Higher-order QCD results on splitting functions and coefficient functions

Andreas Vogt (University of Liverpool)

Collaborations with Sven Moch, Mikhail Rogal and Jos Vermaseren

- NNLO timelike quark-quark, gluon-gluon splitting functions
- **•** Top-mediated Higgs decay into hadrons up to N³LO
- **J** Towards polarised deeply inelastic scattering at NNLO

RADCOR 2007, Florence, 03-10-07

Hard lepton-hadron processes in pQCD (I)

Inclusive deep-inelastic scattering and semi-inclusive l^+l^- annihilation

Left ightarrow right: DIS, q spacelike, $Q^2 = -q^2$ $P = \xi p$, $f^h_i =$ parton distributions

Top ightarrow bottom: l^+l^- , q timelike, $Q^2=q^2$

 $p = \xi P$, fragmentation distributions

Hard lepton-hadron processes in pQCD (I)

Inclusive deep-inelastic scattering and semi-inclusive l^+l^- annihilation

Left ightarrow right: DIS, q spacelike, $Q^2 = -q^2$ $P = \xi p$, $f^h_i =$ parton distributions

Top ightarrow bottom: l^+l^- , q timelike, $Q^2=q^2$

 $p=\xi P$, fragmentation distributions

(Un) polarised spacelike / timelike structure functions F_a [up to $\mathcal{O}(1/Q^2)$]

$$F_a^h(x,Q^2) = \sum_i \left[c_{a,i}(\alpha_s(\mu^2),\mu^2/Q^2) \otimes f_i^h(\mu^2) \right] (x)$$

Coefficient fct's: calculation at renormalization/factorization scale $\,\mu=Q$

Hard lepton-hadron processes in pQCD (II)

Parton/fragmentation distributions f_i : evolution equations

$$rac{d}{d\ln\mu^2}\,f_i(\xi,\mu^2)\ =\ \sum_k \left[P^{S,T}_{ik}(lpha_{ extsf{s}}(\mu^2))\otimes f_k(\mu^2)
ight](\xi)$$

⊗ = Mellin convolution. Initial conditions incalculable in perturbative QCD.

 \Rightarrow predictions: fit-analyses of reference processes, universality of $f_i(\xi, \mu^2)$

Hard lepton-hadron processes in pQCD (II)

Parton/fragmentation distributions f_i : evolution equations

$$rac{d}{d\ln\mu^2}\,f_i(\xi,\mu^2)\ =\ \sum_k \left[P^{S,T}_{ik}(lpha_{ extsf{s}}(\mu^2))\otimes f_k(\mu^2)
ight](\xi)$$

 \otimes = Mellin convolution. Initial conditions incalculable in perturbative QCD.

 \Rightarrow predictions: fit-analyses of reference processes, universality of $f_i(\xi, \mu^2)$

Expansion in α_s : splitting functions P, coefficient functions c_a

$$P = \alpha_{s} P^{(0)} + \alpha_{s}^{2} P^{(1)} + \alpha_{s}^{3} P^{(2)} + \dots$$
$$c_{a} = \alpha_{s}^{n_{a}} \left[c_{a}^{(0)} + \alpha_{s} c_{a}^{(1)} + \alpha_{s}^{2} c_{a}^{(2)} + \dots \right]$$

LO: approximate shape, rough estimate of rate

Hard lepton-hadron processes in pQCD (II)

Parton/fragmentation distributions f_i : evolution equations

$$rac{d}{d\ln\mu^2} f_i(\xi,\mu^2) \ = \ \sum_k \left[P^{S,T}_{ik}(lpha_{ extsf{s}}(\mu^2)) \otimes f_k(\mu^2)
ight] (\xi)$$

 \otimes = Mellin convolution. Initial conditions incalculable in perturbative QCD.

