Higgs production at the LHC: transverse-momentum and rapidity dependence

giuseppe bozzi

Institut für Theoretische Physik Universität Karlsruhe

in collaboration with: Stefano Catani, Daniel de Florian, Massimiliano Grazzini

RADCOR 2007 Firenze, 04.10.2007

giuseppe bozzi (ITP Karlsruhe)

SM Higgs production at the LHC

Firenze, 04.10.2007 1 / 19

(4) (5) (4) (5)

Outline

1) Overview of recent results for gg ightarrow H

- Total cross section
- Differential distributions

The main ideas of resummation

- Resummation
- Exponentiation
- Matching

Summary

Outline

1) Overview of recent results for gg ightarrow H

- Total cross section
- Differential distributions

The main ideas of resummation

- Resummation
- Exponentiation
- Matching

3 Numerical results at the LHC

Summary

NLO (O(α³_s)): increase LO cross section by about <u>80-100%</u>!

- [Dawson(1991)]
- [Djouadi, Spira, Zerwas (1991)]
- [Spira,Djouadi,Graudenz,Zerwas(1995)]
- NNLO ($\mathcal{O}(\alpha_s^4)$): another <u>15-20%</u> enhancement ($m_t \to \infty$)
 - [Harlander(2000)]
 - [Harlander,Kilgore(2001,2002)]
 - [Catani, deFlorian, Grazzini (2001, 2002)]
 - [Anastasiou,Melnikov(2002)]

- [Ravindran,Smith,vanNeerven(2003)]
- Bulk of radiative corrections due to virtual and soft-gluon contributions → (*insensitive to top quark loop*)
- → Large- m_t limit works very well (difference < 4% for M_H < 200GeV)

NLO (O(α³_s)): increase LO cross section by about <u>80-100%</u>!

```
[Dawson(1991)]
```

- [Djouadi, Spira, Zerwas (1991)]
- [Spira,Djouadi,Graudenz,Zerwas(1995)]

• NNLO ($\mathcal{O}(\alpha_s^4)$): another <u>15-20%</u> enhancement ($m_t \to \infty$)

- [Harlander(2000)]
- [Harlander, Kilgore (2001, 2002)]
- [Catani, deFlorian, Grazzini (2001, 2002)]
 - [Anastasiou, Melnikov(2002)]

- [Ravindran, Smith, vanNeerven(2003)]
- Bulk of radiative corrections due to virtual and soft-gluon contributions → (*insensitive to top quark loop*)
- → Large- m_t limit works very well (difference < 4% for M_H < 200GeV)

NLO (O(α³_s)): increase LO cross section by about <u>80-100%</u>!

```
[Dawson(1991)]
```

```
[Djouadi, Spira, Zerwas (1991)]
```

```
[Spira,Djouadi,Graudenz,Zerwas(1995)]
```

• NNLO ($\mathcal{O}(\alpha_s^4)$): another <u>15-20%</u> enhancement ($m_t \to \infty$)

[Harlander(2000)]

[Harlander, Kilgore (2001, 2002)]

- [Catani, deFlorian, Grazzini (2001, 2002)]
 - [Anastasiou, Melnikov(2002)]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- [Ravindran, Smith, vanNeerven(2003)]
- Bulk of radiative corrections due to virtual and soft-gluon contributions → (*insensitive to top quark loop*)

→ Large- m_t limit works very well (difference < 4% for M_H < 200GeV)

NLO (O(α³_s)): increase LO cross section by about <u>80-100%</u>!

```
[Dawson(1991)]
```

```
[Djouadi, Spira, Zerwas(1991)]
```

```
[Spira,Djouadi,Graudenz,Zerwas(1995)]
```

• NNLO ($\mathcal{O}(\alpha_s^4)$): another <u>15-20%</u> enhancement ($m_t \to \infty$)

[Harlander(2000)]

[Harlander, Kilgore (2001, 2002)]

```
[Catani, deFlorian, Grazzini (2001, 2002)]
```

[Anastasiou, Melnikov(2002)]

< ロ > < 同 > < 回 > < 回 >

[Ravindran, Smith, vanNeerven(2003)]

- Bulk of radiative corrections due to virtual and soft-gluon contributions → (*insensitive to top quark loop*)
- → Large- m_t limit works very well (difference < 4% for M_H < 200GeV)

Resummed results

- Higher-order perturbative contributions reliably estimated by resumming multiple soft-gluon emissions
- NNLL+NNLO: perturbative uncertainty reduced to ±10%

[Catani,deFlorian,Grazzini,Nason(2003)]

 Soft-gluon terms at NNNLO: effects consistent with NNLL+NNLO uncertainty

> [Moch,Vogt (2005)] [Laenen,Magnea(2006)] [Idilbi,Ji,Ma,Yuan(2006)]

> > < ロ > < 同 > < 回 > < 回 >

Resummed results

- Higher-order perturbative contributions reliably estimated by resumming multiple soft-gluon emissions
- NNLL+NNLO: perturbative uncertainty reduced to ±10%

[Catani, deFlorian, Grazzini, Nason (2003)]

 Soft-gluon terms at NNNLO: effects consistent with NNLL+NNLO uncertainty

> [Moch,Vogt (2005)] [Laenen,Magnea(2006)] [Idilbi,Ji,Ma,Yuan(2006)]

> > < 回 > < 三 > < 三 >

Resummed results

- Higher-order perturbative contributions reliably estimated by resumming multiple soft-gluon emissions
- NNLL+NNLO: perturbative uncertainty reduced to ±10%

[Catani, deFlorian, Grazzini, Nason (2003)]

 Soft-gluon terms at NNNLO: effects consistent with NNLL+NNLO uncertainty

> [Moch, Vogt (2005)] [Laenen, Magnea (2006)] [Idilbi, Ji, Ma, Yuan (2006)]

