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1. Introduction: motivations for low–energy SUSY

If SUSY is to solve some of the most severe problems of the SM:

We need light SUSY particles: MS
<∼ 1 TeV.

• The hierarchy problem: radiative corrections to the Higgs masses
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• The unification problem: the slopes of the αi SM gauge couplings

need to be fixed early enough to meet at MGUT ∼ 2 × 1016 GeV.

• The dark matter problem: the electrically neutral, weakly interacting,

stable LSP should have a mass <∼O(1 TeV) for Ωh2 to match WMAP.

In this case, sparticles are accessible at future machines.

– We expect great discoveries at the LHC.

– We will have a great deal of exciting physics to do at the ILC.
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1. Introduction: SUSY models

Focus mainly on the Minimal Supersymmetric Standard Model (MSSM):

• minimal gauge group: SU(3)×SU(2)×U(1),

• minimal particle content: 3 fermion families and 2 Φ doublets,

• R=(−1)(2s+L+3B) parity is conserved,

• minimal set of terms (masses, couplings) breaking “softly” SUSY.

To reduce the number of the (too many in general) free parameters:

– impose phenomenological constraints: O(20) free parameters,

– unified models, O(5) parameters (mSUGRA: m0,m1

2

,A0, tan β, εµ),

In this talk, I will concentrate on the MSSM with gravity mediated breaking.

But, one should not forget that:

-- other possibilities are models with GMSB/AMSB....

-- the impact of relaxing some MSSM basic assumptions can be large

-- other scenarios are possible (strings, right–handed neutrinos,...)

There is a need for model independent analyses...
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1. Introduction: example of SUSY spectrum

SPS1a’: m1/2 =250GeV,m0 =70GeV,A0 =−300GeV, tan β=10, µ>0
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1. Introduction: probing SUSY

All these particles will be produced at the LHC (direct/cascades)...

These particles can also be produced directly at the ILC...

But producing these new states is not the whole story! We need to:

• measure the masses and mixings of the newly produced particles,

their decay widths, branching ratios, production cross sections, etc...;

• verify that there are indeed superpartners and, thus, determine their

spin and parity, gauge quantum numbers and their couplings;

• reconstruct the low–energy soft–SUSY breaking parameters with

the smallest number of assumptions (model independent way);

• ultimately, unravel the fundamental SUSY breaking mechanism and

shed light on the physics at the very high energy scale.

• make the connection to cosmology and predict the relic density.

To achieve this goal, a combination of LHC and ILC is mandatory!
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1. Introduction: the role of the ILC
At the LHC:

– copious q̃/g̃ production

– ˜̀/χ from cascades

– complicated topologies

– very large backgrounds

– difficult environment.

At the ILC:

– direct ˜̀/χ production

– large production rates

– good signal to bkg ratios

– very clean environment

– possibility of tuning energy

– initial beam polarization

– more collider options...
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2. Precision SUSY measurements: the χ sector

• Charginos: mixtures of the charged higgsinos and gauginos

W̃±, h̃±
2/1 −→ χ±

1 , χ±
2

The general chargino mass matrix, in terms of M2, µ and tan β, is

MC =





M2

√
2MWsβ√

2MW cβ µ



 , sβ ≡ sinβ etc

• Neutralinos: mixtures of the neutral higgsinos and gauginos

B̃,W̃3, H̃
0
1, H̃

0
2 −→ χ0

1,2,3,4

The 4x4 mass matrix depends on µ,M2, tan β,M1; given by:

MN =

[

M1 0 −MZsW cβ MZsW sβ

0 M2 MZcW cβ −MZcW sβ

−MZsW cβ MZcW cβ 0 −µ

MZsW sβ −MZcW sβ −µ 0

]
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2. Precision SUSY measurements: the χ sector

χ production:
Z(γ)e+

e−

χi

χj

˜̀

e+

e−

χi

χj

• e+e− → χ±
i χ±

j : s–channel γ, Z and t–channel ν̃e; large σ for i=j

• e+e− → χ0
i χ

0
j : s–channel Z and t–channel ẽ; σ = O(10 fb).

– e± beam polarization selects various production channels

– cross section for χ± rises steeply near threshold, σ ∝ β

– cross sections for χ0 rise less steeply in general, σ ∝ β3

χ decays:

- in general χi → Vχj,Φχj, f f̃

- possibility of cascade decays

– signature: /ET from escaping χ0
1
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2. Precision SUSY measurements: the χ sector

Measurement of χ±/χ0 masses:

• from a threshold scan, ∆mχ±

1

∼ 50 MeV

for mχ±

1

∼200 GeV as steep rise σ ∝ β.

