$\begin{array}{l} \text{Outline} \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c: \ phenomenological \ context \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c: \ Computational \ Setup \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c: \ Newrita \ Results \\ \hline Conclusions \end{array}$

Single top-quark production by Strong and Electroweak supersymmetric flavor-changing interactions in the LHC

David López-Val

Theoretical High Energy Physics Group Dept. d'Estructura i Constituents de la Matèria - Univ. de Barcelona

Work in collaboration with Jaume Guasch and Joan Solà

hep-ph/0710.0587

RADCOR 2007 - GGI (Firenze)

October 4th 2007

David López-Val RADCOR 2007 - GGI (Firenze)

 $\begin{array}{l} pp \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context\\ pp \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup\\ pp \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results\\ Conclusions \end{array}$

Outline

- $\mathbf{p} \mathbf{p}
 ightarrow \mathbf{t} \overline{\mathbf{c}} + \overline{\mathbf{t}} \mathbf{c}$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- 3 pp \rightarrow t \overline{c} + $\overline{t}c$: Computational Setup
- - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

 $\begin{array}{l} pp \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context\\ pp \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup\\ pp \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results\\ Conclusions \end{array}$

Outline

- $\mathbf{p} \mathbf{p}
 ightarrow \mathbf{t} \mathbf{\overline{c}} + \mathbf{\overline{t}} \mathbf{c}$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- ③ pp → t \overline{c} + $\overline{t}c$: Computational Setup
- - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

 $\begin{array}{l} pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c; \ phenomenological \ context \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c; \ Computational \ Setup \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c; \ Numerical \ Results \\ \end{array}$

Outline

Outline

2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context

- A brief motivation
- Supersymmetry basics
- the Minimal Supersymmetric Standard Model
- SUSY in particle phenomenology
- 3 pp \rightarrow t \overline{c} + \overline{t} c: Computational Setup
- 4 pp $\rightarrow t\overline{c} + \overline{t}c$: Numerical Results
 - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

 $\begin{array}{l} pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c; \ phenomenological \ context \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c; \ Computational \ Setup \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c; \ Numerical \ Results \\ \end{array}$

Outline

Outline

2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context

A brief motivation

- Supersymmetry basics
- the Minimal Supersymmetric Standard Model
- SUSY in particle phenomenology
- 3 pp \rightarrow t \overline{c} + \overline{t} c: Computational Setup
- 4 pp $\rightarrow t\overline{c} + \overline{t}c$: Numerical Results
 - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

 $\begin{array}{l} pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c; \ phenomenological \ context \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c; \ Computational \ Setup \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c; \ Numerical \ Results \\ \end{array}$

Outline

- 2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- 3 pp \rightarrow t \overline{c} + $\overline{t}c$: Computational Setup
- 4 pp $\rightarrow t\overline{c} + \overline{t}c$: Numerical Results
 - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

 $\begin{array}{l} pp \ \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results\\ Conclusions \end{array}$

Outline

Outline

- 2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- 3 pp ightarrow t \overline{c} + \overline{t} c: Computational Setup
- - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

 $\begin{array}{l} pp \ \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results\\ Conclusions \end{array}$

Outline

Outline

- 2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- 3 pp ightarrow t \overline{c} + \overline{t} c: Computational Setup
- 4 pp $\rightarrow t\overline{c} + \overline{t}c$: Numerical Results
 - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

 $\begin{array}{l} pp \ \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results\\ Conclusions \end{array}$

Outline

Outline

- 2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- (3) $pp \rightarrow t\overline{c} + \overline{t}c$: Computational Setup
 - **4** pp $\rightarrow t\overline{c} + \overline{t}c$: Numerical Results
 - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

 $\begin{array}{l} pp \ \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results\\ Conclusions \end{array}$

Outline

- 2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- (3) $pp \rightarrow t\overline{c} + \overline{t}c$: Computational Setup
- - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

 $\begin{array}{l} pp \ \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results\\ Conclusions \end{array}$

Outline

- 2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- (3) $pp \rightarrow t\overline{c} + \overline{t}c$: Computational Setup
- - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution
 - 5 Conclusions

 $\begin{array}{l} pp \ \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results\\ Conclusions \end{array}$

Outline

- 2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- (3) $pp \rightarrow t\overline{c} + \overline{t}c$: Computational Setup
- - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

 $\begin{array}{l} pp \ \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results\\ Conclusions \end{array}$

Outline

- 2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- (3) $pp \rightarrow t\overline{c} + \overline{t}c$: Computational Setup
- - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

 $\begin{array}{l} pp \ \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup\\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results\\ Conclusions \end{array}$

Outline

- 2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- (3) $pp \rightarrow t\overline{c} + \overline{t}c$: Computational Setup
- - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Mode! SUSY in particle phenomenology

Outline

Outline

- 2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- $\fbox{3}$ pp ightarrow t $\overline{ extsf{c}}$ + $\overline{ extsf{t}}$ c: Computational Setup
- 4 pp $\rightarrow t\overline{c} + \overline{t}c$: Numerical Results
 - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

A brief motivation

• Le'ts have a look at this beautiful landscape ...

David López-Val RADCOR 2007 - GGI (Firenze)

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

A brief motivation

- Let's have a look at this beautiful landscape ...
- What can we actually see ?
 - Old problems: mass generation, quadratic divergences, GUT unification

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Mode! SUSY in particle phenomenology

A brief motivation

- Let's have a look at this beautiful landscape ...
 - Old problems: mass generation, quadratic divergences, GUT unification
 - Current ideas: 2HDM's, technicolor, low-energy SUSY

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

A brief motivation

- Let's have a look at this beautiful landscape ...
 - Old problems: mass generation, quadratic divergences, GUT unification
 - Current ideas: 2HDM's, technicolor, low-energy SUSY
 - Future tools: the LHC $! \Rightarrow$ New Physics unveiled at the TeV scale ?

David López-Val

RADCOR 2007 - GGI (Firenze)

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

Supersymmetry basics

Let \boldsymbol{Q} be the generator of a SUSY transformation.

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

Supersymmetry basics

Let Q be the generator of a SUSY transformation.

 $Q |Fermion\rangle = |Boson\rangle$ $Q |Boson\rangle = |Fermion\rangle.$

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

Supersymmetry basics

Let Q be the generator of a SUSY transformation.

