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e Toroidal Reduction of Eleven-Dimensional Supergravity to
3<D<KI10

e Borel-Gauge Description of the Scalar Coset Manifolds
e Reduction of Pure D = 4 Gravity to D =2
e Reduction of Eleven-Dimensional Supergravity to D = 2

e Construction of Infinity of Conserved Currents

The description of the reductions to 3 < D < 10 and the Borel

gauge coset construction summarises results in hep-th/97101109,
Cremmer, Julia, LU and Pope.

The approach described here to understanding the Kac-Moody
symmetries of the reductions to D = 2 is work in progress by LU,
Perry, Pope and Stelle—

“Demystification of Kac-Moody Symmetries
in D =2"



Kaluza-Klein Reduction on Sll

Reduction on T™ can be broken up into a step-by-step reduction
on a sequence of circles. Consider the reduction of gravity and
a p-form potential,
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in the step from D + 1 to D dimensions:
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where all quantities on the RHS are independent of the circle
coordinate z. The constants o and @ are chosen such that
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with the latter ensuring the lower-dimensional metric is in the
Einstein frame, and the former fixing a canonical normalisation
for the kinetic term of the KK scalar ¢:
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Kaluza-Klein Reduction of Pure Gravity on T”l

At each successive step of reduction on Sl, the metric gives rise
to a metric and a new KK scalar (dilaton) and KK vector. Each

existing p-form potential gives rise to a p-form and a (p — 1)-
form potential. Note that a 1-form potential (such as an already
existing KK vector) gives a 1-form and a 0O-form potential, and
that the latter is an axionic scalar.

Pure gravity reduced on T™ will therefore have a set of n 1-forms

(1)) a set of 2n(n — 1) axionic scalars A(O)] (with 7 > i) from
the reductions of the 1-forms at subsequent steps; and a set of
n dilatonic scalars ¢ = (¢1, b, -+ , dn).

The kinetic term for each form field will have an exponential

—

prefactor of the form 65‘5, where the constant “dilaton vector” b
characterises the coupling of the dilatonic scalars to that partic-
ular form field:
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Reduction of D = 11 Supergravity on 7" to D =11 —n

D = 11 supergravity £ = R%1 — %ZE Flay A Fay + %F4 A Fgy N A,
reduced on T™ then gives
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where the dilaton vectors are given by
F(4) Metric
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Global Symmetry of Toroidally-Reduced Theoryl

Any theory including gravity, reduced on 17", will have at least
an SL(n,R) global symmetry that acts “internally” (i.e. it leaves
the lower-dimensional Einstein-frame metric invariant).

It corresponds to the subgroup of general coordinate transforma-
tions of the original theory comprising rigid SL(n,R) transforma-
tions in the torus T™:

oxt = 0, Syt = /\ij y)

If the original theory has an overall scaling symmetry (“trombone
symmetry” ), such as pure gravity or D = 11 supergravity:
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then volume-changing transformations are included too and this
global internal symmetry becomes GL(n,R).

If there are other form fields in the higher-dimensional theory, the
global symmetry may be enhanced further.

The global symmetry G is non-linearly realised on the scalar fields
(dilatons plus axions) in the reduced theory. These scalars lie in
a coset space K = G/H. The group G acts linearly on the other
form fields.



Global Symmetry of Toroidally-Reduced Pure Gravityl

The global symmetry can therefore conveniently be studied by
first focusing on the scalar sector. Consider first the reduction
of pure gravity from D-+n to D > 4. The scalar sector comprises

n dilatons ¢ and %n(n— 1) axions AZ('O)]- with dilaton vectors I;Z-j =
b; — bj, where b; - bj = 252'3' + 2/(D — 2).

T hese dilaton vectors are in one-to-one correspondence with the
positive roots of the A,,_1 = SL(n,R) algebra. The simple roots

are b; ;11, for 1 <i<n—1:
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O _— O —_— e e e e e —_— O —_— O

If reduced to D = 3, the KK 1-forms AZ('l), (with dilaton vectors

5};), can be dualised to give an additional n axions, with dilaton
vectors —b;. The symmetry enhances to A, = SL(n+ 1,R), with

{I;ij,—gz-} as positive roots, and —51 the extra simple root:



Global Symmetry of T"-Reduced D =11 Supergravityl

In a reduction on T to D = 11—n, we have n dilatons ¢, %n(n—l)
axions A(O) from the metric and n(n — 1)(n — 2) axions A(omk

—

from the 3- form A(3) These have dilatons vectors b;; = b; — bj
and @, = — b — b — by, respectively (@ = 3Z£ by).

