A Matrix Formulation for Small-*x* RG Improved Evolution

Marcello Ciafaloni

ciafaloni@fi.infn.it

University of Florence and INFN Florence (Italy)

In collaboration with:

D. Colferai G.P. Salam A.M. Staśto

RadCor Conference, G

GGI (Florence),

October 2007

- Some "historical" physical problems
 - Reliable description of rising "hard" cross sections and structure functions at high energies
 - Precise determination of parton splitting functions at small-x while keeping their well known behaviour at larger-x;
 - Providing a small-x resummation in matrix form: quarks and gluons are treated on the same ground and in a collinear factorization scheme as close as possible to MS

- Some "historical" physical problems
 - Reliable description of rising "hard" cross sections and structure functions at high energies
 - Precise determination of parton splitting functions at small-x while keeping their well known behaviour at larger-x;
 - Providing a small-x resummation in matrix form: quarks and gluons are treated on the same ground and in a collinear factorization scheme as close as possible to MS
- Outline
 - Generalizing BFKL and DGLAP evolutions
 - Criteria and mechanism of matrix kernel construction
 - Resummed results and partonic splitting function matrix
 - Conclusions

Generalizing BFKL and DGLAP eqs

- The BFKL equation (1976) predicts rising cross-sections but
 - Leading log predictions overestimate the hard Pomeron exponent, while NLL corrections are large, negative, and may make it ill-defined (Fadin, Lipatov; Camici, Ciafaloni: 1998)
 - Low order DGLAP evolution is consistent with rise of HERA SF, with marginal problems (hints of negative gluon density)
 - Need to reconcile BFKL and DGLAP approaches

Generalizing BFKL and DGLAP eqs

- The BFKL equation (1976) predicts rising cross-sections but
 - Leading log predictions overestimate the hard Pomeron exponent, while NLL corrections are large, negative, and may make it ill-defined (Fadin, Lipatov; Camici, Ciafaloni: 1998)
 - Low order DGLAP evolution is consistent with rise of HERA SF, with marginal problems (hints of negative gluon density)
 - Need to reconcile BFKL and DGLAP approaches
- Collinear + small-x Resummations
 - In the last decade, various (doubly) resummed approaches (CCS + CCSS; Altarelli, Ball, Forte; Thorne, White ...)
 - Main idea: to incorporate RG constraints in the BFKL kernel Output: effective (resummed) BFKL eigenvalue $\chi_{eff}(\gamma)$ or the "dual" DGLAP anomalous dimension $\Gamma_{eff}(\omega)$ (+ running α_s)
 - So far, only the gluon channel is treated self-consistently; the quark channel is added by *k*-factorization of the $q \bar{q}$ dipole

The matrix approach

- Generalizes DGLAP self-consistent evolution for quarks and gluons in k-factorized matrix form, so as to be consistent, at small x, with BFKL gluon evolution
- Defines, by construction, some unintegrated partonic densities at any x, and provides the resummed Hard Pomeron exponent and the Splitting Functions matrix

– p.4/1

The matrix approach

- Generalizes DGLAP self-consistent evolution for quarks and gluons in k-factorized matrix form, so as to be consistent, at small x, with BFKL gluon evolution
- Defines, by construction, some unintegrated partonic densities at any x, and provides the resummed Hard Pomeron exponent and the Splitting Functions matrix
- Main construction criteria for the matrix kernel
 - Should incorporate exactly NLO DGLAP matrix evolution and the NLx BFKL kernel
 - Should satisfy RG constraints in both ordered and antiordered collinear regions, and thus the $\gamma \leftrightarrow 1 \gamma + \omega$ symmetry (below)
 - Is assumed to satisfy the Minimal-pole Assumption in the γ and ω expansions (see below)

BFKL vs. DGLAP evolution

Recall: DGLAP is evolution equation for PDF $f_a(Q^2)$ in hard scale Q^2 and defines the anomalous dimension matrix $\Gamma(\omega)$, with the moment index $\omega = \partial/\partial Y$ conjugated to $Y = \log 1/x$

$$\frac{\partial}{\partial t}f_a = \frac{\partial}{\partial \log Q^2}f_a = [\Gamma(\boldsymbol{\omega})]_{ab}f_b$$