 $Q |Fermion\rangle = |Boson\rangle$ $Q |Boson\rangle = |Fermion\rangle.$

Theorem (Haag-Sohnius-Lopuszanski, 1975)

The largest symmetry which an interacting, unitary field theory can have is the direct product of (several) gauge symmetries, Poincaré invariance (P^{μ}) , and Supersymmetry (Q), in such a way that:

$$\begin{aligned} \{Q^A_{\alpha}, \bar{Q}_{\dot{\beta}B}\} &= 2\sigma^{\mu}_{\alpha\dot{\beta}}P_{\mu}\delta^A_B\\ \{Q^A_{\alpha}, Q^B_{\beta}\} &= \{\bar{Q}_{\dot{\alpha}A}, \bar{Q}_{\dot{\beta}B}\} = 0\\ [P_{\mu}, Q^A_{\alpha}] &= [P_{\mu}, \bar{Q}_{\dot{\alpha}A}] = 0\\ [P_{\mu}, P_{\nu}] &= 0 \end{aligned}$$

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

the MSSM

- $SU_C(3) \otimes SU_L(2) \otimes U_Y(1)$ gauge invariance
- Renormalizability
- A set of Soft SUSY-breaking parameters
- A minimal matter content
- A Minimal number of Yukawa couplings

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

the MSSM

- $SU_C(3)\otimes SU_L(2)\otimes U_Y(1)$ gauge invariance
- Renormalizability
- A set of Soft SUSY-breaking parameters
- A minimal matter content
- A Minimal number of Yukawa couplings

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

the MSSM

- $SU_C(3)\otimes SU_L(2)\otimes U_Y(1)$ gauge invariance
- Renormalizability
- A set of Soft SUSY-breaking parameters
- A minimal matter content
- A Minimal number of Yukawa couplings

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

the MSSM

- $SU_C(3)\otimes SU_L(2)\otimes U_Y(1)$ gauge invariance
- Renormalizability
- A set of Soft SUSY-breaking parameters
- A minimal matter content
- A Minimal number of Yukawa couplings

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

the MSSM

- $SU_C(3)\otimes SU_L(2)\otimes U_Y(1)$ gauge invariance
- Renormalizability
- A set of Soft SUSY-breaking parameters
- A minimal matter content
- A Minimal number of Yukawa couplings

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

the MSSM

- $SU_C(3)\otimes SU_L(2)\otimes U_Y(1)$ gauge invariance
- Renormalizability
- A set of Soft SUSY-breaking parameters
- A minimal matter content
- A Minimal number of Yukawa couplings

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

the MSSM

- $SU_C(3)\otimes SU_L(2)\otimes U_Y(1)$ gauge invariance
- Renormalizability
- A set of Soft SUSY-breaking parameters
- A minimal matter content
- A Minimal number of Yukawa couplings

$$\mathsf{M}$$
inimal S upersymmetric S tandard M odel

 $\begin{array}{l} \text{Outline} \\ pp \rightarrow t\overline{c} + \overline{t}c: \mbox{ phenomenological context} \\ pp \rightarrow t\overline{c} + \overline{t}c: \mbox{ Computational Setup} \\ pp \rightarrow t\overline{c} + \overline{t}c: \mbox{ Numerical Results} \\ \end{array}$

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

MSSM: particle content

	fields			gauge group					
	superfield	fermion	boson	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$			
Matter sector									
Quarks	$ ilde{Q}_i$	$\left(egin{array}{c} u_i \ d_i \end{array} ight)_L$	$\left(egin{array}{c} ilde{u}_i \ ilde{d}_i \end{array} ight)_L$	3	2	$\frac{1}{3}$			
	\hat{U}_i	u_{iR}^c	\tilde{u}_{iR}^*	3	1	$-\frac{4}{3}$			
	\hat{D}_i	d_{iR}^c	\tilde{d}^*_{iR}	3	1	$-\frac{4}{3}$			
Leptons	\hat{L}_i	$\left(\begin{array}{c} \nu_i \\ e_i \end{array} \right)_I$	$\left(\begin{array}{c} \tilde{\nu}_i \\ \tilde{e}_i \end{array} \right)_I$	1	2	-1			
	\hat{E}_i	e_{iR}^{c}	\tilde{e}^*_{iR}	1	1	2			
Gauge sector									
$SU(3)_C$	\hat{G}^a	$ ilde{\lambda}_g^a$	g^a_μ	8	1	0			
$SU(2)_L$	\hat{W}^i	$ ilde{\lambda}^i_W$	W^i_μ	1	3	0			
$U(1)_Y$	Â	$ ilde{\lambda}_B$	B_{μ}	1	1	0			

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

MSSM: particle content

	fields			gauge group			
	superfield	fermion	scalar	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	
Н	Higgs Sector						
	\hat{H}_1	$\left(\begin{array}{c} \tilde{H}_1^1\\ \tilde{H}_1^2 \end{array}\right)$	$ \left(\begin{array}{c}H_1^1\\H_1^2\end{array}\right) $	1	2	-1	
	\hat{H}_2	$\left(\begin{array}{c} \tilde{H}_{2}^{1} \\ \tilde{H}_{2}^{2} \end{array}\right)$	$\left(\begin{array}{c}H_2^1\\\tilde{H}_2^2\end{array}\right)$	1	2	1	

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

MSSM: particle content

• Due to the $SU_L(2) \otimes U_Y(1)$ breaking, several non-trivial mixings between gauge eigenstates take place:

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

MSSM: particle content

• Due to the $SU_L(2) \otimes U_Y(1)$ breaking, several non-trivial mixings between gauge eigenstates take place:

	mass eigenstates	gauge eigenstates	
(physical) Higgses	h^0, H^0, A^0, H^\pm	$H_1^0, H_2^0, H_1^-, H_2^+$	
squarks	$\tilde{u}_{\alpha}, \tilde{d}_{\alpha}, \alpha = 1, \dots, 6$	$\tilde{u}_L, \tilde{u}_R, \tilde{d}_L, \tilde{d}_R$	
sleptons	$ ilde{l}_1, ilde{l}_2, ilde{ u}_l$	$ ilde{l}_L, ilde{l}_R, ilde{ u}_l$	
neutralinos	$ ilde{\chi}_1, ilde{\chi}_2, ilde{\chi}_3, ilde{\chi}_3$	$ ilde{B}^0, ilde{W}^0, ilde{H}^0_1, ilde{H}^0_2$	
charginos	$\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$	$\tilde{W}^{\pm}, \tilde{H}_1^-, \tilde{H}_2^+$	

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

Experimental signatures of SUSY

 \blacklozenge Direct production \Rightarrow tagging through the decay products

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

Experimental signatures of SUSY

♠ Direct production ⇒ tagging through the decay products

 ${\ensuremath{\, \bullet }}$ e.g. suppose $t\to \widetilde{\chi}^0 \widetilde{t}$

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

Experimental signatures of SUSY

♠ Direct production ⇒ tagging through the decay products

 ${\ensuremath{\, \bullet }}$ e.g. suppose $t \to \widetilde{\chi}^0 \widetilde{t}$