In 3 < D <5 we obtain further axions by dualising form fields:

=5: A Dilaton vector —a 1
=4  *Ap) Dilaton vectors —a; 8

D =3: (*AZ('l) , %A (1)) Dilaton vectors (—b;, —d;j) 8 + 28
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In all dimensions 3 < D < 10, the full set of axion dilaton vectors
(including those coming “from dualisation when 3 < D <5) arein

one-to-one correspondence with the postive roots of E,, where,
for n < 5 we have

Ei = R, Er,=GL(2,R), Es=SL(3,R) x SL(2,R)

(1)
E, = SL(5,R), FEs=0(5,5)

T he simple roots are ajp3 and 5;-72-4_1 for1<:<n-—1.



The E, Symmetry of D = 11 Supergravity on T“l

b12 bo3 b34 bas bs6 be7 b7s
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b; i1 With ¢« <7 and dy23 generate the Eg Dynkin diagram

Vertices with indices exceeding n are to be deleted for n < 8.

We have exhibited the root structure of the dilaton vectors char-

acterising the couplings of the dilatons ¢ in the exponential pref-
actors of the axionic kinetic terms. We still need to show exactly
why this implies that the scalars are described by the coset man-
ifold En/K(FEy,), where K(Ey) is the maximal compact subgroup
of F,,.

The construction is extremely simple, by virtue of the fact that
the step-by-step reduction scheme naturally leads to a parame-
terisation of the coset representative in the Borel gauge.



SL(2,R)/O(2) Scalar Coset in Borel Gaugel

First consider a toy model, namely an SL(2,R)/O(2) scalar coset
model:

L= —%xdp A dp — Le?? xdx A dx
Defining
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the coset K = G/H with G = SL(2,R) and ‘H = O(2) has gener-
ators as follows:

K: H and (Ey+FE_-) (Non-Compact)
H: (Fyx—-E-) (Compact)

It is convenient to use the Borel gauge for writing the coset
representative:

Y = 6%¢H eXE'I- — ejgb €§¢X
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in terms of which we find

dyy—1

LHd¢ + Ey e%dx
3Hd¢ + 3(Ey + B-) ePdx + 3(Ey — B-) e¥dx

Since dyy—1 = P4+ @, where P is the projection into the Lie alge-
bra of the coset K and @ is the projection into the denominator
algebra 'H, we have

Py =do, Py = e? dx Q — e(bdx

The Cartan-Maurer equation d(dvV—1) — (dVVv—1) A (davv—1) =0
implies

dQQ —QNQ —-—PANP =0, DP=dP —QANP—-PANQ=0
The Lagrangian can be written as £ = —3(P;)? — 3(Py)?, and
the equations of motion are
DxP =20

The (right-acting) SL(2,R) global symmetry is V — OVA, where
O is a local O(2) compensator that restores V to Borel gauge.



T"-Reduced Supergravity Scalar Cosetsl

Introduce Cartan generators H, and positive-root generators (E;7, E¥/F)
corresponding to the axions (A(O)J A(O)ijk). They satisfy

[H,Eij: — bZ] Eij : [H,E”k] — ('—i’L_]]{i Eij
B/, E,Y] = 6l EBf —6f By, (B, Bk = _3gli piklm
(E7k B = 0  (for D> 6)

Defining V = V1 V>V3 with

Vi = e%gﬁ

v = [0 = AmaB2 A2 Alelrt Al Al
1<)

V3 = J[ it
i<j<k

we find that

AWVl =L1dg- 1+ Y 2 CF B Y 3O ik
1< 17k



Note that all the higher-order “transgression’” terms in the 1-form
field strengths are correctly produced. E.g.

) . k
Floyj = 75 dAn
k _ 11k __ <k
Vo= 1A+ Awy) 1 =68 — Ay + Al Afoy; + -

In dimensions 3 < D < 5 extra positive-root generators associated
with the additional axions coming from dualisations are needed.

These arise on the R.H.S. of [EWk Etmn] = ... Adding the
corresponding extra factors in the expression for the Borel-gauge
coset representative V, we again obtain the full set of 1-form field

strengths for all the axions from dyy—1.

This makes manifest the global symmetry under E,,, generated
by A € E,, with V — OVA, where O is a local compensating
transformation in K(FE,), the maximal compact subgroup of E,,.

For example, the coset is Eg/O(16) in D = 3.