 \Rightarrow predictions: fit-analyses of reference processes, universality of $f_i(\xi, \mu^2)$

Expansion in α_s : splitting functions *P*, coefficient functions c_a

$$P = \alpha_{s} P^{(0)} + \alpha_{s}^{2} P^{(1)} + \alpha_{s}^{3} P^{(2)} + \dots$$
$$c_{a} = \alpha_{s}^{n_{a}} \left[c_{a}^{(0)} + \alpha_{s} c_{a}^{(1)} + \alpha_{s}^{2} c_{a}^{(2)} + \dots \right]$$

NLO: first real prediction of size of cross sections

NNLO, $P^{(2)}$, $c_a^{(2)}$: first serious error estimate of pQCD predictions

Three-loop calculation of unpolarised DIS

Optical theorem: $\gamma^* f$ total cross sections \leftrightarrow forward amplitudes

Coefficient of $(2p \cdot q)^N \leftrightarrow N$ -th moment $A^N = \int_0^1 dx \ x^{N-1} A(x)$

Three-loop calculation of unpolarised DIS

Optical theorem: $\gamma^* f$ total cross sections \leftrightarrow forward amplitudes

$\gamma^*(q)$ $\gamma^*(q)$		tree	1-loop	2-loop	3-loop
in the second se	$q\gamma$	1	3	25	359
	${f g}\gamma$		2	17	345
	h γ			2	56
1	qW	1	3	32	589
$\gamma^* $	qH		1	23	696
	gH	1	8	218	6378
	h <i>H</i>		1	33	1184
$f \swarrow f$	sum	3	18	350	9607

Coefficient of $(2p \cdot q)^N \leftrightarrow N$ -th moment $A^N = \int_0^1 dx \ x^{N-1} A(x)$

 $P_{\rm gg}, P_{\rm gq}$: DIS by Higgs exchange in heavy-top limit ($G^a_{\mu\nu}G^{\mu\nu}_a$ coupling) Gluon polarisation sum \leftrightarrow diagrams with external ghost h

From spacelike to timelike quantities (I)

DIS \rightarrow semi-incl. l^+l^- : crossing, $x \rightarrow 1/x$ relation for bare tree diagrams

Unrenormalized spacelike Hg structure function $F_{H,g}^{\,\mathrm{b}}$ for D=4-2arepsilon

$$F^{
m b}_{H,g}(a^{
m b}_{
m s},Q^2) \;=\; \delta(1-x) \,+\, \sum_{n=1}\, (a^{
m b}_{
m s})^n \left(Q^2/\mu^2
ight)^{-\,n\,arepsilon}\,F^{
m b}_{H,n}$$

Iterative decomposition in Hgg form factors and real-emission parts \mathcal{R}_n

$$\begin{split} F_{H,1}^{\rm b} &= 2 \,\mathcal{F}_1 \,\delta(1-x) + \mathcal{R}_1 \\ F_{H,2}^{\rm b} &= (2 \,\mathcal{F}_2 + \mathcal{F}_1^{\,2}) \delta(1-x) + 2 \,\mathcal{F}_1 \mathcal{R}_1 + \mathcal{R}_2 \\ F_{H,3}^{\rm b} &= (2 \,\mathcal{F}_3 + 2 \,\mathcal{F}_1 \mathcal{F}_2) \delta(1-x) + (2 \,\mathcal{F}_2 + \mathcal{F}_1^{\,2}) \mathcal{R}_1 + 2 \,\mathcal{F}_1 \mathcal{R}_2 + \mathcal{R}_3 \end{split}$$

From spacelike to timelike quantities (I)

DIS \rightarrow semi-incl. l^+l^- : crossing, $x \rightarrow 1/x$ relation for bare tree diagrams

Unrenormalized spacelike Hg structure function $F_{H,g}^{\,\mathrm{b}}$ for D=4-2arepsilon

$$F^{
m b}_{H,g}(a^{
m b}_{
m s},Q^2) \;=\; \delta(1-x) \,+\, \sum_{n=1}\, (a^{
m b}_{
m s})^n \left(Q^2/\mu^2
ight)^{-\,n\,arepsilon}\,F^{
m b}_{H,n}$$

