Results for Charged-Current Deep-Inelastic Scattering at three loops

Mikhail Rogal

Mikhail.Rogal@desy.de

DESY, Zeuthen, Germany

- RADCOR 2007, Florence, Italy, October 1-5, 2007 Results for Charged-CurrentDeep-Inelastic Scattering at three loops - p.1

Introduction to the Deep-Inelastic Scattering

Introduction to the Deep-Inelastic Scattering

Related experiments

- Introduction to the Deep-Inelastic Scattering
- Related experiments
- Perturbative QCD corrections at three loops in QCD

- Introduction to the Deep-Inelastic Scattering
- Related experiments
- Perturbative QCD corrections at three loops in QCD
- Results: its analysis and applications

Deep-inelastic lepton-hadron scattering ($e^{\pm}p$, $e^{\pm}n$, νp , $\bar{\nu}p$, ... - collisions)

Deep-inelastic lepton-hadron scattering ($e^{\pm}p, e^{\pm}n, \nu p, \overline{\nu}p, \dots$ - collisions)

Deep-inelastic lepton-hadron scattering ($e^{\pm}p, e^{\pm}n, \nu p, \overline{\nu}p, \dots$ - collisions)

Deep-inelastic lepton-hadron scattering ($e^{\pm}p, e^{\pm}n, \nu p, \overline{\nu}p, \dots$ - collisions)

k'

Kinematic variables

- momentum transfer $Q^2 = -q^2 > 0$
- Bjorken variable $x = Q^2/(2P \cdot q)$
- Inelasticity $y = (P \cdot q)/(P \cdot k)$

Gauge boson: γ, Z^0 - NC W^{\pm} - CC

DIS experiments

EW unification at HERA: neutral vs . charged current

DIS experiments

EW unification at HERA: neutral vs . charged current

Charged and neutral deep inelastic scattering cross sections become comparable when Q^2 reaches the electroweak scale

Polarized charged current DIS at HERA
 CC cross section modified by polarization:

$$\sigma_{CC}^{e^{\pm}p}(P_e) = (1 \pm P_e) \cdot \sigma_{CC}^{e^{\pm}p}(P_e = 0)$$

$$P_e = \frac{N_R - N_L}{N_R + N_L}$$

- Cross section is linearly proportional to polarization P_e
- Standard model prediction: vanishing cross section for $P_e = +1(-1)$ in $e^{-(+)}$ scattering

Calculation

Leading order diagrams at parton level

• Vector and axial-vector interaction $a\gamma^{\mu} + b\gamma^{\mu}\gamma^5$

Mellin moments with definite symmetry properties

• process dependent distinction even/odd N (from OPE)

$$F_i(N,Q^2) = \int_0^1 dx \, x^{N-2} F_i(x,Q^2), \quad i = 2, L$$

$$F_3(N,Q^2) = \int_0^1 dx \, x^{N-1} F_3(x,Q^2)$$

Known

NC (exchange via γ gauge boson) $\longrightarrow F_2^{eP}$ CC (exchange via W^{\pm} gauge boson) $\longrightarrow F_2^{\nu p + \bar{\nu} p}$, $F_3^{\nu p + \bar{\nu} p}$

even N for F_2 , odd N for F_3

- **I** NLO Bardeen, Buras, Duke, Muta '78
- N^2LO Zijlstra, van Neerven '92
- N^3LO Moch, Vermaseren, Vogt '05/'06

Known

NC (exchange via γ gauge boson) $\longrightarrow F_2^{eP}$ CC (exchange via W^{\pm} gauge boson) $\longrightarrow F_2^{\nu p + \bar{\nu} p}$, $F_3^{\nu p + \bar{\nu} p}$

even N for F_2 , odd N for F_3

- **I** NLO Bardeen, Buras, Duke, Muta '78
- N^2LO Zijlstra, van Neerven '92
- N³LO Moch, Vermaseren, Vogt '05/'06

New

- ▶ NC γZ interference at N³LO still missing
- CC (exchange via W^{\pm} gauge boson) $\longrightarrow F_2^{\nu p \bar{\nu} p}, F_3^{\nu p \bar{\nu} p}$ odd N for F_2 , even N for F_3
 - order N³LO already known Moch, M. R. '07
 best use: difference "even-odd" Moch, M. R. and Vogt. '07

The calculation

Big number of diagrams \Rightarrow need of automatization
e.g. DIS structure functions $F_{2,L}^{\nu p \pm \bar{\nu} p}$ - 1076 diagrams, $F_3^{\nu p \pm \bar{\nu} p}$ - 1314 diagrams up to 3 loops

The calculation

- Big number of diagrams \Rightarrow need of automatization
 e.g. DIS structure functions $F_{2,L}^{\nu p \pm \bar{\nu} p}$ 1076 diagrams, $F_3^{\nu p \pm \bar{\nu} p}$ 1314 diagrams up to 3 loops
- Iatest version of FORM and TFORM (multi-threaded version) Vermaseren, FORM version 3.2 (Apr 16 2007); Tentyukov, Vermaseren '07 TFORM up to 5 times faster with 8 threads!

