalizing BFKL and DGLAP eqs
	
	BFKL vs. DGLAP evolution
	Matrix Kernel Construction
	The Matrix Kernel
	Remarks
	Results: Hard Pomeron Exponent
	Effective Eigenvalue Functions ($n_f=4$)
	Effective Eigenvalue Functions ($n_f=0$)
	Resummed Splitting Function Matrix
	Conclusions