3 + 4 = +

Transverse-momentum distribution

[Ellis, Hinchliffe, Soldate, vanDerBij(1988)]: LO ($\mathcal{O}(\alpha_s^3)$) [Baur, Glover(1990)]: LO ($\mathcal{O}(\alpha_s^3)$) [deFlorian, Grazzini, Kunszt(1999)]: NLO ($\mathcal{O}(\alpha_s^4)$) [Ravindran, Smith, vanNeerven(2002)]: NLO ($\mathcal{O}(\alpha_s^4)$) [Glosser, Schmidt(2002)]: NLO ($\mathcal{O}(\alpha_s^4)$)

• Fully exclusive results

[Anastasiou, Melnikov, Petriello(2004,2005)]: NNLO [Catani, Grazzini(2007)]: NNLO

• Large- m_t approximation still valid if $M_H < 2M_t$, $q_T < M_t$

• Be careful with small- q_T region!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Transverse-momentum distribution

```
[Ellis, Hinchliffe, Soldate, vanDerBij(1988)]: LO (\mathcal{O}(\alpha_s^3))

[Baur, Glover(1990)]: LO (\mathcal{O}(\alpha_s^3))

[deFlorian, Grazzini, Kunszt(1999)]: NLO (\mathcal{O}(\alpha_s^4))

[Ravindran, Smith, vanNeerven(2002)]: NLO (\mathcal{O}(\alpha_s^4))

[Glosser, Schmidt(2002)]: NLO (\mathcal{O}(\alpha_s^4))
```

Fully exclusive results

[Anastasiou, Melnikov, Petriello(2004,2005)]: NNLO [Catani, Grazzini(2007)]: NNLO

• Large- m_t approximation still valid if $M_H < 2M_t$, $q_T < M_t$

• Be careful with small-q_T region!

< 回 > < 三 > < 三 >

Transverse-momentum distribution

```
[Ellis, Hinchliffe, Soldate, vanDerBij(1988)]: LO (\mathcal{O}(\alpha_s^3))

[Baur, Glover(1990)]: LO (\mathcal{O}(\alpha_s^3))

[deFlorian, Grazzini, Kunszt(1999)]: NLO (\mathcal{O}(\alpha_s^4))

[Ravindran, Smith, vanNeerven(2002)]: NLO (\mathcal{O}(\alpha_s^4))

[Glosser, Schmidt(2002)]: NLO (\mathcal{O}(\alpha_s^4))
```

Fully exclusive results

[Anastasiou, Melnikov, Petriello(2004,2005)]: NNLO [Catani, Grazzini(2007)]: NNLO

• Large- m_t approximation still valid if $M_H < 2M_t$, $q_T < M_t$

• Be careful with small-q_T region!

< 回 > < 三 > < 三 >

Transverse-momentum distribution

```
[Ellis, Hinchliffe, Soldate, vanDerBij(1988)]: LO (\mathcal{O}(\alpha_s^3))

[Baur, Glover(1990)]: LO (\mathcal{O}(\alpha_s^3))

[deFlorian, Grazzini, Kunszt(1999)]: NLO (\mathcal{O}(\alpha_s^4))

[Ravindran, Smith, vanNeerven(2002)]: NLO (\mathcal{O}(\alpha_s^4))

[Glosser, Schmidt(2002)]: NLO (\mathcal{O}(\alpha_s^4))
```

Fully exclusive results

[Anastasiou, Melnikov, Petriello(2004,2005)]: NNLO [Catani, Grazzini(2007)]: NNLO

- Large- m_t approximation still valid if $M_H < 2M_t$, $q_T < M_t$
- Be careful with small- q_T region!

3 + 4 = +

• Bulk of the events in the region $q_T \ll M_H$

- Kinematical unbalance between real and virtual contributions
- \rightarrow perturbative coefficients enhanced by $\alpha_S^n \log^m(\frac{M_H^n}{\sigma^2})$
- \rightarrow convergence of perturbative result completely spoiled

→ need for resummation!

giuseppe bozzi (ITP Karlsruhe)

- Bulk of the events in the region $q_T \ll M_H$
- Kinematical unbalance between real and virtual contributions
- ightarrow perturbative coefficients enhanced by $\alpha_S^n \log^m (rac{M_H^n}{\sigma^2})$
- ightarrow convergence of perturbative result completely spoiled

→ need for resummation!

- Bulk of the events in the region $q_T \ll M_H$
- Kinematical unbalance between real and virtual contributions
- ightarrow perturbative coefficients enhanced by $\alpha_{S}^{n}\log^{m}(rac{M_{H}^{2}}{\sigma_{z}^{2}})$
- → convergence of perturbative result completely spoiled

\rightarrow need for resummation!

- Bulk of the events in the region $q_T \ll M_H$
- Kinematical unbalance between real and virtual contributions
- \rightarrow perturbative coefficients enhanced by $\alpha_S^n \log^m(\frac{M_H^2}{\sigma_z^2})$
- ightarrow convergence of perturbative result completely spoiled

→ need for resummation!

- Bulk of the events in the region $q_T \ll M_H$
- Kinematical unbalance between real and virtual contributions
- \rightarrow perturbative coefficients enhanced by $\alpha_S^n \log^m(\frac{M_H^2}{\sigma_z^2})$
- ightarrow convergence of perturbative result completely spoiled

→ need for resummation!

giuseppe bozzi (ITP Karlsruhe)

Outline

Total cross section The main ideas of resummation Resummation Exponentiation Matching

Summary

$\alpha_s L^2$	$\alpha_{s}L$			$\mathcal{O}(\alpha_{s})$	(<i>LO</i>)
$\alpha_s^2 L^4$	$\alpha_s^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	$\mathcal{O}(\alpha_s^2)$	(NLO)
$\alpha_s^n L^{2n}$	$\alpha_s^n L^{2n-1}$	$\alpha_s^n L^{2n-2}$		$\mathcal{O}(\alpha_s^n)$	(N^nLO)
LL	NLL	NNLL			