The calculation

- Big number of diagrams \Rightarrow need of automatization
 e.g. DIS structure functions $F_{2,L}^{\nu p \pm \bar{\nu} p}$ 1076 diagrams, $F_3^{\nu p \pm \bar{\nu} p}$ 1314 diagrams up to 3 loops
- Iatest version of FORM and TFORM (multi-threaded version) Vermaseren, FORM version 3.2 (Apr 16 2007); Tentyukov, Vermaseren '07 TFORM up to 5 times faster with 8 threads!
- QGRAF → generation of diagrams for DIS structure functions Nogueira '93

The calculation

- Big number of diagrams \Rightarrow need of automatization
 e.g. DIS structure functions $F_{2,L}^{\nu p \pm \bar{\nu} p}$ 1076 diagrams, $F_3^{\nu p \pm \bar{\nu} p}$ 1314 diagrams up to 3 loops
- Iatest version of FORM and TFORM (multi-threaded version) Vermaseren, FORM version 3.2 (Apr 16 2007); Tentyukov, Vermaseren '07 TFORM up to 5 times faster with 8 threads!

Calculation of diagrams \mapsto

MINCER in FORM Larin, Tkachev, Vermaseren '91

What does MINCER do?

MINCER minces integrals

Results

Nucl. Phys. B 782, 51 (2007)

Checks

Shown Mellin moments for $F_{2,L}^{\nu P + \bar{\nu}P}$ (even) and $F_3^{\nu P + \bar{\nu}P}$ (odd) recalculated

Checks

- Known Mellin moments for $F_{2,L}^{\nu P + \bar{\nu}P}$ (even) and $F_3^{\nu P + \bar{\nu}P}$ (odd) recalculated
- All calculations with gauge parameter ξ for gluon propagator (Up to 10'th MM) $-a^{\mu\nu} + (1 \xi)a^{\mu}a^{\nu}$

$$i \frac{-g^{\mu\nu} + (1-\xi)q^{\mu}q^{\nu}}{q^2}$$

Checks

- Known Mellin moments for $F_{2,L}^{\nu P + \bar{\nu}P}$ (even) and $F_3^{\nu P + \bar{\nu}P}$ (odd) recalculated
- All calculations with gauge parameter \$\xi\$ for gluon propagator (Up to 10'th MM) $i \frac{-g^{\mu\nu} + (1-\xi)q^{\mu}q^{\nu}}{q^2}$
- Adler sum rule for DIS structure functions $\longrightarrow C_{2,1}^{ns} = 1$

$$\int_0^1 \frac{dx}{x} \left(F_2^{\nu P}(x, Q^2) - F_2^{\nu N}(x, Q^2) \right) = 2$$

- measures isospin of the nucleon in the quark-parton model
- neither perturbative nor non-perturbative corrections in QCD

Applications

Gottfried type sum rule (charged lepton(l)-proton(P) or neutron(N) DIS)

$$\int_0^1 \frac{dx}{x} \left(F_2^{lP}(x, Q^2) - F_2^{lN}(x, Q^2) \right)$$

Study of difference between subjects corresponding to even and odd Mellin moments

Broadhurst, Kataev, Maxwell '04 Suppressed by $[C_F - C_A/2] \sim 1/N_c$

Checked for anomalous dimensions

$$\delta\gamma^{\rm ns} = \gamma^{\rm ns+} - \gamma^{\rm ns-}$$

up to 3 loops.

Conjecture for coefficient functions

$$\delta C_{i,n}^{\mathrm{ns}} = C_{i,n}^{\nu P + \bar{\nu}P} - C_{i,n}^{\nu P - \bar{\nu}P}$$

with color coefficient $[C_F - C_A/2]$

arXiv:0708.3731v1 [hep-ph]

