

#### GGI, Florence 12th – 14th September, 2007

## **Large Extra Dimensions**

- SM on a 3-brane and gravitons in the full 10-d spacetime.
- The low-energy effective scale is related to the compactification radius R of n extra dimensions by

(1) 
$$M_{\rm P}^2 = M_S^{n+2} R^n \; ,$$

• If R is large then  $M_S$  can be  $\sim$  TeV For such a value of  $M_S$ ,  $R = 10^{32/n-19}$  m.

## **Direct Production Signals**

- Graviton Production processes and virtual graviton processes.
- At the ILC,  $e^+e^- \rightarrow \gamma + G$  yield striking photon + missing-energy signatures.
- Dominant background is  $e^+e^- → \gamma \nu \bar{\nu}$  and can be reduced using polarisation of the initial beams.
- Strong bounds between 3 7 TeV on  $M_S$ result assuming 5% accuracy on cross-section measurement at  $\sqrt{s} = 1$  TeV.

# **Distinguishing from SUSY**

- $\gamma$ +missing energy signatures can also arise in SUSY with superlight gravitinos via  $e^+e^- \rightarrow \tilde{G}\tilde{G}\gamma$ .
- Can be distinguished by looking at photon energy distributions and scaling of the cross-section with c.m. energy.

# **Distinguishing from contact-interac**

- ILC may also be used to distinguish virtual graviton exchange from four fermion-contact interactions of dimension-6.
- For example, in the process is  $e^+e^- \rightarrow f\bar{f}$  the cos  $\theta$  distribution can be used to distinguish between the two case using suitably defined asymmetries.

## Virtual signals

- Virtual graviton exchange processes at ILC:  $e^+e^- \rightarrow f\bar{f}, \ \gamma\gamma, \ WW, \ ZZ \ \gamma\gamma \rightarrow \gamma\gamma \ \text{etc.}$  $e\gamma \rightarrow e\gamma$
- Bounds are sensitive to the cut-off used to regulate the infinite tower of KK graviton modes.
- Bounds range between 3 and 6 TeV.
- Polarisation is again an important tool in getting strong bounds.

#### So what's new?

- NLO QCD corrections to  $e^+e^- \rightarrow q\bar{q}$  with graviton exchange have been computed.
- Stability with repsect to scale variation is demonstrated.
- Corrections are of a few percent but possibly significant given the high statistics involved.

## **Minimal Length**

- Several motivations in theories of quantum gravity to suggest the existence of a minimal length.
- One such: Analysis of string scattering amplitudes suggests the existence of a minimal length.
- Existence of minimal length modifies the relationship between p and k. Even though k is bounded from above, p can be arbitrarily large. Ditto for  $\omega$  and E.

### **Minimal Length and ADD**

•  $p = \hbar k$  (and  $E = \hbar \omega$ ) replaced by Unruh relations:

(2) 
$$l_p k(p) = \tanh^{1/\gamma} \left[ \left( \frac{p}{M_S} \right)^{\gamma} \right]$$

- Interesting union: ADD and MLS. l<sub>p</sub> is of the order of TeV<sup>-1</sup>. Avoids the UV problem in summing over virtual gravitons.
- Predictions for LHC already exist. Work for ILC-related processes in progress.

- In this 5-d model, the fifth dimension  $\phi$ , with strong AdS curvature and of a small radius  $R_c$  is compactified on a  $\mathbf{S}^1/\mathbf{Z}^2$  orbifold.
- Two branes are at the orbifold fixed points: a Planck brane at  $\phi = 0$  and a TeV brane at  $\phi = \pi$ .
- The model uses a warped metric

(3) 
$$ds^2 = e^{-KR_c\phi} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + R_c^2 d\phi^2.$$

where K is related to the curvature.

#### **More on the RS Model**

- The warp factor acts as a conformal factor for the fields localised on the TeV brane.
- So  $M_P = 10^{19}$  GeV for the Planck brane at  $\phi = 0$  gets rescaled to  $M_P \exp(-KR_c\pi)$  for the TeV brane at  $\phi = \pi$ .
- Brane separation is stabilised by a bulk scalar field which generates a stabilising potential.
- The KK-spectrum is discrete with the masses being given by a common mass factor multiplied by the zeroes of the Bessel function.



- The zero-mode of the KK tower couples very weakly (suppressed by  $M_P^{-1}$ ). The couplings of the massive KK states are enhanced by  $e^{\pi K R_c}$  (electroweak strength).
- There are no light KK modes but ILC could produce individual graviton resonances. Again,  $e^+e^- \rightarrow \gamma \nu \bar{\nu}$  can give a handle on the resonances.
- Alternatively virtual effects in fermion pair production or gauge boson pair production can be studied.

#### **ADS/CFT and the RS Model**

- AdS/CFT tells us that the RS model is dual to a 4-d effective theory incorporating gravity and a strongly coupled sector.
- The dual theory is conformally invariant from the Planck scale down to the TeV scale.
- The K-K excitations as well as the fields localised on the TeV brane are TeV-scale composites.
- The original RS theory is dual to a theory of TeV-scale compositeness of the entire SM.

#### **The New RS Model**

- One can alter the RS model with only the Higgs field localised on the IR brane ⇒ only the Higgs is a composite.
- To avoid problems with electroweak observables an  $SU(2)_L \times SU(2)_R \times U(1)_{(X)}$  is invoked.
- KK gauge boson masses are still constrained by precison tests to be greater than 3 TeV.
- The  $t_R$  is localised closed to the TeV brane to account for the large top Yukawa  $\longrightarrow$  new signals with  $t_R$  expected.

## **Testing the RS Model**

- The Tevatron direct limit on the KK gluon mass is only 800 GeV, while KK gauge bosons will be probed to masses of about 3 TeV at the LHC.
- $e^+e^- \rightarrow t\bar{t}$  at  $\sqrt{s} = 500$  GeV and with 500 fb<sup>-1</sup> ( and longitudinally polarised electron) at the ILC can probe KK gauge boson masses to more than 10 TeV.