BFKL vs. DGLAP evolution

Recall: DGLAP is evolution equation for PDF $f_a(Q^2)$ in hard scale Q^2 and defines the anomalous dimension matrix $\Gamma(\omega)$, with the moment index $\omega = \partial/\partial Y$ conjugated to $Y = \log 1/x$

$$\frac{\partial}{\partial t}f_a = \frac{\partial}{\partial \log Q^2}f_a = [\Gamma(\boldsymbol{\omega})]_{ab}f_b$$

BFKL is evolution equation in Y for unintegrated PDF $\mathcal{F}(Y, k^2)$, and defines the kernel $\mathcal{K}(\gamma)$, with $\gamma = \partial/\partial t$ conjugated to $t = \log k^2$

$$\omega \mathcal{F} = \frac{\partial}{\partial Y} \mathcal{F} = \mathcal{K}(\gamma) \mathcal{F}$$

– p.5/1;

BFKL vs. DGLAP evolution

Recall: DGLAP is evolution equation for PDF $f_a(Q^2)$ in hard scale Q^2 and defines the anomalous dimension matrix $\Gamma(\omega)$, with the moment index $\omega = \partial/\partial Y$ conjugated to $Y = \log 1/x$

$$\frac{\partial}{\partial t}f_a = \frac{\partial}{\partial \log Q^2}f_a = [\Gamma(\boldsymbol{\omega})]_{ab}f_b$$

BFKL is evolution equation in Y for unintegrated PDF $\mathcal{F}(Y, k^2)$, and defines the kernel $\mathcal{K}(\gamma)$, with $\gamma = \partial/\partial t$ conjugated to $t = \log k^2$

$$\omega \mathcal{F} = \frac{\partial}{\partial Y} \mathcal{F} = \mathcal{K}(\gamma) \mathcal{F}$$

If *k*-factorization is used, DGLAP evolution of the Green's function *G* corresponds to either the ordered $k \gg k' \gg ...k_0$ or the antiordered momenta, while BFKL incorporates all possible orderings

– p.5/1;

Matrix Kernel Construction

At frozen α_s , our RG-improved matrix kernel is expanded in the form $\mathcal{K}(\bar{\alpha}_s, \gamma, \omega) = \bar{\alpha}_s \mathcal{K}_0(\gamma, \omega) + \bar{\alpha}_s^2 \mathcal{K}_1(\gamma, \omega)$ and satisfies the minimal-pole assumption in the γ - and ω - expansions ($\gamma = 0 \leftrightarrow$ ordered k's)

$$\mathcal{K}(\bar{\alpha}_{\rm s},\gamma,\omega) = (1/\gamma) \ \mathcal{K}^{(0)}(\bar{\alpha}_{\rm s},\omega) + \mathcal{K}^{(1)}(\bar{\alpha}_{\rm s},\omega) + O(\gamma)$$
$$= (1/\omega) \ _{0}\mathcal{K}(\bar{\alpha}_{\rm s},\gamma) + _{1}\mathcal{K}(\bar{\alpha}_{\rm s},\gamma) + O(\omega)$$

from which DGLAP anomalous dimension matrix Γ and BFKL kernel χ :

$$\Gamma_{0} = \mathcal{K}_{0}^{(0)}(\omega); \quad \Gamma_{1} = \mathcal{K}_{1}^{(0)}(\omega) + \mathcal{K}_{0}^{(1)}(\omega)\Gamma_{0}(\omega); \dots$$
$$\boldsymbol{\chi}_{0} = [{}_{0}\mathcal{K}_{0}(\gamma)]_{gg}; \quad \boldsymbol{\chi}_{1} = [{}_{0}\mathcal{K}_{1}(\gamma) + {}_{0}\mathcal{K}_{0}(\gamma) {}_{1}\mathcal{K}_{0}(\gamma)]_{gg}; \dots$$