Iterative decomposition in Hgg form factors and real-emission parts \mathcal{R}_n

$$\begin{split} F_{H,1}^{b} &= 2 \,\mathcal{F}_{1} \,\delta(1-x) + \mathcal{R}_{1} \\ F_{H,2}^{b} &= (2 \,\mathcal{F}_{2} + \mathcal{F}_{1}^{\,2}) \delta(1-x) + 2 \,\mathcal{F}_{1} \mathcal{R}_{1} + \mathcal{R}_{2} \\ F_{H,3}^{b} &= (2 \,\mathcal{F}_{3} + 2 \,\mathcal{F}_{1} \mathcal{F}_{2}) \delta(1-x) + (2 \,\mathcal{F}_{2} + \mathcal{F}_{1}^{\,2}) \mathcal{R}_{1} + 2 \,\mathcal{F}_{1} \mathcal{R}_{2} + \mathcal{R}_{3} \end{split}$$

Analytic cont. of $\,\mathcal{R}_n : q^2$ [$ightarrow (i\pi)^k$] , phase-space factor $x^{1-2arepsilon}$, $\,x
ightarrow 1/x$

$$\ln(1-x) \rightarrow \ln(1-x) - \ln x + i \pi$$

Curci et al. (80); Floratos et al. (81); Stratmann, Vogelsang (96); ...

Only \mathcal{R}_1 from trees only (same \mathcal{R}_1^T from 'i = 0'): \rightarrow 'small' 3-loop problem

From spacelike to timelike quantities (II)

Reassemble for timelike case (\mathcal{F}_n^T known), α_s and $G_{\mu\nu}^a G_a^{\mu\nu}$ renormalization: Timelike splitting and coefficient functions from mass-factorization relation

$$\begin{split} F_{H,g}^{(1)T} &= -\frac{1}{\varepsilon} P_{gg}^{(0)} + c_{H,g}^{(1)T} + \varepsilon a_{H,g}^{(1)T} + \varepsilon^2 b_{H,g}^{(1)T} + \dots \\ F_{H,g}^{(2)T} &= \frac{1}{2\varepsilon^2} \left\{ \left(P_{gi}^{(0)} + \beta_0 \delta_{gi} \right) P_{ig}^{(0)} \right\} - \frac{1}{2\varepsilon} \left\{ P_{gg}^{(1)T} + 2P_{gi}^{(0)} c_{H,i}^{(1)T} \right\} \\ &+ c_{H,g}^{(2)T} - P_{gi}^{(0)} a_{H,i}^{(1)T} + \varepsilon \left\{ a_{H,g}^{(2)T} - P_{gi}^{(0)} b_{H,i}^{(1)T} \right\} + \dots \\ F_{H,g}^{(3)T} &= -\frac{1}{6\varepsilon^3} \left\{ P_{gi}^{(0)} P_{ij}^{(0)} P_{jg}^{(0)} + \dots \right\} + \frac{1}{6\varepsilon^2} \left\{ 2P_{gi}^{(0)} P_{ig}^{(1)T} + \dots \right\} \\ &- \frac{1}{6\varepsilon} \left\{ 2P_{gg}^{(2)T} + 3P_{gi}^{(1)T} c_{H,i}^{(1)T} + 6P_{gi}^{(0)} c_{H,i}^{(2)T} - 3P_{gi}^{(0)} \left(P_{ij}^{(0)} + \beta_0 \delta_{ij} \right) a_{H,j}^{(1)T} \right\} \\ &+ c_{H,g}^{(3)T} - \frac{1}{2} P_{gi}^{(1)T} a_{H,i}^{(1)T} - P_{gi}^{(0)} a_{H,i}^{(2)T} + \frac{1}{2} P_{gi}^{(0)} \left(P_{ij}^{(0)} + \beta_0 \delta_{ij} \right) b_{H,j}^{(1)T} + \dots \end{split}$$

From spacelike to timelike quantities (II)