• Ratio of two successive rows: $O(\alpha_s L^2)$

improved expansion

• reorganization of the terms into towers of logs

• all-order summation of the terms in each class

• key-point: exponentiation

 $\sigma^{res} \sim \exp\left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right]$

$\alpha_s L^2$	$\alpha_{s}L$			$\mathcal{O}(\alpha_s)$	(<i>LO</i>)
$\alpha_s^2 L^4$	$\alpha_s^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	$\mathcal{O}(\alpha_s^2)$	(NLO)
$\alpha_s^n L^{2n}$	$\alpha_s^n L^{2n-1}$	$\alpha_s^n L^{2n-2}$		$\mathcal{O}(\alpha_s^n)$	(N^nLO)
LL	NLL	NNLL			

• Ratio of two successive rows: $\mathcal{O}(\alpha_s L^2)$

improved expansion

- reorganization of the terms into towers of logs
- all-order summation of the terms in each class
- key-point: exponentiation

```
\sigma^{res} \sim \exp\left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right]
```

$\alpha_s L^2$	$\alpha_{s}L$			$\mathcal{O}(\alpha_s)$	(<i>LO</i>)
$\alpha_s^2 L^4$	$\alpha_s^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	$\mathcal{O}(\alpha_s^2)$	(NLO)
$\alpha_s^n L^{2n}$	$\alpha_s^n L^{2n-1}$	$\alpha_s^n L^{2n-2}$		$\mathcal{O}(\alpha_s^n)$	(N^nLO)
LL	NLL	NNLL			

- Ratio of two successive rows: $\mathcal{O}(\alpha_s L^2)$
- improved expansion
 - reorganization of the terms into towers of logs
 - all-order summation of the terms in each class
- key-point: exponentiation

 $\sigma^{res} \sim \exp\left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right]$

$\alpha_s L^2$	$\alpha_{s}L$			$\mathcal{O}(\alpha_s)$	(<i>LO</i>)
$\alpha_s^2 L^4$	$\alpha_s^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	$\mathcal{O}(\alpha_s^2)$	(NLO)
$\alpha_s^n L^{2n}$	$\alpha_s^n L^{2n-1}$	$\alpha_s^n L^{2n-2}$		$\mathcal{O}(\alpha_s^n)$	(N^nLO)
LL	NLL	NNLL			

- Ratio of two successive rows: $O(\alpha_s L^2)$
- improved expansion
 - reorganization of the terms into towers of logs
 - all-order summation of the terms in each class
- key-point: exponentiation

$\sigma^{res} \sim \exp\left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right]$

$\alpha_s L^2$	$\alpha_{s}L$			$\mathcal{O}(\alpha_s)$	(<i>LO</i>)
$\alpha_s^2 L^4$	$\alpha_s^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	$\mathcal{O}(\alpha_s^2)$	(NLO)
$\alpha_s^n L^{2n}$	$\alpha_s^n L^{2n-1}$	$\alpha_s^n L^{2n-2}$		$\mathcal{O}(\alpha_s^n)$	(N^nLO)
LL	NLL	NNLL			

- Ratio of two successive rows: $\mathcal{O}(\alpha_s L^2)$
- improved expansion
 - reorganization of the terms into towers of logs
 - all-order summation of the terms in each class
- key-point: exponentiation

```
\sigma^{res} \sim \exp\left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right]
```

$\alpha_s L^2$	$\alpha_{s}L$			$\mathcal{O}(\alpha_s)$	(<i>LO</i>)
$\alpha_s^2 L^4$	$\alpha_s^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	$\mathcal{O}(\alpha_s^2)$	(NLO)
$\alpha_s^n L^{2n}$	$\alpha_s^n L^{2n-1}$	$\alpha_s^n L^{2n-2}$		$\mathcal{O}(\alpha_s^n)$	(N^nLO)
LL	NLL	NNLL			

- Ratio of two successive rows: $\mathcal{O}(\alpha_s L^2)$
- improved expansion
 - reorganization of the terms into towers of logs
 - all-order summation of the terms in each class
- key-point: exponentiation

 $\sigma^{res} \sim \exp\left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right]$

The observable must fulfill factorization properties both for • dynamics (matrix element)

→ in the soft limit, multigluon amplitudes fulfill generalized factorization formulae given in terms of single gluon emission probability

- kinematics (phase space)
 - \rightarrow usually factorizable working in *conjugate space*

$$egin{array}{rl} \delta^{(2)}(q_T - q_{T1} - \dots - q_{Tn}) &=& \int d^2 b \; e^{i b \cdot q_T} \ \log(M_H^2/q_T^2) & o & \log(M_H^2 b^2) \end{array}$$

ightarrow generalized exponentiation of single gluon emission $_{=}$,

giuseppe bozzi (ITP Karlsruhe)

The observable must fulfill factorization properties both for

- dynamics (matrix element)
 - → in the soft limit, multigluon amplitudes fulfill generalized factorization formulae given in terms of single gluon emission probability

kinematics (phase space)

 \rightarrow usually factorizable working in *conjugate space*

$$egin{array}{rl} \delta^{(2)}(q_T - q_{T1} - \dots - q_{Tn}) &=& \int d^2 b \; e^{i b \cdot q_T} \ \log(M_H^2/q_T^2) & o & \log(M_H^2 b^2) \end{array}$$

ightarrow generalized exponentiation of single gluon emission $_{2}$,

giuseppe bozzi (ITP Karlsruhe)

- The observable must fulfill factorization properties both for
 - dynamics (matrix element)
 - → in the soft limit, multigluon amplitudes fulfill generalized factorization formulae given in terms of single gluon emission probability