Results

$$\begin{split} \underline{\delta C_{2,3}^{ns}} &= +a_s^2 C_F [C_F - C_A/2] \left(-\frac{4285}{96} - 122\zeta_3 + \frac{671}{9}\zeta_2 + \frac{128}{5}\zeta_2^2 \right) \\ &+ a_s^3 C_F [C_F - C_A/2]^2 \left(\frac{1805677051}{466560} - \frac{2648}{9}\zeta_5 + \frac{10093427}{810}\zeta_3 - \frac{1472}{3}\zeta_3^2 - \frac{7787113}{1944}\zeta_2 + \frac{55336}{9}\zeta_2\zeta_3 - \frac{378838}{45}\zeta_2^2 - \frac{8992}{63}\zeta_2^3 \right) \\ &+ a_s^3 C_F^2 [C_F - C_A/2] \left(-\frac{5165481803}{1399680} + \frac{40648}{9}\zeta_5 - \frac{9321697}{810}\zeta_3 + \frac{1456}{3}\zeta_3^2 + \frac{8046059}{1944}\zeta_2 - 4984\zeta_2\zeta_3 + \frac{798328}{135}\zeta_2^2 - \frac{56432}{315}\zeta_2^3 \right) \\ &+ a_s^3 n_f C_F [C_F - C_A/2] \left(\frac{20396669}{116640} - \frac{1792}{9}\zeta_5 + \frac{405586}{405}\zeta_3 - \frac{139573}{486}\zeta_2 + \frac{1408}{9}\zeta_2\zeta_3 - \frac{50392}{135}\zeta_2^2 \right). \end{split}$$

▲ Remarkable: appearance of values of weight 6. **OPE based moments** $C_{2,L}^{\nu p - \bar{\nu} p} - 1, 3, 5, \dots; C_3^{\nu p - \bar{\nu} p} - 2, 4, 6, \dots \Rightarrow$ weight w of zeta functions up to 2l - 1 (l - number of loops) "Unnatural" moments $C_{2,L}^{\nu p + \bar{\nu} p} - 1, 3, 5, \dots; C_3^{\nu p + \bar{\nu} p} - 2, 4, 6, \dots \Rightarrow$ weight up to 2l

Results in *x***-Bjorken space**

- **Easy** to use parameterization, ready for phenomenology
- Known 5 Mellin moments, fit functional form (Ansatz)
- Two extremum curves A, B chosen out of about 50. It indicates the width of the uncertainty band

$$\begin{split} \delta c^{(3)}_{3,\,\textbf{A}}(x) &= (3.216\,L_1^2 + 44.50\,L_1 - 34.588)\,x_1 + 98.719\,L_0^2 + 2.6208\,L_0^5 \\ &\quad -n_f\left\{(0.186\,L_1 + 61.102\,(1+x))\,x_1 + 122.51\,xL_0 - 10.914\,L_0^2 \\ &\quad -2.748\,L_0^3\right\} , \\ \delta c^{(3)}_{3,\,\textbf{B}}(x) &= -(46.72\,L_1^2 + 267.26\,L_1 + 719.49\,x)\,x_1 - 171.98\,L_0 + 9.470\,L_0^3 \\ &\quad +n_f\left\{(0.8489\,L_1 + 67.928\,(1+\frac{x}{2}))\,x_1 + 97.922\,xL_0 - 17.070\,L_0^2 \\ &\quad -3.132\,L_0^3\right\} , \end{split}$$

where

$$L_0 = \ln(x), x_1 = (1 - x), L_1 = \ln(x_1).$$

Convolution of the α_s^3 **order CC coefficient functions**

LO (α_s^2) and **NLO** (α_s^3) of the differences for F_2 and F_L in CC DIS

NuTeV experiment - Paschos-Wolfenstein relation

Exact relation for massless quarks and isospin zero target in EW Paschos, Wolfenstein'73, Llewelin Smith'83

$$R^{-} = \frac{\sigma(\nu_{\mu}N \to \nu_{\mu}X) - \sigma(\bar{\nu}_{\mu}N \to \bar{\nu}_{\mu}X)}{\sigma(\nu_{\mu}N \to \mu^{-}X) - \sigma(\bar{\nu}_{\mu}N \to \mu^{+}X)} = \frac{1}{2} - \sin^{2}\theta_{W}$$

• measurement of $\sin^2 \theta_W$ NuTeV '01 :

Large deviations from Standard model expectations

QCD corrections to Paschos-Wolfenstein relation

Expansion in α_s and in isoscalar combination $u^- + d^-$, Davidson, Forte, Gambino, Rius, Strumia '01; Dobrescu, Ellis '03; Moch, McFarland '03,