Reassemble for timelike case (\mathcal{F}_n^T known), α_s and $G_{\mu\nu}^a G_a^{\mu\nu}$ renormalization: Timelike splitting and coefficient functions from mass-factorization relation

$$\begin{split} F_{H,g}^{(1)T} &= -\frac{1}{\varepsilon} P_{gg}^{(0)} + c_{H,g}^{(1)T} + \varepsilon \, a_{H,g}^{(1)T} + \varepsilon^2 \, b_{H,g}^{(1)T} + \dots \\ F_{H,g}^{(2)T} &= \frac{1}{2\varepsilon^2} \left\{ \left(P_{gi}^{(0)} + \beta_0 \delta_{gi} \right) P_{ig}^{(0)} \right\} - \frac{1}{2\varepsilon} \left\{ P_{gg}^{(1)T} + 2P_{gi}^{(0)} c_{H,i}^{(1)T} \right\} \\ &+ c_{H,g}^{(2)T} - P_{gi}^{(0)} a_{H,i}^{(1)T} + \varepsilon \left\{ a_{H,g}^{(2)T} - P_{gi}^{(0)} b_{H,i}^{(1)T} \right\} + \dots \\ F_{H,g}^{(3)T} &= -\frac{1}{6\varepsilon^3} \left\{ P_{gi}^{(0)} P_{ij}^{(0)} P_{jg}^{(0)} + \dots \right\} + \frac{1}{6\varepsilon^2} \left\{ 2P_{gi}^{(0)} P_{ig}^{(1)T} + \dots \right\} \\ &- \frac{1}{6\varepsilon} \left\{ 2P_{gg}^{(2)T} + 3P_{gi}^{(1)T} c_{H,i}^{(1)T} + 6P_{gi}^{(0)} c_{H,i}^{(2)T} - 3P_{gi}^{(0)} \left(P_{ij}^{(0)} + \beta_0 \delta_{ij} \right) a_{H,j}^{(1)T} \right\} \\ &+ c_{H,g}^{(3)T} - \frac{1}{2} P_{gi}^{(1)T} a_{H,i}^{(1)T} - P_{gi}^{(0)} a_{H,i}^{(2)T} + \frac{1}{2} P_{gi}^{(0)} \left(P_{ij}^{(0)} + \beta_0 \delta_{ij} \right) b_{H,j}^{(1)T} + \dots \end{split}$$

Products = convolutions, performed via *N*-space using FORM Vermaseren Two-loop 'off-diagonal' quantities like $c_{H,q}^{(2)T}$: direct cont. of $F_{H,q}^{b}$ [with *i*]

Timelike results and checks

Second order including ε^2 terms, all cases: agreement with known results γ^*q,g : Rijken, van Neerven (96, ε^0); Mitov, Moch (06, ε^1). Hq,g: see below

Three-loop splitting functions: $P_{ps}^{(2)T}$; $P_{gg}^{(2)T}$ up to coeff. of $C_A^{\ 3}\zeta_2 \ln^2 x p_{gg}(x)$ (expected, cf. non-singlet case). Fixed by $n_f = 0$ momentum sum rule (MSR) Confirmed by extending NS approach of Dokshitzer, Marchesini, Salam (05)

$$P_{
m gg}^{(2)T-S}\Big|_{C_{\!A}^k n_f^{3-k}} \ = \ 2 \left[\left\{ \ln x \cdot P_{
m av.}^{(1)}
ight\} \otimes P_{
m gg}^{(0)} + \left\{ \ln x \cdot P_{
m gg}^{(0)}
ight\} \otimes P_{
m av.}^{(1)}
ight]_{C_{\!A}^k n_f^{3-k}}$$

Timelike results and checks

Second order including ε^2 terms, all cases: agreement with known results γ^*q,g : Rijken, van Neerven (96, ε^0); Mitov, Moch (06, ε^1). Hq,g: see below

Three-loop splitting functions: $P_{ps}^{(2)T}$; $P_{gg}^{(2)T}$ up to coeff. of $C_A^{\ 3}\zeta_2 \ln^2 x p_{gg}(x)$ (expected, cf. non-singlet case). Fixed by $n_f = 0$ momentum sum rule (MSR) Confirmed by extending NS approach of Dokshitzer, Marchesini, Salam (05)

$$P_{
m gg}^{(2)T-S}\Big|_{C_{\!A}^k n_f^{3-k}} \ = \ 2 \left[\left\{ \ln x \cdot P_{
m av.}^{(1)}
ight\} \otimes P_{
m gg}^{(0)} + \left\{ \ln x \cdot P_{
m gg}^{(0)}
ight\} \otimes P_{
m av.}^{(1)}
ight]_{C_{\!A}^k n_f^{3-k}}$$