- kinematics (phase space)
 - → usually factorizable working in *conjugate space*

$$\delta^{(2)}(q_T - q_{T1} - \dots - q_{Tn}) = \int d^2 b \ e^{ib \cdot q_T} \prod_i e^{ib \cdot q_T} \log(M_H^2/q_T^2) \rightarrow \log(M_H^2 b^2)$$

ightarrow generalized exponentiation of single gluon,emission $_{ arrow}$,

giuseppe bozzi (ITP Karlsruhe)

- The observable must fulfill factorization properties both for
 - dynamics (matrix element)
 - → in the soft limit, multigluon amplitudes fulfill generalized factorization formulae given in terms of single gluon emission probability

- kinematics (phase space)
 - \rightarrow usually factorizable working in *conjugate space*

$$egin{array}{rl} \delta^{(2)}(q_T-q_{T1}-\cdots-q_{Tn})&=&\int d^2b\;e^{ib\cdot q_T}\;\Pi_i\;e^{ib\cdot q_T}\ \log(M_H^2/q_T^2)& o&\log(M_H^2b^2) \end{array}$$

-> generalized exponentiation of single gluon, emission 🛓

giuseppe bozzi (ITP Karlsruhe)

- The observable must fulfill factorization properties both for
 - dynamics (matrix element)
 - → in the soft limit, multigluon amplitudes fulfill generalized factorization formulae given in terms of single gluon emission probability

- kinematics (phase space)
 - \rightarrow usually factorizable working in *conjugate space*

$$egin{array}{rl} \delta^{(2)}(q_T-q_{T1}-\cdots-q_{Tn})&=&\int d^2b\;e^{ib\cdot q_T}\;\Pi_i\;e^{ib\cdot q_T}\ \log(M_H^2/q_T^2)& o&\log(M_H^2b^2) \end{array}$$

→ generalized exponentiation of single gluon emission

In the Higgs case, resummation has been explicitly performed up to

- NLL [Catani, D'Emilio, Trentadue (1988)]
- NNLL [deFlorian, Grazzini (2000, 2001)]

The resummed result has to be properly matched with the fixed-order calculation to avoid double counting

$$\sigma = \sigma^{\rm res} + \sigma^{\rm fix} - \sigma^{\rm asym}$$

where σ^{asym} = expansion of resummed result to same order

- $q_T \ll M_H$: $\sigma^{fix} \sim \sigma^{asym} \rightarrow \sigma = \sigma^{res}$
- $q_T > M_H$: $\sigma^{res} \sim \sigma^{asym} \rightarrow \sigma = \sigma^{fix}$
- intermediate q_T : matching $\rightarrow \sigma$

A (10) A (10)

In the Higgs case, resummation has been explicitly performed up to

- NLL [Catani, D'Emilio, Trentadue (1988)]
- NNLL [deFlorian, Grazzini (2000, 2001)]

The resummed result has to be properly matched with the fixed-order calculation to avoid double counting

$$\sigma = \sigma^{\rm res} + \sigma^{\rm fix} - \sigma^{\rm asym}$$

where σ^{asym} = expansion of resummed result to same order

- $q_T \ll M_H$: $\sigma^{fix} \sim \sigma^{asym} \rightarrow \sigma = \sigma^{res}$
- $q_T > M_H$: $\sigma^{res} \sim \sigma^{asym} \rightarrow \sigma = \sigma^{fix}$
- intermediate q_T : matching $\rightarrow \sigma$

In the Higgs case, resummation has been explicitly performed up to

- NLL [Catani, D'Emilio, Trentadue (1988)]
- NNLL [deFlorian, Grazzini (2000, 2001)]

The resummed result has to be properly matched with the fixed-order calculation to avoid double counting

$$\sigma = \sigma^{\rm res} + \sigma^{\rm fix} - \sigma^{\rm asym}$$

where σ^{asym} = expansion of resummed result to same order

- $q_T \ll M_H$: $\sigma^{fix} \sim \sigma^{asym} \rightarrow \sigma = \sigma^{res}$
- $q_T > M_H$: $\sigma^{res} \sim \sigma^{asym} \rightarrow \sigma = \sigma^{fix}$
- intermediate q_T : matching $\rightarrow \sigma$

A B A A B A

In the Higgs case, resummation has been explicitly performed up to

- NLL [Catani, D'Emilio, Trentadue (1988)]
- NNLL [deFlorian, Grazzini (2000, 2001)]

The resummed result has to be properly matched with the fixed-order calculation to avoid double counting

$$\sigma = \sigma^{\rm res} + \sigma^{\rm fix} - \sigma^{\rm asym}$$

where $\sigma^{\textit{asym}}$ = expansion of resummed result to same order

- $q_T \ll M_H$: $\sigma^{fix} \sim \sigma^{asym} \rightarrow \sigma = \sigma^{res}$
- $q_T > M_H$: $\sigma^{res} \sim \sigma^{asym} \rightarrow \sigma = \sigma^{fix}$

• intermediate q_T : matching $\rightarrow \sigma$

In the Higgs case, resummation has been explicitly performed up to

- NLL [Catani, D'Emilio, Trentadue (1988)]
- NNLL [deFlorian, Grazzini (2000, 2001)]

The resummed result has to be properly matched with the fixed-order calculation to avoid double counting

$$\sigma = \sigma^{\rm res} + \sigma^{\rm fix} - \sigma^{\rm asym}$$

where σ^{asym} = expansion of resummed result to same order

- $q_T \ll M_H$: $\sigma^{fix} \sim \sigma^{asym} \rightarrow \sigma = \sigma^{res}$
- $q_T > M_H$: $\sigma^{res} \sim \sigma^{asym} \rightarrow \sigma = \sigma^{fix}$
- intermediate q_T : matching $\rightarrow \sigma$

(B) (A) (B) (A)
Our work

[Bozzi,Catani,deFlorian,Grazzini(2003,2005)]

Resummation at NNLL at small q_T

- Perturbative calculation at NLO at large q_T
- Matching at $O(\alpha_s^4)$ in the intermediate region
- Code HqT available at http://theory.fi.infn.it/grazzini/codes.html