Matrix Kernel Construction

At frozen α_s , our RG-improved matrix kernel is expanded in the form $\mathcal{K}(\bar{\alpha}_s, \gamma, \omega) = \bar{\alpha}_s \mathcal{K}_0(\gamma, \omega) + \bar{\alpha}_s^2 \mathcal{K}_1(\gamma, \omega)$ and satisfies the minimal-pole assumption in the γ - and ω - expansions ($\gamma = 0 \leftrightarrow$ ordered k's)

$$\mathcal{K}(\bar{\alpha}_{\rm s}, \gamma, \omega) = (1/\gamma) \ \mathcal{K}^{(0)}(\bar{\alpha}_{\rm s}, \omega) + \mathcal{K}^{(1)}(\bar{\alpha}_{\rm s}, \omega) + O(\gamma)$$
$$= (1/\omega) \ _{0}\mathcal{K}(\bar{\alpha}_{\rm s}, \gamma) + {}_{1}\mathcal{K}(\bar{\alpha}_{\rm s}, \gamma) + O(\omega)$$

from which DGLAP anomalous dimension matrix Γ and BFKL kernel χ :

$$\Gamma_{0} = \mathcal{K}_{0}^{(0)}(\omega); \quad \Gamma_{1} = \mathcal{K}_{1}^{(0)}(\omega) + \mathcal{K}_{0}^{(1)}(\omega)\Gamma_{0}(\omega); \dots$$

$$\boldsymbol{\chi}_{0} = [{}_{0}\mathcal{K}_{0}(\gamma)]_{gg}; \quad \boldsymbol{\chi}_{1} = [{}_{0}\mathcal{K}_{1}(\gamma) + {}_{0}\mathcal{K}_{0}(\gamma) {}_{1}\mathcal{K}_{0}(\gamma)]_{gg}; \dots$$

Such expressions used to constrain K₀ and K₁ iteratively to yield the known NLO/NLx evolution, and approximate momentum conservation

Matrix Kernel Construction

At frozen α_s , our RG-improved matrix kernel is expanded in the form $\mathcal{K}(\bar{\alpha}_s, \gamma, \omega) = \bar{\alpha}_s \mathcal{K}_0(\gamma, \omega) + \bar{\alpha}_s^2 \mathcal{K}_1(\gamma, \omega)$ and satisfies the minimal-pole assumption in the γ - and ω - expansions ($\gamma = 0 \leftrightarrow$ ordered k's)

$$\mathcal{K}(\bar{\alpha}_{\rm s}, \gamma, \omega) = (1/\gamma) \, \mathcal{K}^{(0)}(\bar{\alpha}_{\rm s}, \omega) + \mathcal{K}^{(1)}(\bar{\alpha}_{\rm s}, \omega) + O(\gamma)$$
$$= (1/\omega) \, _{0}\mathcal{K}(\bar{\alpha}_{\rm s}, \gamma) + _{1}\mathcal{K}(\bar{\alpha}_{\rm s}, \gamma) + O(\omega)$$

from which DGLAP anomalous dimension matrix Γ and BFKL kernel χ :

$$\Gamma_{0} = \mathcal{K}_{0}^{(0)}(\omega); \quad \Gamma_{1} = \mathcal{K}_{1}^{(0)}(\omega) + \mathcal{K}_{0}^{(1)}(\omega)\Gamma_{0}(\omega); \dots$$

$$\boldsymbol{\chi}_{0} = [{}_{0}\mathcal{K}_{0}(\gamma)]_{gg}; \quad \boldsymbol{\chi}_{1} = [{}_{0}\mathcal{K}_{1}(\gamma) + {}_{0}\mathcal{K}_{0}(\gamma) {}_{1}\mathcal{K}_{0}(\gamma)]_{gg}; \dots$$

- Such expressions used to constrain \mathcal{K}_0 and \mathcal{K}_1 iteratively to yield the known NLO/NLx evolution, and approximate momentum conservation
- Solution RG constraints in both ordered and antiordered collinear regions are met by the $\gamma \leftrightarrow 1 + \omega \gamma$ symmetry of the kernel.