 $\widetilde{\mathsf{t}} \to \widetilde{\chi}^+ \,\mathsf{b}$
A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

Experimental signatures of SUSY

♠ Direct production ⇒ tagging through the decay products

• e.g. suppose
$$t\to \widetilde{\chi}^0\widetilde{t}$$

$$\widetilde{t}\to \widetilde{\chi}^+ \,b \,\to \widetilde{\chi}_1^0 \,b W^+$$

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

Experimental signatures of SUSY

♠ Direct production ⇒ tagging through the decay products

• e.g. suppose $t \to \widetilde{\chi}^0 \widetilde{t}$

$$\widetilde{\mathfrak{t}} \to \widetilde{\chi}^+ \, \mathfrak{b} \to \widetilde{\chi}_1^0 b \mathsf{W}^{+*} \Rightarrow \begin{cases} \widetilde{\chi}_1^0 \, \mathfrak{b} \, \ell \, \nu \\ \widetilde{\chi}_1^0 \, \mathfrak{b} + 2jets \end{cases}$$

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

Experimental signatures of SUSY

♠ Direct production ⇒ tagging through the decay products

• e.g. suppose
$$t \to \widetilde{\chi}^0 \widetilde{t}$$

$$\widetilde{\mathbf{t}} \to \widetilde{\chi}^+ \, \mathbf{b} \to \widetilde{\chi}_1^0 \, b \, \mathbf{W}^{+*} \Rightarrow \begin{cases} \widetilde{\chi}_1^0 \, \mathbf{b} \, \ell \, \nu \\ \widetilde{\chi}_1^0 \, \mathbf{b} + 2jets \end{cases}$$

Direct tagging looks troublesome !

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

Experimental signatures of SUSY

♠ Direct production ⇒ tagging through the decay products

• e.g. suppose
$$t \rightarrow \widetilde{\chi}^0 \widetilde{t}$$

$$\widetilde{\mathsf{t}} \to \widetilde{\chi}^+ \, \mathsf{b} \to \widetilde{\chi}_1^0 \, \mathsf{b} \, \mathsf{W}^{+*} \Rightarrow \begin{cases} \widetilde{\chi}_1^0 \, \mathsf{b} \, \ell \, \nu \\ \widetilde{\chi}_1^0 \, \mathsf{b} + 2jets \end{cases}$$

Direct tagging looks troublesome !

 \blacklozenge Quantum effects on conventional processes \Rightarrow Possible enhancements with respect to the SM predictions

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

Experimental signatures of SUSY

♠ Direct production ⇒ tagging through the decay products

 ${\ensuremath{\, \bullet }}$ e.g. suppose $t\to \widetilde{\chi}^0 \, \widetilde{t}$

$$\widetilde{\mathsf{t}} \to \widetilde{\chi}^+ \, \mathsf{b} \to \widetilde{\chi}_1^0 \, b \mathsf{W}^{+*} \Rightarrow \begin{cases} \widetilde{\chi}_1^0 \, \mathsf{b} \, \ell \, \nu \\ \widetilde{\chi}_1^0 \, \mathsf{b} + 2jets \end{cases}$$

Direct tagging looks troublesome !

 \blacklozenge Quantum effects on conventional processes \Rightarrow Possible enhancements with respect to the SM predictions

• e.g. $t \rightarrow c.g$

Flavor Changing Neutral Current

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

Experimental signatures of SUSY

♠ Direct production ⇒ tagging through the decay products

• e.g. suppose
$$t \rightarrow \widetilde{\chi}^0 \widetilde{t}$$

$$\widetilde{\mathsf{t}} \to \widetilde{\chi}^+ \,\mathsf{b} \to \widetilde{\chi}_1^0 \,b \,\mathsf{W}^{+*} \Rightarrow \begin{cases} \widetilde{\chi}_1^0 \,\mathsf{b} \,\ell \,\nu \\ \widetilde{\chi}_1^0 \,\mathsf{b} + 2jets \end{cases}$$

Direct tagging looks troublesome !

 \blacklozenge Quantum effects on conventional processes \Rightarrow Possible enhancements with respect to the SM predictions

• e.g. $t \rightarrow c g$

 $\label{eq:basic} \begin{array}{l} \mbox{Flavor Changing Neutral Current} \\ \mbox{\mathcal{B}}(t \rightarrow c \, g) \left\{ \begin{array}{l} \sim 10^{-11} \mbox{ (SM)} \\ \leq 10^{-5} \mbox{ (MSSM)} \end{array} \right. \end{array}$

A brief motivation Supersymmetry basics the Minimal Supersymmetric Standard Model SUSY in particle phenomenology

Experimental signatures of SUSY

 \blacklozenge Direct production \Rightarrow tagging through the decay products

• e.g. suppose $t \to \widetilde{\chi}^0 \, \widetilde{t}$

$$\widetilde{\mathsf{t}} \to \widetilde{\chi}^+ \, \mathsf{b} \to \widetilde{\chi}_1^0 \, b \mathsf{W}^{+*} \Rightarrow \begin{cases} \widetilde{\chi}_1^0 \, \mathsf{b} \, \ell \, \nu \\ \widetilde{\chi}_1^0 \, \mathsf{b} + 2jets \end{cases}$$

Direct tagging looks troublesome !

 \blacklozenge Quantum effects on conventional processes \Rightarrow Possible enhancements with respect to the SM predictions

• e.g. $t \rightarrow cg$ Flavor Changing Neutral Current $\mathcal{B}(t \rightarrow cg) \begin{cases} \sim 10^{-11} \text{ (SM)} \Rightarrow \text{GIM-supressed }! \\ \leq 10^{-5} \text{ (MSSM) enhanced }! \text{ Guasch, Solà ['99]} \end{cases}$

Outline

Outline

- 2 pp \rightarrow t \overline{c} + $\overline{t}c$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology

(3) $pp \rightarrow t\overline{c} + \overline{t}c$: Computational Setup

- 4 pp $\rightarrow t\overline{c} + \overline{t}c$: Numerical Results
 - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

5 Conclusions

Previous studies

- Liu, Li, Yang, Jin (2004)
- Guasch, Hollik, Peñaranda, Solà (2005)
- Eilam, Frank, Turan (2006).

- The 1-loop order is the leading order for a process such as $pp \rightarrow t\overline{c} + \overline{t}c$ (the GIM mechanism forbidds any tree-level contribution.)
 - We do not have to renormalize any bare parameter nor field-strenght term.
 - We thus have to ensure that the overall 1-loop amplitude is already finite.
- We shall work in the t'Hooft-Feynman gauge.