[Bozzi,Catani,deFlorian,Grazzini(2007)]

- Extension including Higgs rapidity
- Impact parameter and double Mellin moments used
- NNLL+NLO accuracy for <u>full-differential</u> (q_T, y) cross section
- New version of HqT to appear

Our work

[Bozzi,Catani,deFlorian,Grazzini(2003,2005)]

- Resummation at NNLL at small q_T
- Perturbative calculation at NLO at large q_T
- Matching at $O(\alpha_s^4)$ in the intermediate region
- Code HqT available at http://theory.fi.infn.it/grazzini/codes.html

[Bozzi,Catani,deFlorian,Grazzini(2007)]

- Extension including Higgs rapidity
- Impact parameter and double Mellin moments used
- NNLL+NLO accuracy for <u>full-differential</u> (q_T, y) cross section
- New version of HqT to appear

Our work

[Bozzi,Catani,deFlorian,Grazzini(2003,2005)]

- Resummation at NNLL at small q_T
- Perturbative calculation at NLO at large q_T
- Matching at $O(\alpha_s^4)$ in the intermediate region
- Code HqT available at http://theory.fi.infn.it/grazzini/codes.html

[Bozzi,Catani,deFlorian,Grazzini(2007)]

- Extension including Higgs rapidity
- Impact parameter and double Mellin moments used
- NNLL+NLO accuracy for <u>full-differential</u> (q_T, y) cross section
- New version of HqT to appear

< □ > < 同 > < 回 > < 回

[Bozzi,Catani,deFlorian,Grazzini(2003,2005)]

- Resummation at NNLL at small q_T
- Perturbative calculation at NLO at large q_T
- Matching at $O(\alpha_s^4)$ in the intermediate region
- Code HqT available at http://theory.fi.infn.it/grazzini/codes.html

[Bozzi,Catani,deFlorian,Grazzini(2007)]

- Extension including Higgs rapidity
- Impact parameter and double Mellin moments used
- NNLL+NLO accuracy for <u>full-differential</u> (q_T, y) cross section
- New version of HqT to appear

[Bozzi,Catani,deFlorian,Grazzini(2003,2005)]

- Resummation at NNLL at small q_T
- Perturbative calculation at NLO at large q_T
- Matching at $O(\alpha_s^4)$ in the intermediate region
- Code HqT available at http://theory.fi.infn.it/grazzini/codes.html

[Bozzi, Catani, deFlorian, Grazzini (2007)]

Extension including Higgs rapidity

- Impact parameter and double Mellin moments used
- NNLL+NLO accuracy for <u>full-differential</u> (q_T, y) cross section
- New version of HqT to appear

[Bozzi,Catani,deFlorian,Grazzini(2003,2005)]

- Resummation at NNLL at small q_T
- Perturbative calculation at NLO at large q_T
- Matching at $O(\alpha_s^4)$ in the intermediate region
- Code HqT available at http://theory.fi.infn.it/grazzini/codes.html

[Bozzi, Catani, deFlorian, Grazzini (2007)]

- Extension including Higgs rapidity
- Impact parameter and double Mellin moments used

• NNLL+NLO accuracy for <u>full-differential</u> (q_T, y) cross section

New version of HqT to appear

[Bozzi, Catani, deFlorian, Grazzini (2003, 2005)]

- Resummation at NNLL at small q_T
- Perturbative calculation at NLO at large q_T
- Matching at $O(\alpha_s^4)$ in the intermediate region
- Code HqT available at http://theory.fi.infn.it/grazzini/codes.html

[Bozzi, Catani, deFlorian, Grazzini (2007)]

- Extension including Higgs rapidity
- Impact parameter and double Mellin moments used
- NNLL+NLO accuracy for <u>full-differential</u> (q_T, y) cross section
- New version of HqT to appear

[Bozzi, Catani, deFlorian, Grazzini (2003, 2005)]

- Resummation at NNLL at small q_T
- Perturbative calculation at NLO at large q_T
- Matching at $O(\alpha_s^4)$ in the intermediate region
- Code HqT available at http://theory.fi.infn.it/grazzini/codes.html

[Bozzi, Catani, deFlorian, Grazzini (2007)]

- Extension including Higgs rapidity
- Impact parameter and double Mellin moments used
- NNLL+NLO accuracy for <u>full-differential</u> (q_T, y) cross section
- New version of HqT to appear

Outline

Overview of recent results for gg → H Total cross section Differential distributions The main ideas of resummation Resummation Exponentiation Matching Numerical results at the LHC

Summary

Numerical results at the LHC

The q_T spectrum [BCdFG(2003,2005)]

NNLL+NLO uncertainty band overlaps with NLL+LO one servery good convergence of the resummed perturbative result *q*_T-dependent K-factor

 $\frac{d\sigma_{NNLL+NLO}(\mu_F,\mu_R)}{d\sigma_{NLL+LO}(\mu_F=\mu_R=M_H)}$

 \sim 1.1 -1.2 in the central region increase (decrease) drastically for $q_{\rm C} > 50$ ($q_{\rm C} < 2$)

similar features when including rapidity dependence

Firenze, 04.10.2007 14 / 19

Numerical results at the LHC

The q_T spectrum [BCdFG(2003,2005)]

NNLL+NLO uncertainty band overlaps with NLL+LO one servery good convergence of the resummed perturbative result *q*_T-dependent K-factor

 $\frac{d\sigma_{NNLL+NLO}(\mu_F,\mu_R)}{d\sigma_{NLL+LO}(\mu_F=\mu_R=M_H)}$

 \sim 1.1 -1.2 in the central region increase (decrease) drastically for $q_c > 50$ ($q_c < 2$)

similar features when including rapidity dependence

Firenze, 04.10.2007 14 / 19

Numerical results at the LHC

The q_T spectrum [BCdFG(2003, 2005)]