$$\mathcal{K}_{0} = \begin{pmatrix} \Gamma_{qq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \Gamma_{qg}^{0}(\omega)\chi_{c}^{\omega}(\gamma) \\ \Gamma_{gq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \left[\Gamma_{gg}^{0}(\omega) - \frac{1}{\omega}\right]\chi_{c}^{\omega}(\gamma) + \frac{1}{\omega}\chi_{0}^{\omega}(\gamma) \end{pmatrix}$$

.

$$\mathcal{K}_{0} = \begin{pmatrix} \Gamma^{0}_{qq}(\omega)\chi^{\omega}_{c}(\gamma) & \Gamma^{0}_{qg}(\omega)\chi^{\omega}_{c}(\gamma) \\ \Gamma^{0}_{gq}(\omega)\chi^{\omega}_{c}(\gamma) & \left[\Gamma^{0}_{gg}(\omega) - \frac{1}{\omega}\right]\chi^{\omega}_{c}(\gamma) + \frac{1}{\omega}\chi^{\omega}_{0}(\gamma) \end{pmatrix}$$

- \mathcal{I} \mathcal{K}_0 has simple poles in γ (in χ_c^{ω} and χ_0^{ω}) and simple poles in ω in the gluon row
- No ω -poles are present in the quark row, consistently with LO DGLAP and reggeization of the quark at $\omega = -1$. We keep this structure also in \mathcal{K}_1

– p.7/1

$$\mathcal{K}_{0} = \begin{pmatrix} \Gamma_{qq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \Gamma_{qg}^{0}(\omega)\chi_{c}^{\omega}(\gamma) + \Delta_{qg}(\gamma,\omega) \\ \Gamma_{gq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \left[\Gamma_{gg}^{0}(\omega) - \frac{1}{\omega}\right]\chi_{c}^{\omega}(\gamma) + \frac{1}{\omega}\chi_{0}^{\omega}(\gamma) \end{pmatrix}$$

- \checkmark \mathcal{K}_0 has simple poles in γ (in χ_c^{ω} and χ_0^{ω}) and simple poles in ω in the gluon row
- No ω -poles are present in the quark row, consistently with LO DGLAP and reggeization of the quark at $\omega = -1$. We keep this structure also in \mathcal{K}_1
- At NLO Γ_{qq}^1 and Γ_{qg}^1 contain $\frac{\bar{\alpha}_s^2}{\omega}$. Instead of adding such terms in \mathcal{K}_1 (see above) we add a proper non-singular $\Delta_{qg}(\gamma, \omega)$ term
- \checkmark \mathcal{K}_1 is obtained by adding NLO DGLAP matrix Γ_1 and NLx BFKL kernel χ_1 (in $\mathcal{K}_{1,gg}$) with the subtractions due to the γ and ω expansions explained before

$$\mathcal{K}_{0} = \begin{pmatrix} \Gamma_{qq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \Gamma_{qg}^{0}(\omega)\chi_{c}^{\omega}(\gamma) + \Delta_{qg}(\gamma,\omega) \\ \Gamma_{gq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \left[\Gamma_{gg}^{0}(\omega) - \frac{1}{\omega}\right]\chi_{c}^{\omega}(\gamma) + \frac{1}{\omega}\chi_{0}^{\omega}(\gamma) \end{pmatrix}$$

- \mathcal{I} \mathcal{K}_0 has simple poles in γ (in χ_c^{ω} and χ_0^{ω}) and simple poles in ω in the gluon row
- No ω -poles are present in the quark row, consistently with LO DGLAP and reggeization of the quark at $\omega = -1$. We keep this structure also in \mathcal{K}_1
- At NLO Γ_{qq}^1 and Γ_{qg}^1 contain $\frac{\bar{\alpha}_s^2}{\omega}$. Instead of adding such terms in \mathcal{K}_1 (see above) we add a proper non-singular $\Delta_{qg}(\gamma, \omega)$ term
- \checkmark \mathcal{K}_1 is obtained by adding NLO DGLAP matrix Γ_1 and NLx BFKL kernel χ_1 (in $\mathcal{K}_{1,gg}$) with the subtractions due to the γ and ω expansions explained before
- In (\mathbf{k}, x) space one has the $\mathbf{k} \leftrightarrow \mathbf{k}'$ and $x \leftrightarrow xk^2/k'^2$ symmetry of the matrix elements and running coupling is introduced