- The 1-loop order is the leading order for a process such as $pp \rightarrow t\overline{c} + \overline{t}c$ (the GIM mechanism forbidds any tree-level contribution.)
 - We do not have to renormalize any bare parameter nor field-strenght term.
 - We thus have to ensure that the overall 1-loop amplitude is already finite.
- We shall work in the t'Hooft-Feynman gauge.

- The 1-loop order is the leading order for a process such as $pp \rightarrow t\overline{c} + \overline{t}c$ (the GIM mechanism forbidds any tree-level contribution.)
 - We do not have to renormalize any bare parameter nor field-strenght term.
 - We thus have to ensure that the overall 1-loop amplitude is already finite.
- We shall work in the t'Hooft-Feynman gauge.

- The 1-loop order is the leading order for a process such as $pp \rightarrow t\overline{c} + \overline{t}c$ (the GIM mechanism forbidds any tree-level contribution.)
 - We do not have to renormalize any bare parameter nor field-strenght term.
 - We thus have to ensure that the overall 1-loop amplitude is already finite.
- We shall work in the t'Hooft-Feynman gauge.

Setting up the parameters

- We fix the Renormalization and Factorization scales at a common value, $\mu_R = \mu_F = \frac{1}{2}(m_c + m_t)$
- We take the RG running SM parameters at μ_R :
 - for the masses

For the coupling constants

Setting up the parameters

- We fix the Renormalization and Factorization scales at a common value, $\mu_R = \mu_F = \frac{1}{2}(m_c + m_t)$
- We take the RG running SM parameters at μ_R :
 - o for the masses

• For the coupling constants

Setting up the parameters

- We fix the Renormalization and Factorization scales at a common value, $\mu_R = \mu_F = \frac{1}{2}(m_c + m_t)$
- We take the RG running SM parameters at μ_R :
 - for the masses

$m_c(\mu_R)$ (GeV)	$m_b(\mu_R)$ (GeV)	$m_t(\mu_R)$ (GeV)
0.877	3.024	183.365

For the coupling constants

Setting up the parameters

- We fix the Renormalization and Factorization scales at a common value, $\mu_R = \mu_F = \frac{1}{2}(m_c + m_t)$
- We take the RG running SM parameters at μ_R :
 - for the masses

$m_c(\mu_R)$ (GeV)	$m_b(\mu_R)$ (GeV)	$m_t(\mu_R)$ (GeV)
0.877	3.024	183.365

For the coupling constants

$\alpha_s(\mu_R)$	$\alpha_{em}(\mu_R)$	$\sin^2 heta_W(\mu_R)$
0.1177	1/128.89	0.23

Hadronic Cross Sections

• The process $pp \rightarrow t\overline{c} + \overline{t}c$ can be **factorized** into two pieces:

• We get the total hadronic cross section by convoluting $\frac{d\mathcal{L}}{d\tau}$ with the partonic cross section $\sigma_{qq \rightarrow t\bar{c}}$:

$$\sigma_{pp \to t\bar{c}} = \int_{\tau_0}^1 d\tau \, \frac{d\mathcal{L}}{d\tau} \hat{\sigma}_{gg \to t\bar{c}}(\hat{S}, \alpha_s(\mu_R))$$

Hadronic Cross Sections

- The process $pp \rightarrow t\overline{c} + \overline{t}c$ can be **factorized** into two pieces:
 - The short-distance (perturbative) partonic subprocess, $gg \rightarrow t\overline{c}$

• We get the total hadronic cross section by convoluting $\frac{d\mathcal{L}}{d\tau}$ with the partonic cross section $\sigma_{qq \rightarrow t\bar{c}}$:

$$\sigma_{pp \to t\bar{c}} = \int_{\tau_0}^1 d\tau \, \frac{d\mathcal{L}}{d\tau} \hat{\sigma}_{gg \to t\bar{c}}(\hat{S}, \alpha_s(\mu_R))$$

Hadronic Cross Sections

- The process $pp \rightarrow t\overline{c} + \overline{t}c$ can be **factorized** into two pieces:
 - $\bullet\,$ The short-distance (perturbative) partonic subprocess, $gg \to t\overline{c}$
 - The long-distance (non-perturbative) dynamics of the gluons, encoded in the *gluon luminosity*

$$\frac{d\mathcal{L}}{d\tau} = \int_{\tau}^{1} \frac{dx}{x} f_{pg}(x,\mu_F) f_{pg}(\frac{\tau}{x},\mu_F)$$

 We get the total hadronic cross section by convoluting <u>d</u>_L/dτ with the partonic cross section σ_{gg→tē}:

$$\sigma_{pp \to t\bar{c}} = \int_{\tau_0}^1 d\tau \, \frac{d\mathcal{L}}{d\tau} \hat{\sigma}_{gg \to t\bar{c}}(\hat{S}, \alpha_s(\mu_R))$$

Hadronic Cross Sections

- The process $pp \rightarrow t\overline{c} + \overline{t}c$ can be **factorized** into two pieces:
 - \bullet The short-distance (perturbative) partonic subprocess, $gg \to t\overline{c}$
 - The long-distance (non-perturbative) dynamics of the gluons, encoded in the *gluon luminosity*

$$\frac{d\mathcal{L}}{d\tau} = \int_{\tau}^{1} \frac{dx}{x} f_{pg}(x,\mu_F) f_{pg}(\frac{\tau}{x},\mu_F)$$

• We get the total hadronic cross section by convoluting $\frac{d\mathcal{L}}{d\tau}$ with the partonic cross section $\sigma_{gg \rightarrow t\bar{c}}$:

$$\sigma_{pp \to t\bar{c}} = \int_{\tau_0}^1 d\tau \, \frac{d\mathcal{L}}{d\tau} \hat{\sigma}_{gg \to t\bar{c}}(\hat{S}, \alpha_s(\mu_R))$$

Phenomenological Constraints

• B-meson radiative decay

$$\mathcal{B}(\mathsf{b} \to \mathsf{s}\,\gamma) = (2.1 - 4.5) \times 10^{-4}$$

at the 3σ level CLEO, ALEPH, BELLE, BABAR

PDG 2006

Mass bounds

$$\begin{split} m_{\widetilde{\chi}_{1}^{0}} &> 46 \text{GeV} & m_{\widetilde{\chi}^{\pm}_{1}} > 94 \text{GeV} \\ m_{\widetilde{b}} &> 89 \text{GeV} & m_{\widetilde{t}} > 95.7 \text{GeV} \end{split}$$

PDG 2006

• Other features: absence of color-breaking minima ($|A_t| \leq 3M_{SUSY}$)