NNLL+NLO uncertainty band overlaps with NLL+LO one

- → very good convergence of the resummed perturbative result
- *q*_T-dependent K-factor

$$K(q_T) = \frac{d\sigma_{NNLL+NLO}(\mu_F, \mu_R)}{d\sigma_{NLL+LO}(\mu_F = \mu_R = M_H)}$$

- ullet \sim 1.1-1.2 in the central region
- increase (decrease) drastically for q_T > 50 (q_T < 2)
- \rightarrow no simple rescaling of NLL+LO

< 回 > < 回 > < 回 >

 similar features when including rapidity dependence

The q_T spectrum [BCdFG(2003, 2005)]

NNLL+NLO uncertainty band overlaps with NLL+LO one

→ very good convergence of the resummed perturbative result

*q*_T-dependent K-factor

$$K(q_T) = \frac{d\sigma_{NNLL+NLO}(\mu_F, \mu_R)}{d\sigma_{NLL+LO}(\mu_F = \mu_R = M_H)}$$

ullet \sim 1.1-1.2 in the central region

- increase (decrease) drastically for q_T > 50 (q_T < 2)
- \rightarrow no simple rescaling of NLL+LO

similar features when including rapidity dependence

(4) (5) (4) (5)

- NNLL+NLO uncertainty band overlaps with NLL+LO one
 - $\rightarrow\,$ very good convergence of the resummed perturbative result

 q_T -dependent K-factor

$$K(q_T) = \frac{d\sigma_{NNLL+NLO}(\mu_F, \mu_R)}{d\sigma_{NLL+LO}(\mu_F = \mu_R = M_H)}$$

ullet \sim 1.1-1.2 in the central region

- increase (decrease) drastically for q_T > 50 (q_T < 2)
- \rightarrow no simple rescaling of NLL+LO

similar features when including rapidity dependence

- NNLL+NLO uncertainty band overlaps with NLL+LO one
 - → very good convergence of the resummed perturbative result
- *q_T*-dependent K-factor

$$K(q_T) = \frac{d\sigma_{NNLL+NLO}(\mu_F, \mu_R)}{d\sigma_{NLL+LO}(\mu_F = \mu_R = M_H)}$$

 $\bullet \sim$ 1.1-1.2 in the central region

- increase (decrease) drastically for q_T > 50 (q_T < 2)
- ightarrow no simple rescaling of NLL+LO
- similar features when including rapidity dependence

3 > 4 3

- NNLL+NLO uncertainty band overlaps with NLL+LO one
 - → very good convergence of the resummed perturbative result
- *q_T*-dependent K-factor

$$K(q_T) = \frac{d\sigma_{NNLL+NLO}(\mu_F, \mu_R)}{d\sigma_{NLL+LO}(\mu_F = \mu_R = M_H)}$$

- $\bullet \sim$ 1.1-1.2 in the central region
- increase (decrease) drastically for $q_T > 50 \ (q_T < 2)$
- ightarrow no simple rescaling of NLL+LO
- similar features when including rapidity dependence

3 > 4 3

- NNLL+NLO uncertainty band overlaps with NLL+LO one
 - → very good convergence of the resummed perturbative result
- *q_T*-dependent K-factor

$$K(q_T) = \frac{d\sigma_{NNLL+NLO}(\mu_F, \mu_R)}{d\sigma_{NLL+LO}(\mu_F = \mu_R = M_H)}$$

- $\bullet~\sim$ 1.1-1.2 in the central region
- increase (decrease) drastically for q_T > 50 (q_T < 2)
- \rightarrow no simple rescaling of NLL+LO
- similar features when including rapidity dependence

∃ >

- NNLL+NLO uncertainty band overlaps with NLL+LO one
 - → very good convergence of the resummed perturbative result
- *q_T*-dependent K-factor

$$K(q_T) = \frac{d\sigma_{NNLL+NLO}(\mu_F, \mu_R)}{d\sigma_{NLL+LO}(\mu_F = \mu_R = M_H)}$$

- $\bullet~\sim$ 1.1-1.2 in the central region
- increase (decrease) drastically for q_T > 50 (q_T < 2)
- \rightarrow no simple rescaling of NLL+LO
- similar features when including rapidity dependence

The q_T spectrum [BCdFG(2003, 2005)]

- NNLL+NLO uncertainty band overlaps with NLL+LO one
 - → very good convergence of the resummed perturbative result
- *q_T*-dependent K-factor

$$K(q_T) = \frac{d\sigma_{NNLL+NLO}(\mu_F, \mu_R)}{d\sigma_{NLL+LO}(\mu_F = \mu_R = M_H)}$$

- $\bullet~\sim$ 1.1-1.2 in the central region
- increase (decrease) drastically for q_T > 50 (q_T < 2)
- \rightarrow no simple rescaling of NLL+LO
- similar features when including rapidity dependence

NLO

divergent
unphysical peak
NNLL+NLO
wrell-behaved
peaks at ~ 12 GeV
converges to NLO at high

q_T-dependent K-factor

 $\sigma_{r,y}(y) = rac{d\sigma_{NNLL+NLO}/(dq_T dy)}{d\sigma_{NLO}/(dq_T dy)}$

mild rapidity dependence resummation relevant both

< 17 ▶

NLO

divergent
unphysical peak
NNLL+NLO
wrell-behaved
peaks at wr12.GeV
converges to NLO at high

*q_T-*dependent K-factor

 $\sigma_{T,Y}(t,y) = rac{d\sigma_{NNLL+NLO}/(dq_T dy)}{d\sigma_{NLO}/(dq_T dy)}$

mild rapidity dependence resummation relevant both

< 17 ▶

NLO

- divergent
- unphysical peak

NNLL+NLO

- well-behaved
- peaks at ~ 12 GeV
- converges to NLO at high q_T

• *q*_T-dependent K-factor

 $K(q_T, y) = \frac{d\sigma_{NNLL+NLO}/(dq_T \, dy)}{d\sigma_{NLO}/(dq_T \, dy)}$

 → mild rapidity dependence
→ resummation relevant both at small and intermediate q_T