$$\mathcal{K}(\boldsymbol{k},\boldsymbol{k}';x) = \bar{\alpha}_{s}(\boldsymbol{k}_{>}^{2})\mathcal{K}_{0}(\boldsymbol{k},\boldsymbol{k}';x) + \bar{\alpha}_{s}^{2}(\boldsymbol{k}_{>}^{2})\mathcal{K}_{1}(\boldsymbol{k},\boldsymbol{k}';x)$$

(the scale $k_>^2 \equiv \max(k^2, k'^2)$ is replaced by $(k - k')^2$ in front of the BFKL kernel χ_0^{ω})

– p.7/1

Reproducing both low order DGLAP and BFKL evolutions provides novel Consistency Relations between the matrix k-factorization scheme and MS. They are satisfied at NLO/NLx accuracy

- Reproducing both low order DGLAP and BFKL evolutions provides novel Consistency Relations between the matrix k-factorization scheme and MS. They are satisfied at NLO/NLx accuracy
- A small violation would appear at NNLO: the simple- pole assumption in ω-space implies that $[\Gamma_2]_{gq} = (C_F/C_A)[\Gamma_2]_{gg}$ at order α_s^3/ω^2 , violated by (n_f/N_c^2) -suppressed terms (≤ 0.5 % for $n_f \le$ 6) in $\overline{\text{MS}}$ (taken from Moch, Vermaseren, Vogt 2004)

– p.8/1;

- Reproducing both low order DGLAP and BFKL evolutions provides novel Consistency Relations between the matrix k-factorization scheme and MS. They are satisfied at NLO/NLx accuracy
- A small violation would appear at NNLO: the simple- pole assumption in ω-space implies that $[\Gamma_2]_{gq} = (C_F/C_A)[\Gamma_2]_{gg}$ at order α_s^3/ω^2 , violated by (n_f/N_c^2) -suppressed terms (≤ 0.5 % for $n_f \le$ 6) in \overline{MS} (taken from Moch, Vermaseren, Vogt 2004)
- Note a source of ambiguity: integrated PDF are defined at $\gamma \sim 0$, all ω ; but unintegrated ones are well defined by k-factorization around different ω values: $\omega \sim 0$ (gluon) and $\omega \sim -1$ (quark)
- We choose the NLO/NLx scheme: incorporates exact MS anomalous dimension up to NLO and high-energy NLx BFKL kernel for the gluon channel

- Reproducing both low order DGLAP and BFKL evolutions provides novel Consistency Relations between the matrix k-factorization scheme and MS. They are satisfied at NLO/NLx accuracy
- A small violation would appear at NNLO: the simple- pole assumption in ω-space implies that $[\Gamma_2]_{gq} = (C_F/C_A)[\Gamma_2]_{gg}$ at order α_s^3/ω^2 , violated by (n_f/N_c^2) -suppressed terms (≤ 0.5 % for $n_f \le 6$) in \overline{MS} (taken from Moch, Vermaseren, Vogt 2004)
- Note a source of ambiguity: integrated PDF are defined at $\gamma \sim 0$, all ω ; but unintegrated ones are well defined by k-factorization around different ω values: $\omega \sim 0$ (gluon) and $\omega \sim -1$ (quark)
- We choose the NLO/NLx scheme: incorporates exact MS anomalous dimension up to NLO and high-energy NLx BFKL kernel for the gluon channel
- Frozen coupling results are partly analytical, running coupling splitting functions obtained by a numerical deconvolution method.