Phenomenological Constraints

• B-meson radiative decay

$$\mathcal{B}(\mathsf{b} \to \mathsf{s}\,\gamma) = (2.1 - 4.5) \times 10^{-4}$$

at the 3σ level CLEO, ALEPH, BELLE, BABAR

PDG 2006

Mass bounds

$$\begin{array}{ll} m_{\widetilde{\chi}_{1}^{0}} > 46 {\rm GeV} & m_{\widetilde{\chi}^{\pm}_{1}} > 94 {\rm GeV} \\ m_{\widetilde{{\rm b}}} > 89 {\rm GeV} & m_{\widetilde{{\rm t}}} > 95.7 {\rm GeV} \end{array}$$

PDG 2006

• Other features: absence of color-breaking minima $(|A_t| \leq 3M_{SUSY})$

 $\begin{array}{c} \text{Outline} \\ pp \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context \\ pp \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup \\ pp \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results \\ \hline Conclusions \end{array}$

Phenomenological Constraints

• B-meson radiative decay

$$\mathcal{B}(\mathsf{b} \to \mathsf{s}\,\gamma) = (2.1 - 4.5) \times 10^{-4}$$

at the 3σ level CLEO, ALEPH, BELLE, BABAR

PDG 2006

Mass bounds

$$\begin{array}{ll} m_{\widetilde{\chi}_1^0} > 46 {\rm GeV} & m_{\widetilde{\chi}^\pm_{-1}} > 94 {\rm GeV} \\ m_{\widetilde{{\bf b}}} > 89 {\rm GeV} & m_{\widetilde{{\bf t}}} > 95.7 {\rm GeV} \end{array}$$

PDG 2006

• Other features: absence of color-breaking minima $(|A_t| \leq 3M_{SUSY})$

Computational skills

• We have made use of the standard computational packages:

- FeynArts: for the generation of the Feynman diagrams
- FormCalc: for the analytical computation and simplification of the scattering amplitude
- LoopTools: for the computation of the loop integrals
- We also need to adress the computation of the hadronic cross section:
 - HadCalc: for the convolution of the partonic cross section with the gluon luminosity M.Rauch ['06]
 - A set of PDF's: CTEQ6AB (from LHAPDF v.5.2) Pumplin et al. ['06]

Computational skills

- We have made use of the standard computational packages:
 - FeynArts: for the generation of the Feynman diagrams
 - FormCalc: for the analytical computation and simplification of the scattering amplitude
 - LoopTools: for the computation of the loop integrals
- We also need to adress the computation of the hadronic cross section:
 - HadCalc: for the convolution of the partonic cross section with the gluon luminosity M.Rauch ['06]
 - A set of PDF's: CTEQ6AB (from LHAPDF v.5.2) Pumplin et al. ['06]

Computational skills

- We have made use of the standard computational packages:
 - FeynArts: for the generation of the Feynman diagrams
 - FormCalc: for the analytical computation and simplification of the scattering amplitude
 - LoopTools: for the computation of the loop integrals
- We also need to adress the computation of the hadronic cross section:
 - HadCalc: for the convolution of the partonic cross section with the gluon luminosity M.Rauch ['06]
 - A set of PDF's: CTEQ6AB (from LHAPDF v.5.2) Pumplin et al. ['06]

Computational skills

- We have made use of the standard computational packages:
 - FeynArts: for the generation of the Feynman diagrams
 - FormCalc: for the analytical computation and simplification of the scattering amplitude
 - LoopTools: for the computation of the loop integrals
- We also need to adress the computation of the hadronic cross section:
 - HadCalc: for the convolution of the partonic cross section with the gluon luminosity M.Rauch ['06]
 - A set of PDF's: CTEQ6AB (from LHAPDF v.5.2) Pumplin et al. ['06]

Computational skills

- We have made use of the standard computational packages:
 - FeynArts: for the generation of the Feynman diagrams
 - FormCalc: for the analytical computation and simplification of the scattering amplitude
 - LoopTools: for the computation of the loop integrals

- We also need to adress the computation of the hadronic cross section:
 - HadCalc: for the convolution of the partonic cross section with the gluon luminosity M.Rauch ['06]
 - A set of PDF's: CTEQ6AB (from LHAPDF v.5.2) Pumplin et al. ['06]

 $\begin{array}{l} \text{Outline} \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c: \ phenomenological \ context \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c: \ Computational \ Setup \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c: \ Numerical \ Results \\ Conclusions \end{array}$

Computational skills

- We have made use of the standard computational packages:
 - FeynArts: for the generation of the Feynman diagrams
 - FormCalc: for the analytical computation and simplification of the scattering amplitude
 - LoopTools: for the computation of the loop integrals

- We also need to adress the computation of the hadronic cross section:
 - HadCalc: for the convolution of the partonic cross section with the gluon luminosity M.Rauch ['06]
 - A set of PDF's: CTEQ6AB (from LHAPDF v.5.2) Pumplin et al. ['06]

 $\begin{array}{l} \text{Outline} \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c: \ phenomenological \ context \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c: \ Computational \ Setup \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c: \ Numerical \ Results \\ Conclusions \end{array}$

Computational skills

- We have made use of the standard computational packages:
 - FeynArts: for the generation of the Feynman diagrams
 - FormCalc: for the analytical computation and simplification of the scattering amplitude
 - LoopTools: for the computation of the loop integrals

- We also need to adress the computation of the hadronic cross section:
 - HadCalc: for the convolution of the partonic cross section with the gluon luminosity M.Rauch ['06]
 - A set of PDF's: **CTEQ6AB** (from LHAPDF v.5.2) Pumplin et al. ['06]

Computational skills

- We have made use of the standard computational packages:
 - FeynArts: for the generation of the Feynman diagrams
 - FormCalc: for the analytical computation and simplification of the scattering amplitude
 - LoopTools: for the computation of the loop integrals

- We also need to adress the computation of the hadronic cross section:
 - HadCalc: for the convolution of the partonic cross section with the gluon luminosity M.Rauch ['06]
 - A set of PDF's: **CTEQ6AB** (from LHAPDF v.5.2) Pumplin et al. ['06]

 $\begin{array}{l} & \text{Outline} \\ pp & \to t\overline{c} + \overline{t}c; \ phenomenological \ context \\ pp & \to t\overline{c} + \overline{t}c; \ Computational \ Setup \\ & \textbf{pp} & \to t\overline{c} + \overline{t}c; \ Numerical \ Results \\ & \text{Conclusions} \end{array}$

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

Outline

Outline

- 2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- 3 pp \rightarrow t \overline{c} + $\overline{t}c$: Computational Setup
- - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

5 Conclusions

 $\begin{array}{l} \text{Outline} \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c: \ phenomenological \ context \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c: \ Computational \ Setup \\ pp \ \rightarrow \ t\overline{c} \ + \ \overline{t}c: \ Numerical \ Results \\ Conclusions \end{array}$