• ∆mχ±

1

∼0.1% in continuum from dijet

mass in e+e− → χ+
1 χ−

1 → `±νqq̄′χ0
1χ

0
1

• from dijet mass, mχ0

1
determination with

precision ∆(mχ±

1

−mχ0

1
)=O(50) MeV.

• for small mχ±

1

−mχ0

1
, use e+e−→χ+

1 χ−
1 γ

to measure both mχ±

1

/mχ0

1
from spectra.

• e+e− → χ0
2χ

0
1 → `+`−χ0

1χ
0
1 allows an

accuracy ∆(mχ0
2
−mχ0

1
)=O(0.1%)
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2. Precision SUSY measurements: the χ sector

Determination of spin:

– idea from excitation curve and angular distribution from production,

– sure with angular distributions of polarized χ decays with e±
pol.

Determination of Majorana nature of neutralinos:

– guess from β3 threshold behavior of σ(e+e− → χ0
i χ

0
j ),

– e−e− → ẽ−ẽ− occurs only because Majorana χ0 exchange.

Verification of the SUSY identity of gauge/Yukawa couplings:

– production cross sections for χ0, χ± ∝ ĝ(eẽχ0), ĝ(eν̃χ±),

– combing with ˜̀production, ∆g̃ = 0.7% and ∆g̃′ = 0.2%

Determination of the chargino/neutralino mixing angles:

σ(e+e− → χ+
i χ−

j ) is binomial in the χ± mixing angles cos2φL,R

→ determined in a model independent way using polarized e± beams

(neutralino mixing from χ0 production/decay, see Jan Kalinowski).

ILC–Florence, 12/09/2007 SUSY@ILC – A. Djouadi – p.10/23



2. Precision SUSY measurements: the χ sector

SPS1a: c2φL
=[0.62,0.72], c2φR

=[0.87,0.91] at 95% CL at
√

s= 1
2

TeV

cos2ΦL

cos 2ΦR

σ±
L (500)

σ±
L (400)

σ±
R(500)

– CPC: e+e− → χ+
i χ−

j alone allows to determine basic parameters;

– sneutrinos can be probed up to masses of 10 TeV with polarization.

– CPV: e+e− → χ0
i χ

0
j would be needed (with direct probe of CPV).
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2. Precision SUSY measurements: the f̃ sector

Sfermion system described by tan β, µ and 3 param.for each species:

mf̃L
,mf̃R

and Af . For 3d generation, mixing ∝ mf to be included.

M2

f̃
=





m2
f +m2

f̃L
+(I3L

f −efs
2
W )M 2

Zc2β mfAf − µ(tanβ)−2I3L
f

mfAf − µ(tanβ)−2I3L
f m2

f +m2
f̃R

+efs
2
W M 2

Zc2β





They are diagonalized by 2 × 2 rotation matrices of angle θf , which

turn the current eigenstates f̃L, f̃R into the mass eigenstates f̃1, f̃2.

m2

f̃1,2
= m2

f + 1
2

[

m2
LL + m2

RR ∓
√

(m2
LL − m2

RR)2 + 4m2
f X

2
f

]

Note: mixing very strong in stop sector, Xt = At − µ cot β and

generates mass splitting between t̃1, t̃2, leading to light t̃1;

mixing in sbottom/stau sectors also for large Xb,τ = Ab,τ − µ tan β.
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2. Precision SUSY measurements: the ˜̀sector

˜̀production:
γ,Ze

+

e
−

ẽ

ẽ
∗

χi

e
+

e
−

ẽ

ẽ
∗

• e+e− → µ̃+µ̃−/τ̃+τ̃−/ν̃µ,τ ν̃µ,τ : s–channel γ,Z exchange;

• e+e− → ẽ+ẽ− : s–channel γ, Z and t–channel χ0 exchange;

• e+e− → ν̃eν̃e : s–channel Z and t–channel χ± exchange;

Again, in this case:

– e± beam polarization selects various channels/chiralities for ẽ, ν̃e;

– ẽL/R production in e−
L/Re−

L/R collisions;

– cross sections for ẽ, ν̃e rise steeply near threshold, σ ∝ β,

– cross sections for 2d/3d generation rise less steeply, σ ∝ β3.

Slepton decays: in general ˜̀→ `χ0
1 with possible cascades.
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2. Precision SUSY measurements: the ˜̀sector
Slepton mass measurement from threshold scan and in continuum:

– polarized e+e−: ∆mẽR
= 0.2 GeV and ∆ΓẽR

= 0.25 GeV;

– improvement by 4 using e−e− but 2 times worse for µ̃ in e+e−;

– from E` spectra in ˜̀→ `χ0
1 decays, O.1% precision for m˜̀ and mχ0

1
;

– ν̃e more involved, mν̃ at 1% from e+e− → ν̃eν̃e → νeχ
0
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±χ∓
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2. Precision SUSY measurements: the ˜̀sector

Slepton spin determination: conceptually very simple in e+e−:

– hint from the P–wave onset of the excitation curve (not sufficient),

– the sin2θ behavior of the cross section (for ẽ, near threshold).