 $P_{qg}^{(2)T}$ and $P_{gq}^{(2)T}$ except for ζ_2 terms \Rightarrow checks by non- ζ_2 parts of MSR MSR fixes ζ_2 in second moments: $P_{qg}^{(2)T}$, $P_{gq}^{(2)T}$ (N=2) completely known

Leading double logs $x^{-1} \ln^4 x$ agree with Mueller (81); Bassetto et al. (82)

Three-loop coefficient functions: $c_{Hq,g}^{(3)T}$ except for ζ_2 terms, more below

Third-order diagonal splitting functions

T: extreme small-x rise from $x \approx 10^{-2}$, in gg despite huge cancellations

Perturbative expansion for the timelike case

 $P_{\rm ff}^T$ stable for $x \gtrsim 0.1$, Mellin convolutions: wider range of applicability

NNLO timelike splitting functions at N = 2

$$\begin{split} P_{qq}^{(2)T}(N=2) &= -P_{gq}^{(2)T}(N=2) = -C_F^3 \left(\frac{54556}{243} - \frac{7264}{27}\zeta_2 - 320\zeta_3 + 256\zeta_2^2\right) \\ &- C_F^2 C_A \left(\frac{6608}{243} - \frac{2432}{9}\zeta_2 + \frac{2464}{9}\zeta_3 - \frac{128}{3}\zeta_2^2\right) - C_F C_A^2 \left(\frac{20920}{243} + \frac{64}{3}\zeta_3\right) \\ &- C_F C_A n_f \left(\frac{55}{81} + \frac{296}{27}\zeta_2 - \frac{512}{9}\zeta_3\right) - C_F^2 n_f \left(\frac{2281}{81} - \frac{32}{9}\zeta_2 + \frac{64}{9}\zeta_3\right) \\ P_{gg}^{(2)T}(N=2) &= -P_{qg}^{(2)T}(N=2) = -C_A^2 n_f \left(\frac{6232}{243} - \frac{2132}{27}\zeta_2 - \frac{128}{9}\zeta_3 + \frac{160}{3}\zeta_2^2\right) \\ &+ C_A n_f^2 \left(\frac{2}{27} - \frac{160}{27}\zeta_2 + \frac{64}{9}\zeta_3\right) - C_A C_F n_f \left(\frac{2681}{243} - \frac{760}{27}\zeta_2 + \frac{56}{9}\zeta_3\right) \\ &- C_F^2 n_f \left(\frac{10570}{243} - \frac{352}{27}\zeta_2 - \frac{32}{9}\zeta_3\right) - C_F n_f^2 \left(\frac{41}{9} - \frac{128}{27}\zeta_2\right) \end{split}$$

Numerical for QCD with $n_f = 5$ flavours: benign perturbative expansions $P_{gq}^T(N=2, n_f=5) \simeq 8\alpha_s/(9\pi) (1 - 0.687 \alpha_s + 0.447 \alpha_s^2 + ...)$ $P_{qg}^T(N=2, n_f=5) \simeq 5\alpha_s/(6\pi) (1 - 1.049 \alpha_s + 1.163 \alpha_s^2 + ...)$

NNLO complete for N = 2 analyses of incl. single-hadron production in e^+e^-

Top-mediated Higgs decay into hadrons

 $c_{Hq,g}^{(n)T}: \mathbb{N}^{n} \text{LO coeff. for single-hadron inclusive Higgs decay (large } m_{t} \text{ limit})$ $\Rightarrow \quad (C_{\phi,q}^{T} + C_{\phi,g}^{T})(N=2) = 1 + a_{s}c_{\phi}^{(1)} + a_{s}^{2}c_{\phi}^{(2)} + a_{s}^{3}c_{\phi}^{(3)} + \dots$

enters decay rate, with $\mathcal{L}_{\rm eff}$ prefactor known to N³LO Chetyrkin et al. (97)