 $q^- = \int dx \, x(q - \bar{q})$ - second Mellin moments of valence PDFs

$$\begin{aligned} R^{-} &= \frac{1}{2} - \sin^{2} \theta_{W} \\ &+ \left[1 - \frac{7}{3} \sin^{2} \theta_{W} + \frac{8\alpha_{s}}{9\pi} \left\{ 1 + \alpha_{s} 1.689 + \alpha_{s}^{2} (3.661 \pm 0.002) \right\} \left(\frac{1}{2} - \sin^{2} \theta_{W} \right) \right] \times \\ &\left(\frac{u^{-} - d^{-}}{u^{-} + d^{-}} - \frac{s^{-}}{u^{-} + d^{-}} + \frac{c^{-}}{u^{-} + d^{-}} \right) \end{aligned}$$

- QCD corrections in $\{\cdots\}$ with $\delta c_{2,L}^{(3)}(x)$. Under control, relevant: Moch, M. R., Vogt '07 $\{\cdots\} = \{1 + 0.42 + 0.23\}$ for $\alpha_s = 0.25$
- Main uncertainties in s⁻
 - either global fit
 Martin, Roberts, Stirling, Thorne '04; Lai, Nadolsky, Pumplin, Stump, Tung, Yuan '07
 - or generated by perturbative evolution
 Catani, de Florian, Rodrigo, Vogelsang '04

Summary

New results for fixed N Mellin moments at order α_s^3

 $C_{2,L}^{\nu p - \bar{\nu} p}$ (odd) and $C_3^{\nu p - \bar{\nu} p}$ (even)

- and differences "even-odd" in Mellin N-space
- practical approximations in x-space for "even-odd" differences available
 sufficient for HERA-CC, ν DIS (e.g. Alekhin makes use of it)

Summary

New results for fixed N Mellin moments at order α_s^3

 $C_{2,L}^{\nu p - \bar{\nu} p}$ (odd) and $C_3^{\nu p - \bar{\nu} p}$ (even)

- and differences "even-odd" in Mellin N-space
- practical approximations in x-space for "even-odd" differences available
 sufficient for HERA-CC, ν DIS (e.g. Alekhin makes use of it)
- I/ N_c suppression of "even-odd" conjecture of Broadhurst, Kataev, Maxwell '04 verified at three loops

Summary

New results for fixed N Mellin moments at order α_s^3

 $C_{2,L}^{\nu p - \bar{\nu} p}$ (odd) and $C_3^{\nu p - \bar{\nu} p}$ (even)

- and differences "even-odd" in Mellin N-space
- practical approximations in x-space for "even-odd" differences available
 sufficient for HERA-CC, ν DIS (e.g. Alekhin makes use of it)
- I/ N_c suppression of "even-odd" conjecture of Broadhurst, Kataev, Maxwell '04 verified at three loops
- Stability of QCD α_s expansion for Paschos-Wolfenstein relation

Backup slides

Feynman diag's into MINCER

Feed scalar two-point functions in MINCER

Mincer

 $\int dP \frac{\partial}{\partial P^{\mu}} \left[(P - l_j)^{\mu} \times I(l_1, ..., P, ...) \right] = 0 \text{ - integration by part identities}$ t'Hooft, Veltman'72; Chetyrkin , Tkachov '81 Leibniz, Newton :-) $P_1 P P_2$ $Q_1 Q_0 Q_2$

Triangle rule

Define

$$I(\alpha_0, \beta_1, \beta_2, \alpha_1, \alpha_2) = \int d^D P \frac{1}{(P^2)^{\alpha_0} ((P+P_1)^2)^{\beta_1} (P_1^2)^{\alpha_1} ((P+P_2)^2)^{\beta_2} (P_2^2)^{\alpha_2}}$$

and act the integrand with $\frac{\partial}{\partial P_{\mu}}P_{\mu} = D + P_{\mu}\frac{\partial}{\partial P_{\mu}}$. Result \Rightarrow Recursion relation:

$$I(\alpha_{0}, \beta_{1}, \beta_{2}, \alpha_{1}, \alpha_{2}) \times (D - 2\alpha_{0} - \beta_{1} - \beta_{2}) = \beta_{1}(I(\alpha_{0} - 1, \beta_{1} + 1, \beta_{2}, \alpha_{1}, \alpha_{2}) - I(\alpha_{0}, \beta_{1} + 1, \beta_{2}, \alpha_{1} - 1, \alpha_{2})) \\ \beta_{2}(I(\alpha_{0} - 1, \beta_{1}, \beta_{2} + 1, \alpha_{1}, \alpha_{2}) - I(\alpha_{0}, \beta_{1}, \beta_{2} + 1, \alpha_{1}, \alpha_{2} - 1))$$

In pictures

Classification of loop integrals

Classify according to topology of underlying two-point function

● top-level topology types ladder, benz, non-planar \Rightarrow

Using IBP identities more complicated topologies are reduced to simpler topologies

Strange asymetry