NLO

- divergent
- unphysical peak

NNLL+NLO

- well-behaved
- peaks at ~ 12 GeV
- converges to NLO at high q_T

• q_T-dependent K-factor

 $K(q_T, y) = \frac{d\sigma_{NNLL+NLO}/(dq_T \, dy)}{d\sigma_{NLO}/(dq_T \, dy)}$

 → mild rapidity dependence
→ resummation relevant both at small and intermediate q_T

NLO

divergent

unphysical peak

NNLL+NLO

- well-behaved
- peaks at ~ 12 GeV
- converges to NLO at high q_T

• q_T-dependent K-factor

 $K(q_T, y) = \frac{d\sigma_{NNLL+NLO}/(dq_T \, dy)}{d\sigma_{NLO}/(dq_T \, dy)}$

 → mild rapidity dependence
→ resummation relevant both at small and intermediate q_T

NLO

- divergent
- unphysical peak

NNLL+NLO

- well-behaved
- peaks at ~ 12 GeV
- converges to NLO at high q_T

• q_T-dependent K-factor

 $K(q_T, y) = \frac{d\sigma_{NNLL+NLO}/(dq_T \, dy)}{d\sigma_{NLO}/(dq_T \, dy)}$

 → mild rapidity dependence
→ resummation relevant both at small and intermediate q_T

NLO

- divergent
- unphysical peak

NNLL+NLO

- well-behaved
- peaks at ~ 12 GeV
- converges to NLO at high q_T

• q_T-dependent K-factor

 $K(q_T, y) = \frac{d\sigma_{NNLL+NLO}/(dq_T \, dy)}{d\sigma_{NLO}/(dq_T \, dy)}$

 → mild rapidity dependence
→ resummation relevant both at small and intermediate q_T

NLO

- divergent
- unphysical peak

NNLL+NLO

- well-behaved
- peaks at ~ 12 GeV
- converges to NLO at high q_T

• q_T-dependent K-factor

 $K(q_T, y) = \frac{d\sigma_{NNLL+NLO}/(dq_T \, dy)}{d\sigma_{NLO}/(dq_T \, dy)}$

 → mild rapidity dependence
→ resummation relevant both at small and intermediate q_T

NLO

- divergent
- unphysical peak
- NNLL+NLO
 - well-behaved
 - peaks at \sim 12 GeV

• converges to NLO at high q_T

• *q*_T-dependent K-factor

 $K(q_T, y) = \frac{d\sigma_{NNLL+NLO}/(dq_T \, dy)}{d\sigma_{NLO}/(dq_T \, dy)}$

 → mild rapidity dependence
→ resummation relevant both at small and intermediate q_T

NLO

 \rightarrow resummation relevant both at small and intermediate q_T

Firenze, 04.10.2007 15 / 19

NLO

→ resummation relevant both at small and intermediate q_T

< 17 ▶

Firenze, 04.10.2007 15 / 19

NLO

 \rightarrow resummation relevant both at small and intermediate q_T

NLO

- divergent
- unphysical peak
- NNLL+NLO
 - well-behaved
 - peaks at ~ 12 GeV
 - converges to NLO at high q_T

q_T-dependent K-factor

$$\mathcal{K}(q_{\mathcal{T}}, y) = rac{d\sigma_{NNLL+NLO}/(dq_{\mathcal{T}} \, dy)}{d\sigma_{NLO}/(dq_{\mathcal{T}} \, dy)}$$

→ mild rapidity dependence → resummation relevant both at small and intermediate q_T

NNLL+NLO reduces the cross section

y=0 \rightarrow 25% suppression mild dependence on y in the central region

more important in forward and backward regions (where σ is rather small)

NNLL+NLO reduces the cross section

y=0 \rightarrow 25% suppression mild dependence on y in the central region

more important in forward and backward regions (where σ is rather small)

- NNLL+NLO reduces the cross section
- $y=0 \rightarrow 25\%$ suppression
 - mild dependence on y in the central region
 - more important in forward and backward regions (where σ is rather small)

NNLL+NLO reduces the cross section

• $y=0 \rightarrow 25\%$ suppression

mild dependence on y in the central region

more important in forward and backward regions (where σ is rather small)
Fixed transverse-momentum [BCdFG(2007)]

NNLL+NLO reduces the cross section

• y=0 \rightarrow 25% suppression

mild dependence on y in the central region

more important in forward and backward regions (where σ is rather small)

Fixed transverse-momentum [BCdFG(2007)]

- NNLL+NLO reduces the cross section
- y=0 \rightarrow 25% suppression
- mild dependence on y in the central region

more important in forward and backward regions (where σ is rather small)

Fixed transverse-momentum [BCdFG(2007)]

- NNLL+NLO reduces the cross section
- y=0 \rightarrow 25% suppression
- mild dependence on y in the central region
 - more important in forward and backward regions (where σ is rather small)

y=0 lines above y=2 lines we expected, since a decrease with y q_T slope decreases with increasing rapidity end g spectrum slightly softer a higher rapidity

overall decrease going from y=0 to y=2: \sim 40%

 going from central to off-central to rapidity regions, cross sections vary more in absolute value than in qy shape

y=0 lines above y=2 lines expected, since σ decrease with y q_T slope decreases with increasing rapidity q_T spectrum slightly softer a higher rapidity

overall decrease going from y=0 to y=2: \sim 40%

 going from central to off-central to rapidity regions, cross sections vary more in absolute value than in qy shape

- y=0 lines above y=2 lines
 - \rightarrow expected, since σ decrease with y
- *q*^T slope decreases with increasing rapidity
 - $\rightarrow q_T$ spectrum slightly softer at higher rapidity
- overall decrease going from y=0 to y=2: \sim 40%
 - → going from central to off-central rapidity regions, cross sections vary more in absolute value than in q_T shape