Coupling determination: check of the SUSY identity ggauge = g̃Yukawa:

– from ẽ and ν̃e production cross sections (t–channel contributions),

– also in χ± and χ0 production (works also for heavy ˜̀).

In the case of τ̃ : τ̃ mixing and final state τ slightly complicate pattern:

– mass determination as above for µ̃ but accuracy ∼ 3 times worse,

– complication (γγ bkg) when τ̃1 almost degenerate with the LSP χ0
1,

– mixing θτ̃ measurable from σ(e+e− → τ̃1τ̃1) with 6= beam polarization,

– polarization of τ -lepton measurable and helps for model discrimination,

– µ, Aτ and tan β can be determined from σ(τ̃ τ̃) and τ polarization

– H,A → τ̃1τ̃2 decays give extra information (Aτ measurement)...
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2. Precision SUSY measurements: the Q̃ sector

Third generation Q̃ = t̃1, b̃1: possibly lightest squarks due to mixing.

– In particular, t̃1 is in general the lightest squark (RGE+mixing).

– Light stops needed in models with electroweak baryogenesis.

– Light stops are very difficult to detect at the LHC (large tt bkg).

Q̃ production at ILC:

e+e− → t̃1t̃1 and b̃1b̃1:

via s–channel γ,Z exchange

γ,Ze+

e−

Q̃

Q̃∗

t̃1 decays:

– if heavy, two–body t̃1 → tχ0
1,bχ+

1 ,

– otherwise multi–body decays,

– or loop induced t̃1 → cχ0
1 decays.

ILC–Florence, 12/09/2007 SUSY@ILC – A. Djouadi – p.16/23



2. Precision SUSY measurements: the Q̃ sector

Phenomenology of t̃1 and b̃1 at the ILC similar to that of τ̃1:

• Masses and mixing obtained from production with polarized beams,

ex: study of σ(e−
Re+

L , e−
Le+

R → t̃1t̃1) for t̃1 → bχ±
1 , cχ0

1 at 500 GeV.

• Top quark polarization in t̃1, b̃1 decays provides crucial information

ex: top polarization in e+
Le−

R → b̃1b̃1 → tχ−
1 + t̄χ+

1 at
√

s = 1 TeV.

cosθt̃ tanβ

mt̃ [GeV] Pb̃1→tχ±

1
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2. Precision SUSY measurements: summary

From analyses at ILC with
√

s = 0.5–1 TeV and 10–1000 fb−1 luminosity:

m [GeV] ∆m] Comments
χ±

1 183.7 0.55 simulation threshold scan, 100 fb−1

χ±
2 415.4 3 estimate χ±

1 χ∓
2 , spectra χ±

2 → Zχ±
1 , Wχ0

1

χ0
1 97.7 0.05 combination of all methods

χ0
2 183.9 1.2 simulation threshold scan χ0

2χ
0
2, 100 fb−1

χ0
3 400.5 3–5 spectra χ0

3 → Zχ0
1,2, χ0

2,4χ
0
3, 750 GeV, >∼ 1 ab−1

χ0
4 413.9 3–5 spectra χ0

4 → Wχ±
1 , χ0

2,3χ
0
4, 750 GeV, >∼ 1 ab−1

ẽR 125.3 0.05 e−e− threshold scan, 10 fb−1

ẽL 189.9 0.18 e−e− threshold scan 20 fb−1

ν̃e 172.5 1.2 simulation energy spectrum, 500 GeV, 500 fb−1

µ̃R 125.3 0.2 simulation energy spectrum, 400 GeV, 200 fb−1

µ̃L 189.9 0.5 estimate threshold scan, 100 fb−1

τ̃1 107.9 0.24 simulation energy spectra, 400 GeV, 200 fb−1

τ̃2 194.9 1.1 estimate threshold scan, 60 fb−1

t̃1 366.5 1.9 estimate b-jet spectrum, mmin(̃t1), 1TeV, 1 ab−1
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3. Determination of the SUSY parameters:

Once mi, σ,Pi are measured, determine the low–energy SUSY

parameters from inversion of the mass and cross section formulae:

• Chargino/neutralino system: see Jan Kalinowski

M1 =
√

Σim
2
χ0

i

−M2
2−µ2−2M2

Z,M2 =MW

√

Σ−∆[c2φR
+c2φL

]

|µ|=MW

√

Σ+∆[c2φR
+c2φL

], tanβ=
√

(1+∆′)/(1−∆′)

with ∆=
m2

χ̃
±

2

−m2

χ̃
±

1

4M2

W

,∆′=∆(c2φR
− c2φL

,Σ=
m2

χ̃
±

2

+m2

χ̃
±

1

2M2

W

− 1.