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SM results

SM results

Standard Model contribution

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SM results

Let us compute the corresponding form factor

$$f \sim \frac{g^2}{16\pi^2} \sum_{i=d,s,b} \left(K_{ti}^* K_{ic} \right) \left(\frac{m_i}{M_W} \right)^2$$
Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SM results

Let us compute the corresponding form factor

$$f \sim \frac{g^2}{16\pi^2} \sum_{i=d,s,b} \left(K_{ti}^* K_{ic} \right) \left(\frac{m_i}{M_W} \right)^2$$

David López-Val RADCOR 2007 - GGI (Firenze)

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SM results

Let us compute the corresponding form factor

$$f \sim \frac{g^2}{16\pi^2} \sum_{i=d,s,b} \left(K_{ti}^* \, K_{ic} \right) \, \left(\frac{m_i}{M_W} \right)^2 \sim \mathbf{0}$$

David López-Val RADCOR 2007 - GGI (Firenze)

SM results

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

Basic features

• Large GIM supression

ullet ~ 1 event in the whole lifetime of the LHC !

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SM results

Basic features

• Large GIM supression

$$\Rightarrow \sigma(pp \rightarrow t\overline{c} + \overline{t}c) = 8.57 \, 10^{-8} \text{ pb}$$

• ~ 1 event in the whole lifetime of the LHC !

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SM results

Basic features

• Large GIM supression

$$\Rightarrow \sigma(pp \rightarrow t\overline{c} + \overline{t}c) = 8.57 \, 10^{-8} \text{ pb}$$

 $\bullet\,\sim 1$ event in the whole lifetime of the LHC !

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

- A misalignment appears between the physical basis of quarks and squarks
- The most general realization of the squark mass matrix involves explicit intergenerational mixing parameters:

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

- A misalignment appears between the physical basis of quarks and squarks
- The most general realization of the squark mass matrix involves explicit intergenerational mixing parameters:

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

- A misalignment appears between the physical basis of quarks and squarks
- The most general realization of the squark mass matrix involves explicit intergenerational mixing parameters:

$$\left(M_{AB}^{2\,ij}\right) = \delta_{AB}^{ij} \tilde{m}_i^A \tilde{m}_j^B$$

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

- A misalignment appears between the physical basis of quarks and squarks
- The most general realization of the squark mass matrix involves explicit intergenerational mixing parameters:

$$\begin{pmatrix} M_{AB}^{2 \ ij} \end{pmatrix} = \delta_{AB}^{ij} \tilde{m}_i^A \tilde{m}_j^B$$

$$\begin{pmatrix} M_{\tilde{U}}^2 \end{pmatrix}_{LL} = M_{SUSY}^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \delta_{23} \\ 0 & \delta_{23} & 1 \end{pmatrix}_{LL}$$

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

Flavor-changing sources in the MSSM

- A misalignment appears between the physical basis of quarks and squarks
- The most general realization of the squark mass matrix involves explicit intergenerational mixing parameters:

$$\begin{pmatrix} M_{AB}^{2\,ij} \end{pmatrix} = \delta_{AB}^{ij} \tilde{m}_{i}^{A} \tilde{m}_{j}^{B}$$

$$\begin{pmatrix} M_{\tilde{U}}^{2} \end{pmatrix}_{LL} = M_{SUSY}^{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \delta_{23} \\ 0 & \delta_{23} & 1 \end{pmatrix}_{LL}$$

LL-block only: based on RG arguments Duncan ['83]

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

Flavor-changing sources in the MSSM

Relevant flavor-mixing parameters for our analysis:

- δ_{23}^U , linking t to c
- δ_{23}^D , linking b to s

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

- Relevant flavor-mixing parameters for our analysis:
 - δ^U_{23} , linking t to c
 - δ_{23}^D , linking b to s

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

- Relevant flavor-mixing parameters for our analysis:
 - δ^U_{23} , linking t to c
 - δ_{23}^D , linking b to s

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

- Relevant flavor-mixing parameters for our analysis:
 - δ^U_{23} , linking t to c
 - δ^D_{23} , linking b to s
- $\blacklozenge \delta^D_{23}$ gets constrained by $\mathcal{B}(\mathsf{b} \to \mathsf{s}\gamma)$

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

- Relevant flavor-mixing parameters for our analysis:
 - δ_{23}^U , linking t to c
 - δ_{23}^D , linking b to s
- $\diamond \delta^D_{23}$ gets constrained by $\mathcal{B}(\mathsf{b} \to \mathsf{s}\gamma)$
- \blacklozenge $SU(2)_L$ symmetry ties $M^2_{\tilde{U}}$ to $M^2_{\tilde{D}}$, and thus δ^U_{23} to δ^D_{23}

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

Flavor-changing sources in the MSSM

Relevant flavor-mixing parameters for our analysis:

- δ^U_{23} , linking t to c
- δ^D_{23} , linking b to s
- $\blacklozenge \delta^D_{23}$ gets constrained by $\mathcal{B}(\mathsf{b} \to \mathsf{s}\gamma)$

 \blacklozenge $SU(2)_L$ symmetry ties $M^2_{ ilde{U}}$ to $M^2_{ ilde{D}}$, and thus δ^U_{23} to δ^D_{23}

Therefore ...

Non-standard flavor-changing effects in the $t\overline{c}$ sector also become constrained by $\mathcal{B}(b\to s\gamma)$

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

Flavor-changing sources in the MSSM

The above flavor-changing terms participate through the gaugino-quark-squark couplings of the guise:

$$\mathcal{L}_{\tilde{\lambda}\psi\tilde{\psi}} = i\sqrt{2} g_s \tilde{\psi}_k^* \tilde{\lambda}^a (T^a)_{kl} \psi_l + h.c.$$

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

Flavor-changing sources in the MSSM

The above flavor-changing terms participate through the gaugino-quark-squark couplings of the guise:

$$\mathcal{L}_{\tilde{\lambda}\psi\tilde{\psi}} = i\sqrt{2} g_s \tilde{\psi}_k^* \tilde{\lambda}^a (T^a)_{kl} \psi_l + h.c.$$

Such couplings are free of GIM supressions

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SUSY-QCD contribution

 $\begin{array}{l} & \text{Outline} \\ pp \end{tabular} \to t\overline{c} + \overline{t}c; \end{tabular} phenomenological context \\ pp \end{tabular} \to t\overline{c} + \overline{t}c; \end{tabular} Computational Setup \\ & \textbf{pp} \end{tabular} \to \overline{t}\overline{c} + \overline{t}c; \end{tabular} Numerical Results \\ & \text{Conclusions} \end{array}$