Top-mediated Higgs decay into hadrons

 $c_{Hq,g}^{(n)T}$: NⁿLO coeff. for single-hadron inclusive Higgs decay (large m_t limit) $\Rightarrow (C_{\phi,q}^T + C_{\phi,g}^T)(N=2) = 1 + a_s c_{\phi}^{(1)} + a_s^2 c_{\phi}^{(2)} + a_s^3 c_{\phi}^{(3)} + \dots$ enters decay rate, with \mathcal{L}_{eff} prefactor known to N³LO Chetyrkin et al. (97)

Two- and three-loop expansion coefficients from analytic continuation

$$\begin{aligned} c_{\phi}^{(2)} &= C_A^2 \left(\frac{37631}{54} - \frac{242}{3} \zeta_2 - 110 \zeta_3 \right) - C_A n_f \left(\frac{6665}{27} - \frac{88}{3} \zeta_2 + 4 \zeta_3 \right) \\ &- C_F n_f \left(\frac{131}{3} - 24 \zeta_3 \right) + n_f^2 \left(\frac{508}{27} - \frac{8}{3} \zeta_2 \right) \\ c_{\phi}^{(3)} &= f(\zeta_2) + C_A^3 \left(\frac{15420961}{729} - \frac{178156}{27} \zeta_3 + \frac{3080}{3} \zeta_5 \right) + C_A n_f^2 \left(\frac{413308}{243} + \frac{56}{9} \zeta_3 \right) \\ &- C_A^2 n_f \left(\frac{2670508}{243} - \frac{9772}{9} \zeta_3 + \frac{80}{3} \zeta_5 \right) - C_F C_A n_f \left(\frac{23221}{9} - 1364 \zeta_3 - 160 \zeta_5 \right) \\ &+ C_F^2 n_f \left(\frac{221}{3} - 320 \zeta_5 + 192 \zeta_3 \right) + C_F n_f^2 \left(440 - 240 \zeta_3 \right) - n_f^3 \left(\frac{57016}{729} - \frac{64}{27} \zeta_3 \right) \end{aligned}$$

Non-trivial check of Chetyrkin et al. (97'); Baikov, Chetyrkin (06) despite $f(\zeta_2)$

Two-loop calculations of polarised DIS

- Q: fractions of proton spin carried by quarks, gluons, angular momentum? Helicity-dependent splitting functions ΔP and coefficient functions for g_1
 - Structure function g_1 analogous to $F_{2,3,L}$: $\Delta P_{qq}^{(1)}$, $\Delta P_{qg}^{(1)}$, $c_{g_1,q/g}^{(2)}$ Zijlstra, van Neerven (93) [Errata 97, 07]

 γ_5 : Larin scheme \Leftrightarrow 't Hooft, Veltman (72); Breitenlohner, Maison (77)

Two-loop calculations of polarised DIS

- **Q**: fractions of proton spin carried by quarks, gluons, angular momentum? Helicity-dependent splitting functions ΔP and coefficient functions for g_1
 - Structure function g_1 analogous to $F_{2,3,L}$: $\Delta P_{qq}^{(1)}$, $\Delta P_{qg}^{(1)}$, $c_{g_1,q/g}^{(2)}$ Zijlstra, van Neerven (93) [Errata 97, 07]

 γ_5 : Larin scheme \Leftrightarrow 't Hooft, Veltman (72); Breitenlohner, Maison (77)

All NLO splitting functions $\Delta P_{\rm ff'}^{(1)}$ using the OPE
Mertig, van Neerven (95) [beware of hep-ph version] γ_5 : reading-point method, Kreimer [et al.] (90 - 94)

Two-loop calculations of polarised DIS

- **Q**: fractions of proton spin carried by quarks, gluons, angular momentum? Helicity-dependent splitting functions ΔP and coefficient functions for g_1
 - Structure function g_1 analogous to $F_{2,3,L}$: $\Delta P_{qq}^{(1)}$, $\Delta P_{qg}^{(1)}$, $c_{g_1,q/g}^{(2)}$ Zijlstra, van Neerven (93) [Errata 97, 07]

 γ_5 : Larin scheme \Leftrightarrow 't Hooft, Veltman (72); Breitenlohner, Maison (77)