• Sfermion system: see Barbara Mele

m2

f̃L,R
= M2

f̃L,R
+ M2

Z cos2β (I3L,R − Qf sin2 θW) + m2
f

Af − µ(tanβ)−2If
3 = (m2

f̃1
−m2

f̃2
)/(2mf) · sin 2θf̃

• Higgs system: see e.g. Marco Battaglia

Precise Mh measurement: M2
h = M2

Z| cos 2β|2 + 3g2

2π2

m4
t

M2

W

log
m2

t̃

m2
t

Also: e+e− → tt̄Φ,bb̄Φ, χχΦ, ττ → Φ,Φ → τ̃1τ̃2,Φ → χχ, ...

ILC–Florence, 12/09/2007 SUSY@ILC – A. Djouadi – p.19/23



3. Determination of SUSY parameters: summary
In reality, life is more complicated than the tree-level results above:

complete analysis with sophisticated programs: Sfittino, Sfitter, ...

∆LHC ∆ILC ∆LHC+ILC SPS1a ∆LHC+ILC SPS1a′

tan β ±9.1 ±0.3 ±0.2 10 ±0.3 10
µ ±7.3 ±2.3 ±1.0 344.3 ±1.1 396
MA fixed ±0.9 ±0.8 399.1 ±0.8 372
At ±91 ±2.7 ±3.3 −504.9 ±24.6 −565
M1 ±5.3 ±0.1 ±0.1 102.2 ±0.1 103.3
M2 ±7.3 ±0.7 ±0.2 191.8 ±0.1 193.2
M3 ±15 fixed ±11 589.4 ±7.8 571.7
Mτ̃L

fixed ±1.2 ±1.1 197.8 ±1.2 179.3
MẽL

±5.1 ±0.2 ±0.2 198.7 ±0.18 181.0
MẽR

±5.0 ±0.05 ±0.05 138.2 ±0.2 115.7
MQ̃3L

±110 ±4.4 ±39 501.3 ±4.9 471.4
MQ̃1L

±13 fixed ±6.5 553.7 ±5.2 525.8
Md̃R

±20 fixed ±15 529.3 ±17.3 505.7
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3. Determination of SUSY parameters

Once the low–energy SUSY parameters have been obtained, try to

determine the SUSY parameters at the very high scale (MGUT,MP):

• pin–down the model/SUSY–breaking (mSUGRA, AMSB, GMSB, ..),

• determine the few fundamental unified parameters of the model.

Example of mSUGRA, using all previous measurements at LHC/ILC:

SPS1a LHC ILC LHC+ILC SPS1a′ LHC+ILC

m0 100 ±4.0 ±0.09 ±0.08 70 0.2

m1/2 250 ±1.8 ±0.13 ±0.11 250 0.2

tanβ 10 ±1.3 ±0.14 ±0.14 10 0.3

A0 −100 ±31.8 ±4.43 ±4.13 −300 13

The same type of analysis in other breaking schemes/other models.

To be absolutely sure: only with model dependent analyses at ILC!
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3. Determination of SUSY parameters:

One can check the fundamental assumptions at high (GUT) scale.

For example: gaugino and scalar mass unification in mSUGRA....

1/Mi [GeV−1]

Q [GeV]

M2

j̃
[103 GeV2]

Q [GeV]

Also, check that one is in accord with cosmology (see G. Bélanger):

use precise determinantion of SUSY parameters to predict Ωh2.
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4. Summary
If SUSY is the solution to the SM pbs: SUSY particles should be light.

Colored and non–colored sparticles observable (very?) soon at LHC.

The ILC will be needed as it will provide crucial additional information:

• very clean environment, large production rates with low backgrounds,

• tunable energy to perform threshold scans and increase rates,

• beam polarization which allow to select various channels,

• additional options (e−e−, γγ, eγ) for complementary studies,

⇒ high–precision analyses and a true probe of SUSY phenomena.

Only coherent/combined analyses of LHC+ILC data will allow for:

• better/model independent reconstruction of low energy SUSY parameters,

• connect weak-scale SUSY with more fundamental physics at GUT scale,

• provide input to predict the LSP density and connection with cosmology.

Here: gave illustration of ILC “performance” in mSUGRA–type MSSM.

Many interesting analyses/physics can also be done in other scenarios!
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