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

$\mathbf{b} \rightarrow \mathbf{s} \gamma$ constraints

The MSSM parameter space gets restricted by the SUSY contributions to the B-meson radiative decay Bobeth, Misiak, Urban ['99]

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

$\mathbf{b} \rightarrow \mathbf{s} \gamma$ constraints

The MSSM parameter space gets restricted by the SUSY contributions to the B-meson radiative decay Bobeth, Misiak, Urban ['99]

$$A(b
ightarrow s \gamma) \sim \delta^{(d)LL}_{23} imes rac{m_b (A_b - \mu an eta)}{M^2_{SUSY}} imes rac{1}{m_{ ilde g}}$$

David López-Val RADCOR 2007 - GGI (Firenze)

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SUSY-QCD contribution

aneta	5
$A_t(GeV)$	2238.25
$A_b(GeV)$	2000
$m_{\tilde{g}}(GeV)$	200
$M_{SUSY}(GeV)$	746
$\mu(GeV)$	400
$\delta_{23}^{LL}(u)$	0.7

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SUSY-QCD contribution

Figure 1: SUSY-QCD contribution to the total cross section $\sigma_{t\bar{c}}$ (in pb) and the corresponding number of events per 100 fb⁻¹ of integrated luminosity at the LHC, as a function of a) tan β and b) A_t for the set I of MSSM parameters. The shaded region in a) is excluded by $B_{exp}(b \rightarrow s\gamma)$.

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SUSY-QCD contribution

Figure 2: SUSY-QCD contribution to the total cross section $\sigma_{t\bar{c}}$ (in pb) and the corresponding number of events per 100 fb⁻¹ of integrated luminosity at the LHC, as a function of **a**) $m_{\tilde{q}}$ and **b**) $\delta_{23}^{LL}(u)$ for the set (I) of MSSM parameters.

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SUSY-QCD contribution

• In the most favorable scenarios, those triggered by <u>light gluino masses</u> and <u>large intergenerational mixing</u>, we get production rates of $2\sigma_{t\overline{c}} \sim 10^5$ events per 100 fb⁻¹ of integrated luminosity at the LHC

Notice thus that

$$\frac{\sigma(gg \to t\bar{c})_{\rm SUSY-QCD}}{\sigma(gg \to t\bar{c})_{\rm SM}} \sim 10^7$$

 SUSY-QCD quantum effects can boost the (almost zero) SM contribution up to 7 orders of magnitude !! ⇒ This is the sort of indirect trace of SUSY that we were looking for !!

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SUSY-QCD contribution

- In the most favorable scenarios, those triggered by <u>light gluino masses</u> and <u>large intergenerational mixing</u>, we get production rates of $2\sigma_{t\overline{c}} \sim 10^5$ events per 100 fb⁻¹ of integrated luminosity at the LHC
- Notice thus that

$$\frac{\sigma(gg \to t\bar{c})_{\rm SUSY-QCD}}{\sigma(gg \to t\bar{c})_{\rm SM}} \sim 10^7$$

SUSY-QCD quantum effects can boost the (almost zero) SM contribution up to 7 orders of magnitude !! ⇒ This is the sort of indirect trace of SUSY that we were looking for !!

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SUSY-EW

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SUSY-EW

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SUSY-EW

aneta	10
$A_t(GeV)$	-300
$A_b({\sf GeV})$	-300
$A_{\tau}(GeV)$	-300
$m_{\widetilde{g}}(GeV)$	2000
$M_{SUSY}(GeV)$	250
$\mu({\rm GeV})$	400
$M_1(GeV)$	48
$M_2({\sf GeV})$	102
$M_{A^0}({\rm GeV})$	150
$\delta_{23}^{LL}(u)$	0.7

Table 2: Set (II) of MSSM parameters (favoring SUSY-EW)

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SUSY-EW

Figure 3: SUSY-EW contribution to the total cross section $\sigma_{t\bar{c}}$ (in pb) and the corresponding number of events per 100 fb⁻¹ of integrated luminosity at the LHC, as a function of a) tan β and b) A_t for the parameters of Set (II). The dashed regions are ruled out by the mass bounds on the lightest chargino and neutralino states.

 $\begin{array}{l} \mbox{Outline} & \mbox{Outline} \\ \mbox{pp} \rightarrow t\overline{c} + \overline{t}c; \mbox{ phenomenological context} \\ \mbox{pp} \rightarrow t\overline{c} + \overline{t}c; \mbox{ Computational Setup} \\ \mbox{pp} \rightarrow t\overline{c} + \overline{t}c; \mbox{ Numerical Results} \\ \mbox{Conclusions} \end{array}$

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

SUSY-EW

Figure 4: SUSY-EW contribution to the total cross section $\sigma_{t\bar{c}}$ (in pb) and the corresponding number of events per 100 fb⁻¹ of integrated luminosity at the LHC, as a function of **a**) M_1 and **b**) M_2 for the set II of MSSM parameters.

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

Comparison

Figure 5: SUSY-QCD and SUSY-EW contributions to the total cross section $\sigma_{t\bar{c}}$ (pb) as a function of $\delta_{23}^{LL}(u)$ for the choices of parameters that optimize the SUSY-QCD part (left) and the SUSY-EW one (right).

Standard Model contribution SUSY-QCD contribution SUSY-EW contribution

On the whole ...

basic features

- The SUSY-EW contribution to $\sigma(pp \rightarrow t\overline{c} + \overline{t}c)$ is particularly sensitive to the wino mass (M_2) and the SUSY-breaking scale (M_{SUSY}) , as well as to δ_{23} .
- There are regions in the MSSM parameter space where the SUSY-EW contribution becomes of the order, and even higher, than that of SUSY-QCD.
- Such scenarios bring us lower (but still sizeable) production rates of 10³ events per 100 fb⁻¹ of integrated luminosity.
- Therein the tc quark pair production turns out to be sensitive to both the SUSY-EW and the SUSY-QCD effects .

Outline

1 Outline

- 2 pp $\rightarrow t\overline{c} + \overline{t}c$: phenomenological context
 - A brief motivation
 - Supersymmetry basics
 - the Minimal Supersymmetric Standard Model
 - SUSY in particle phenomenology
- 3 pp \rightarrow t \overline{c} + $\overline{t}c$: Computational Setup
- 4 pp $\rightarrow t\overline{c} + \overline{t}c$: Numerical Results
 - Standard Model contribution
 - SUSY-QCD contribution
 - SUSY-EW contribution

6 Conclusions

Conclusions

- The aim of the present work was to study the direct SUSY single top-quark production through gluon fusion in pp collisions at the LHC, in correspondence with the $\mathcal{B}(b \rightarrow s\gamma)$ constraints.
- In the most favorable scenarios, the SUSY-QCD contribution can lead to $\sigma(pp \rightarrow t\overline{c} + \overline{t}c) \sim 10^5$ events per 100 fb⁻¹.
- Such scenarios entail light gluino masses $(m_{\tilde{g}})$ and large intergenerational mixings (δ_{LL}^{23}) .
- It turns out to be a very efficient source of direct FCNC top-quark production, much more than those rising from 2HDM, and $\sim 10^7$ times the SM contribution.