< ロ > < 同 > < 回 > < 回 >

y=0 lines above y=2 lines

- $\rightarrow\,$ expected, since $\sigma\,$ decrease with y
- *q*^T slope decreases with increasing rapidity
 - → q_T spectrum slightly softer at higher rapidity
- overall decrease going from y=0 to y=2: \sim 40%
 - → going from central to off-central rapidity regions, cross sections vary more in absolute value than in q_T shape

- y=0 lines above y=2 lines
 - $\rightarrow\,$ expected, since σ decrease with y
- *q_T* slope decreases with increasing rapidity
 - → q_T spectrum slightly softer at higher rapidity
- overall decrease going from y=0 to y=2: \sim 40%
 - → going from central to off-central rapidity regions, cross sections vary more in absolute value than in q_T shape

- y=0 lines above y=2 lines
 - $\rightarrow\,$ expected, since σ decrease with y
- *q*^T slope decreases with increasing rapidity
 - $\rightarrow q_T$ spectrum slightly softer at higher rapidity
- overall decrease going from y=0 to y=2: \sim 40%
 - → going from central to off-central rapidity regions, cross sections vary more in absolute value than in q_T shape

- y=0 lines above y=2 lines
 - \rightarrow expected, since σ decrease with y
- *q*^T slope decreases with increasing rapidity
 - $\rightarrow q_T$ spectrum slightly softer at higher rapidity
- overall decrease going from y=0 to y=2: \sim 40%
 - → going from central to off-central rapidity regions, cross sections vary more in absolute value than in q_T shape

- y=0 lines above y=2 lines
 - \rightarrow expected, since σ decrease with y
- *q*^T slope decreases with increasing rapidity
 - $\rightarrow q_T$ spectrum slightly softer at higher rapidity
- overall decrease going from y=0 to y=2: $\sim 40\%$
 - \rightarrow going from central to off-central rapidity regions, cross sections vary more in absolute value than in q_T shape

- y=0 lines above y=2 lines
 - \rightarrow expected, since σ decrease with y
- *q*^T slope decreases with increasing rapidity
 - $\rightarrow q_T$ spectrum slightly softer at higher rapidity
- overall decrease going from y=0 to y=2: \sim 40%
 - \rightarrow going from central to off-central rapidity regions, cross sections vary more in absolute value than in q_T shape

Outline

Summary

- Precise knowledge of Higgs q_T and y spectrum very important to improve statistical significance
- Enormous theoretical effort in the last years
- Our contribution: $d\sigma/(dq_T dy)$ at NNLL+NLO
 - \rightarrow importance of resummation at low and intermediate q_T
 - → stability of the main features with respect to perturbative uncertainties
- If the Higgs boson exists, no escape route for it at the LHC!
- \rightarrow (But still, try hard to get a permanent position before the first run...)

- Precise knowledge of Higgs q_T and y spectrum very important to improve statistical significance
- Enormous theoretical effort in the last years
- Our contribution: $d\sigma/(dq_T dy)$ at NNLL+NLO
 - \rightarrow importance of resummation at low and intermediate q_T
 - → stability of the main features with respect to perturbative uncertainties
- If the Higgs boson exists, no escape route for it at the LHC!
- \rightarrow (But still, try hard to get a permanent position before the first run...)

.

- Precise knowledge of Higgs q_T and y spectrum very important to improve statistical significance
- Enormous theoretical effort in the last years
- Our contribution: $d\sigma/(dq_T dy)$ at NNLL+NLO
 - \rightarrow importance of resummation at low and intermediate q_T
 - → stability of the main features with respect to perturbative uncertainties
- If the Higgs boson exists, no escape route for it at the LHC!
- \rightarrow (But still, try hard to get a permanent position before the first run...)

< ロ > < 同 > < 回 > < 回 >

- Precise knowledge of Higgs q_T and y spectrum very important to improve statistical significance
- Enormous theoretical effort in the last years
- Our contribution: $d\sigma/(dq_T dy)$ at NNLL+NLO
 - \rightarrow importance of resummation at low and intermediate q_T
 - → stability of the main features with respect to perturbative uncertainties
- If the Higgs boson exists, no escape route for it at the LHC!
- \rightarrow (But still, try hard to get a permanent position before the first run...)

A B F A B F

- Precise knowledge of Higgs q_T and y spectrum very important to improve statistical significance
- Enormous theoretical effort in the last years
- Our contribution: $d\sigma/(dq_T dy)$ at NNLL+NLO
 - \rightarrow importance of resummation at low and intermediate q_T
 - → stability of the main features with respect to perturbative uncertainties
- If the Higgs boson exists, no escape route for it at the LHC!
- \rightarrow (But still, try hard to get a permanent position before the first run...)

A B F A B F

- Precise knowledge of Higgs q_T and y spectrum very important to improve statistical significance
- Enormous theoretical effort in the last years
- Our contribution: $d\sigma/(dq_T dy)$ at NNLL+NLO
 - \rightarrow importance of resummation at low and intermediate q_T
 - → stability of the main features with respect to perturbative uncertainties
- If the Higgs boson exists, no escape route for it at the LHC!
- ightarrow (But still, try hard to get a permanent position before the first run...)

A B F A B F

- Precise knowledge of Higgs q_T and y spectrum very important to improve statistical significance
- Enormous theoretical effort in the last years
- Our contribution: $d\sigma/(dq_T dy)$ at NNLL+NLO
 - \rightarrow importance of resummation at low and intermediate q_T
 - → stability of the main features with respect to perturbative uncertainties
- If the Higgs boson exists, no escape route for it at the LHC!
- \rightarrow (But still, try hard to get a permanent position before the first run...)

∃ ► < ∃ ►</p>