- All NLO splitting functions $\Delta P_{\rm ff'}^{(1)}$ using the OPE Mertig, van Neerven (95) [beware of hep-ph version] γ_5 : reading-point method, Kreimer [et al.] (90 - 94)
- All NLO splitting functions $\Delta P_{\rm ff'}^{(1)}$ using axial gauge Vogelsang (95/6) γ_5 : direct HVBM scheme, checks with Larin and reading point

Usually add. renormalization/factorization required, cf. Matiounine et al. (98)

Towards the polarised $\alpha_{\rm s}^3$ splitting functions

Programme: follow our three-loop calculation of unpolarised case but with

- **s** partly more complicated external-line projectors, e.g., $g\gamma$: $arepsilon_{\kappa\lambda pq}arepsilon_{\mu
 u pq}$
- ${}$ more diagrams (cf. qW vs. $q\gamma$ above), 900 three-loop diagrams for $g\gamma$
- Inew integrals, despite the existing database with $\mathcal{O}(10^5)$ entries
- ullet a pseudoscalar (Higgs) coupling to $\widetilde{G}^a_{\mu
 u}G^{\mu
 u}_a$ for $\Delta P^{(2)}_{
 m gq}$, $\Delta P^{(2)}_{
 m gg}$

Towards the polarised $\alpha_{\rm s}^3$ splitting functions

Programme: follow our three-loop calculation of unpolarised case but with

- partly more complicated external-line projectors, e.g., $g\gamma$: $arepsilon_{\kappa\lambda pq}arepsilon_{\mu
 u pq}$
- ${}$ more diagrams (cf. qW vs. $q\gamma$ above), 900 three-loop diagrams for $g\gamma$
- ${}_{igsim}$ new integrals, despite the existing database with ${\cal O}(10^5)$ entries
- ${}^{\, }$ a pseudoscalar (Higgs) coupling to $\, \widetilde{G}^a_{\mu
 u}G^{\mu
 u}_a$ for $\, \Delta P^{(2)}_{
 m gq}$, $\Delta P^{(2)}_{
 m gg}$

Present status: so far running $q\gamma$ and $g\gamma$: 2 loops done, 3 loops in progress

- NLO splitting functions $\Delta P^{(1)}_{qq,qg}$ correct (Larin γ_5 + Vogelsang fact. trf.)
- NNLO coefficient functions $c_{g_1, q/g}^{(2)}$ confirm final form of results of ZvN
- Image: n_f part of $\Delta P_{ns}^{(2)+}$ identical to unpol. $P_{ns}^{(2)-}$ after factorization transf.

Towards the polarised $\alpha_{\rm s}^3$ splitting functions

Programme: follow our three-loop calculation of unpolarised case but with

- Partly more complicated external-line projectors, e.g., $g\gamma$: $arepsilon_{\kappa\lambda pq}arepsilon_{\mu
 u pq}$
- ${}$ more diagrams (cf. qW vs. $q\gamma$ above), 900 three-loop diagrams for $g\gamma$
- Inew integrals, despite the existing database with $\mathcal{O}(10^5)$ entries
- ${}$ a pseudoscalar (Higgs) coupling to $\widetilde{G}^a_{\mu
 u}G^{\mu
 u}_a$ for $\Delta P^{(2)}_{
 m gq}$, $\Delta P^{(2)}_{
 m gg}$

Present status: so far running $q\gamma$ and $g\gamma$: 2 loops done, 3 loops in progress

- Image: NLO splitting functions $\Delta P_{qq,qg}^{(1)}$ correct (Larin γ_5 + Vogelsang fact. trf.)
- NNLO coefficient functions $c_{g_1, q/g}^{(2)}$ confirm final form of results of ZvN
- Image: n_f part of $\Delta P_{ns}^{(2)+}$ identical to unpol. $P_{ns}^{(2)-}$ after factorization transf.

Next step (soon \Rightarrow proceedings): $C_F n_f^2$ part of $\Delta P_{qg}^{(2)}$ Predictions: N = 1, Altarelli, Lampe (90); $\ln^4 x$ term, Blümlein, A.V. (96)