Conclusions

- The aim of the present work was to study the direct SUSY single top-quark production through gluon fusion in pp collisions at the LHC, in correspondence with the $\mathcal{B}(b \rightarrow s\gamma)$ constraints.
- In the most favorable scenarios, the SUSY-QCD contribution can lead to $\sigma(pp \rightarrow t\overline{c} + \overline{t}c) \sim 10^5$ events per 100 fb⁻¹.
- Such scenarios entail light gluino masses $(m_{\tilde{g}})$ and large intergenerational mixings (δ_{LL}^{23}) .
- It turns out to be a very efficient source of direct FCNC top-quark production, much more than those rising from 2HDM, and $\sim 10^7$ times the SM contribution.
$\begin{array}{l} \text{Outline} \\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context \\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup \\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results \\ \hline Conclusions \end{array}$

- The aim of the present work was to study the direct SUSY single top-quark production through gluon fusion in pp collisions at the LHC, in correspondence with the $\mathcal{B}(b \rightarrow s\gamma)$ constraints.
- In the most favorable scenarios, the SUSY-QCD contribution can lead to $\sigma(pp \rightarrow t\overline{c} + \overline{t}c) \sim 10^5$ events per 100 fb⁻¹.
- Such scenarios entail light gluino masses $(m_{\tilde{g}})$ and large intergenerational mixings (δ_{LL}^{23}) .
- It turns out to be a very efficient source of direct FCNC top-quark production, much more than those rising from 2HDM, and $\sim 10^7$ times the SM contribution.

 $\begin{array}{l} \text{Outline} \\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context \\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup \\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results \\ \hline Conclusions \end{array}$

- The aim of the present work was to study the direct SUSY single top-quark production through gluon fusion in pp collisions at the LHC, in correspondence with the $\mathcal{B}(b \rightarrow s\gamma)$ constraints.
- In the most favorable scenarios, the SUSY-QCD contribution can lead to $\sigma(pp \rightarrow t\overline{c} + \overline{t}c) \sim 10^5$ events per 100 fb⁻¹.
- Such scenarios entail light gluino masses $(m_{\tilde{g}})$ and large intergenerational mixings (δ_{LL}^{23}) .
- It turns out to be a very efficient source of direct FCNC top-quark production, much more than those rising from 2HDM, and $\sim 10^7$ times the SM contribution.

 $\begin{array}{c} \text{Outline} \\ pp \ \rightarrow t\overline{c} \ + \overline{t}c; \ phenomenological \ context \\ pp \ \rightarrow t\overline{c} \ + \overline{t}c; \ Computational \ Setup \\ pp \ \rightarrow t\overline{c} \ + \overline{t}c; \ Numerical \ Results \\ \hline Conclusions \end{array}$

- There are regions in the MSSM parameter space for which the SUSY-EW corrections become sizeable by themselves, irrespectively of the SUSY-QCD ones.
- The latter behavior occurs when heavy gluinos meet together with light neutralinos and charginos. In such sort of scenarios, we are finally left with values of σ(pp → tc̄ + t̄c) ~ 10³ events per 100 fb⁻¹.
- tc̄(t̄c) pair production through FCNC interactions provides a beautiful example of how RADCOR 's can supply hints of a distinctive non-standard phenomenology - of SUSY nature.

 $\begin{array}{c} \text{Outline} \\ pp \ \rightarrow t\overline{c} \ + \overline{t}c; \ phenomenological \ context \\ pp \ \rightarrow t\overline{c} \ + \overline{t}c; \ Computational \ Setup \\ pp \ \rightarrow t\overline{c} \ + \overline{t}c; \ Numerical \ Results \\ \hline Conclusions \end{array}$

- There are regions in the MSSM parameter space for which the SUSY-EW corrections become sizeable by themselves, irrespectively of the SUSY-QCD ones.
- The latter behavior occurs when heavy gluinos meet together with light neutralinos and charginos. In such sort of scenarios, we are finally left with values of $\sigma(pp \rightarrow t\overline{c} + \overline{t}c) \sim 10^3$ events per 100 fb⁻¹.
- tc(tc) pair production through FCNC interactions provides a beautiful example of how RADCOR 's can supply hints of a distinctive non-standard phenomenology - of SUSY nature.

 $\begin{array}{c} \text{Outline} \\ pp \ \rightarrow t\overline{c} \ + \overline{t}c; \ phenomenological \ context \\ pp \ \rightarrow t\overline{c} \ + \overline{t}c; \ Computational \ Setup \\ pp \ \rightarrow t\overline{c} \ + \overline{t}c; \ Numerical \ Results \\ \hline Conclusions \end{array}$

- There are regions in the MSSM parameter space for which the SUSY-EW corrections become sizeable by themselves, irrespectively of the SUSY-QCD ones.
- The latter behavior occurs when heavy gluinos meet together with light neutralinos and charginos. In such sort of scenarios, we are finally left with values of $\sigma(pp \rightarrow t\overline{c} + \overline{t}c) \sim 10^3$ events per 100 fb⁻¹.
- tc(tc) pair production through FCNC interactions provides a beautiful example of how RADCOR 's can supply hints of a distinctive non-standard phenomenology - of SUSY nature.

 $\begin{array}{l} \text{Outline} \\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ phenomenological \ context \\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Computational \ Setup \\ pp \ \rightarrow t\overline{c} + \overline{t}c; \ Numerical \ Results \\ \hline Conclusions \end{array}$

References

- D. López-Val, J. Guasch, J. Solà, hep-ph/0710.0587
- J. Guasch, J. Solà, Nucl. Phys. **B562** (1999) 3
- M. J. Duncan, Nucl. Phys. **B221** (1983) 285
- M. Rauch, PhD thesis, Universitat Munchen (2006)
- J. Pumplin, A. Belyaev, J. Huston, D. Stump and W. K. Tung, *JHEP* **02**, 032 (2006)
- J. Guasch, W. Hollik, S. Peñaranda and J. Solà, *Nucl. Phys. Proc.* Suppl. 157 152 (2006) e-print hep-ph/0601218
- G. Eilam, M. Frank and I. Turan, *Phys. Rev.* **D74** 035012 (2006) e-print hep-ph/0601253

J.J. Liu, C.S. Yang and L.G. Jin, *Nuc. Phys.* **B** (1998) 795, eprint hep-ph/0404099