Reduction to Two Dimensions|

Two new features arise upon further reduction to D = 2:

e Can no longer reduce to the Einstein frame (L ~ v/—gR+---).

e Dual of an axion is an axion. The dualisation of the scalar La-
grangian gives a non-locally related scalar Lagrangian with a

(non-commuting) global symmetry. Intertwining of the sym-
metries gives an infinite-dimensional algebra.

Example: Reduction of pure gravity in D = 4 to D = 2. This
would give an SL(2,R)/0O(2) scalar coset in D = 3 after dualising
the KK vector to an axion:

dsi = e¢ds% + e ?(dz1 + A(l))Q =

L3 = v=g(R- 3007~ 1 ?(F)?) =

L3 = v=g(R-500)? - 3>(9:)?) (2)
where e2? xF,y = dx. This axion reduces to an axion in D = 2.

We can instead leave the KK vector undualised in D = 3, giving
just an axion after the further reduction to D = 2. This is the

dual of the axion that would come from reduction of (2).



Misner-Matzner, Ehlers and Kac-Moodyl

The direct reduction to D = 2 with no dualisation in D = 3 is

~

3 _ ~
dsg = ¥ [ew_igp ds3 + e?(dz1 + xd2)? + ff(bdZ%]

which leads to the two-dimensional Lagrangian
Lo = ¢? /=g |R+0p- 05 — 3(09)2 - 1¢2 (0%)7|
Has an SL(2,R)4 global symmetry (Misner-Matzner), for frac-

tional linear transformations of ™ = y—l—ie_‘ﬁ, wth ¢ and {5 inert.

Dualise the axion ¥ according to ¢ = —¢—¢, ¥ = ¢+ ¢+ 3¢, and
e29+% «dy = dy (equivalent to full dualisation in D = 3). Gives

L=e?/—g|R+dp- 0y — 5(9¢)? — 3e2? (8x)?

which has an SL(2,R) g global symmetry (Ehlers) on (¢, x), with
@ and 4 inert.

The SL(2,R)4 and SL(2,R)g symmetries do not commute, and
in fact successive A and B transformations generate an infi-
nite sequence of conserved currents (Geroch ), closing on affine
SL(2,R).



'E9 Symmetry from D =11 Supergravity'

If a theory reduced to D = 3 (and fully dualised) has a K = G/H
scalar coset with dVV—1 = P4+ Q then in D =2 we get

£2=eW——g[R+a¢-aw—% (PA)2]
A

Thus reduction of the fully-dualised Eg-invariant supergravity La-
grangian in D = 3 gives an Eg-invariant Lagrangian in D = 2.

The simple roots are aj>3 and 57;,7;4_1 for1 <:<7,asin D = 3.

This is the analogue of the Ehlers SL(2,R) of the D = 4 gravity
reduction.

Now instead leave A,y and A);; undualised in D = 3, and reduce

them directly to axions in D = 2 (with dilaton vectors —I—I;Z- and
+ad;;). Splitting i = (1,a), for 2 < o < 8 we find that

ba, bag, @lag, @la

form the positive roots of Dg = O(16), with dqo3, ga,a—l—l and
58 as the simple roots. (The remaining axions form a linear
representation under Dg.) This Dg is the analogue of the Misner-
Matzner SL(2,R) of the D = 4 gravity reduction.



Thus we have the “Ehlers” Eg:

b1o bo3 b34 bas bs6 be7 b7s
o — o — o — o — o — o — o
o
a123

and the “Misner-Matzner” Dg:

bo3 b34 bas bse be7 b7s bs
o — o — o — o — o — o — o
0
a123

whose intertwining gives the affine Kac-Moody Ejg:

b1o bo3 b34 bas bs6 be7 b7s
o — o — o — o — o — o — o —
o



Intertwining in Flat-Space SL(2,R)/0(2) Cosetl

Consider first a flat-space D = 2 scalar coset model SL(2,R)/0(2).