Results: Hard Pomeron Exponent

Frozen- α_s exponent $\omega_s(\alpha_s)$. LO/NLx scheme has only gg entry in \mathcal{K}_1

- Solution Modest decrease from n_f -dependence (running α_s not included)
- LO/NLx scheme joins smoothly the gluon-channel limit at $n_f = 0$

Effective Eigenvalue Functions ($n_f = 4$ **)**

There are two, frozen α_s , resummed eigenvalue functions: $\omega = \chi_{\pm}(\alpha_s, \gamma)$

Fixed points at $\gamma = 0, 2$ and $\omega = 1 \Rightarrow$ momentum conservation in both collinear and anti-collinear limits. New subleading eigenvalue χ_{-}

Effective Eigenvalue Functions ($n_f = 0$ **)**

Modest n_f -dependence of $\chi_+(\alpha_s, \gamma)$. NL*x*-LO scheme recovers the known gluon-channel result (in agreement with ABF) at $n_f = 0$. Level crossing of χ_- and χ_+ in the $n_f = 0$ limit

Resummed Splitting Function Matrix

Resummed Splitting Function Matrix

- Infrared cutoff independence insures (matrix) collinear factorization
- At intermediate $x \simeq 10^{-3}$ resummed P_{gg} and P_{gq} show a shallow dip
- Small-x rise of novel P_{qg} and P_{qq} delayed down to $x \simeq 10^{-4}$
- Scale uncertainty band (0.25< x_{μ}^{2} <4) larger for the (small) P_{qa} entries Marcello Ciafaloni A Matrix formulation for small-x RG improved evolution RadCor Conference, GGI (Florence), October 2007

- We propose a small-x evolution scheme in matrix form
 - Quarks and gluons treated on the same ground
 - \checkmark Splitting functions already (closely) in $\overline{\rm MS}$ scheme

- p.13/1

- We propose a small-x evolution scheme in matrix form
 - Quarks and gluons treated on the same ground
 - \checkmark Splitting functions already (closely) in $\overline{\rm MS}$ scheme
- We fix the NLO/NLx matrix factorization scheme by further requiring "symmetry" and "minimal poles".

- p.13/1

- We propose a small-x evolution scheme in matrix form
 - Quarks and gluons treated on the same ground
 - \checkmark Splitting functions already (closely) in $\overline{\rm MS}$ scheme
- We fix the NLO/NLx matrix factorization scheme by further requiring "symmetry" and "minimal poles".
- Hard Pomeron and leading eigenvalue function are stable, with modest n_f-dependence.
 New subleading eigenvalue is obtained
- Resummed splitting functions P_{ga} show a shallow dip, small x increase of P_{qa} delayed to $x \simeq 10^{-4}$. Overall, gentle matching of low order with resummation

- We propose a small-x evolution scheme in matrix form
 - Quarks and gluons treated on the same ground
 - \checkmark Splitting functions already (closely) in $\overline{\rm MS}$ scheme
- We fix the NLO/NLx matrix factorization scheme by further requiring "symmetry" and "minimal poles".
- Hard Pomeron and leading eigenvalue function are stable, with modest n_f-dependence.
 New subleading eigenvalue is obtained
- Resummed splitting functions P_{ga} show a shallow dip, small x increase of P_{qa} delayed to $x \simeq 10^{-4}$. Overall, gentle matching of low order with resummation
- Still need coefficients with comparable accuracy: take first LO impact factors with "exact kinematics"

- We propose a small-x evolution scheme in matrix form
 - Quarks and gluons treated on the same ground
 - \checkmark Splitting functions already (closely) in $\overline{\rm MS}$ scheme
- We fix the NLO/NLx matrix factorization scheme by further requiring "symmetry" and "minimal poles".
- Hard Pomeron and leading eigenvalue function are stable, with modest n_f-dependence.
 New subleading eigenvalue is obtained
- Resummed splitting functions P_{ga} show a shallow dip, small x increase of P_{qa} delayed to $x \simeq 10^{-4}$. Overall, gentle matching of low order with resummation
- Still need coefficients with comparable accuracy: take first LO impact factors with "exact kinematics"
- On the whole, it looks quite nice!

Marcello Ciafaloni

A Matrix formulation for small-x RG improved evolution