For this model, £, = —%*dgb N dp — %62¢*dx A dx, with equations
of motion
dxdd — 2P xdy Ady = 0, d(e2? xdx) = 0

We can introduce a doubled formalism by first taking the d off
the second equation, and which then allows taking d off the first:

e2? *dx = duy, *dop — x dug = dug

The new fields uyp and ug form two members of a triplet that

transforms linearly under the manifest SL(2,R) symmetry of the
LLagrangian above. The triplet is completed by defining

du_ = 2x dug + (x> + e_2¢)du_|_

The conserved currents (J4, Jg, J—) = (xduy, *dug, *du—_) trans-
form linearly under infinitesimal SL(2,R) transformations as

0Jy = —€eoJy —eqJo, oJg=eqpJ_—e_Jy, oJ- =€+ e_Jp



We can write down a tilded set of currents, transforming linearly

e~

under SL(2,R) of the dualised variables, which are related by

p=—-¢, x=Uy, uy=x, ug=—Up— Xut
We also read off that in terms of the untilded variables
dii— = e*Pdy — 2uy dug — d(uﬁ_ dx)

This is indeed integrable (ddu_ = 0), but to solve it locally
requires introducing a new field, vy; then 4 = vy — uy (ug +
Xu_|_). This forms the 4+ component of a new triplet transforming
linearly under the original SL(2,R):

d’U_|_ = 62¢dx — U} duo —|— ugQ du_|_
—do + x equdx -+ %u_ duy — %u_|_ du_
—dyx + X2 62¢dx — 2xdo + ugdu— — u—_ dug

dvg
dv_

The intertwining can be continued ad infinitum, yielding a new
triplet of SL(2,R) currents at each step. These constitute the
currents of the affine SL(2, R) symmetry of the theory.

The generation of the Kac-Moody currents can be systematised,
and applied to a general coset model, using a ‘linearisation”
described by Breitenlohner, Maison, Nicolai, . ...



‘Construction of the Linear System]

The idea is to introduce an arbitrary constant spectral parameter
t = tanh %0, and a coset representative V(x;t) such that V(z;0) =
V(x), with the relation

AWV~ = Q + P cosh6 + «P sinh 6 (3)

(All t-dependence on the R.H.S. is made manifest here.) A
simple calculation shows that the Cartan-Maurer equation implies

DP =0, D+P =0, dQ —QANQ—-PAP=0

So we recover not only the content of the original (unhatted)
Cartan-Maurer equation but also the field equation DxP = 0.

Expanding out (3) in powers of the spectral parameter ¢, we
can read off an infinity of relations that imply an infinity of con-
served currents. This gives a systematic construction of the Kac-
Moody currents, whose few terms we constructed previously in

the SL(2,R)/O(2) example.



The SL(2,R)/0O(2) Examplel

- 1= ~ ~
Write V(z:t) = 2% eXE+ ¥E- and expand the fields as
bo+tdr+t2do+ -, T=xo+txi+t2xo+--

=ty +t7¢o+ -

Note that at order tO this reduces to the original ¥V which is in
Borel gauge, with ¢g and xg as the dilaton and axion.

<

Expanding to the first couple of orders in ¢t we find at tY

Py=dpo,  Py=edxg
and at ¢!
«dpg = do1 + xo0di1
e*Pxdyg = di

0 = dx1+ ¢1dxo — (x§ + e 2?0)dy
These three equations are precisely equivalent to the first-level
triplet of SL(2,R) currents we constructed previously, with
uyp — Y1, uo—>%¢1, u— — X1+ X0 @1
We obtain higher triplets at each order in t.



Linear System Including Gravityl

In the actual 2-dimensional theories coming from dimensional
reduction there is an additional dilaton ¢ coming from the D =3
to D = 2 metric reduction, and in D = 2 we had

Lo=eP\/ g [R+ B - B — %Z(PA)QI
A

The previous construction davy—1 = Q@ + P coshf 4+ P sinhé
requires modification, with 6 no longer constant. Instead set

df = sinh 6 cosh 0 dy + sinh? 0 xd¢ (4)
The Cartan-Maurer equation then implies
DP =0, D(e*+*P) = 0, dQ —QNQ =PANP=0

We can choose ds% = 2dztdx~ (since the redundant field 1 was
included in the reduction as the D = 2 conformal factor). This

implies 0;.0_e¥ = 0 and hence e¥ = py (z1) + p_(x=~). Equation
(4) can then be solved, giving

20 _ wtp-(z7)
w— py(zt)
The constant w can now be viewed as the spectral parameter.




Further Remarks|

The linear system again provides a systematic way of con-
structing the infinity of conserved currents of the Kac-Moody
symmetries in D = 2.

The symmetries can be used to generate new solutions from
old ones.

The Borel-gauge coset description, which arises naturally in
the step-by-step Kaluza-Klein reduction scheme, provides a
simple way of understanding the global symmetries in super-
gravity compactifications to D > 3.

We have seen indications that this approach continues to
provide a simple understanding of the symmetries in D = 2.



