Theoretical Tools and Methods for a Future e⁺e⁻ Linear Collider

Stefan Dittmaier

MPI Munich

1 Introduction

Experiments at LEP/SLC/Tevatron

- confirmation of Standard Model as quantum field theory (quantum corrections significant)
- top mass m_t indirectly constrained by quantum corrections \leftrightarrow in agreement with m_t measurement of Tevatron
- Higgs mass M_H indirectly constrained by quantum corrections
 → impact on Higgs searches

Great success of precision physics

- $-M_{
 m H} > 114.4 \,{
 m GeV}$ (LEPHIGGS '02) $e^+e^- \not\longrightarrow ZH$ at LEP2
- $-M_{
 m H} < 144\,{
 m GeV}$ (LEPEWWG '07)

fit to precision data i.e. via quantum corrections

The role of precision at LHC and ILC

LHC: the discovery machine (Higgs & EWSB, SUSY, etc.?)

- QCD corrections (at least NLO) are substantial parts of predictions typical LO uncertainties ~ several 10%-100% corrections needed for signals and many background processes
- EW corrections also important for many observables (precision physics, searches at high scales, particle reconstruction, etc.)
- ILC: the high-precision machine (precision \rightarrow window to higher energy)
 - old and new physics with high accuracy (typically $\delta\sigma/\sigma \lesssim 1\%$) \hookrightarrow QCD and EW corrections required
 - the ultimate precision at GigaZ/MegaW:

precision increases by factor ~ 10 w.r.t. LEP/SLC

EXP: $\Delta \sin^2 \theta_{\text{eff}}^{\text{lept}} \sim 0.00001, \qquad \Delta M_{\text{W}} \sim 7 \,\text{MeV}$

- TH: go from a few 10^2 to a few 10^4 (more complicated) diagrams
- $\Rightarrow\,$ Precision calculations mandatory for LHC and ILC !

This talk: topical summary of recent developments in precision physics

- main focus directed to phenomenological applications
 - $\diamond\,$ NNLO calculations to $2 \rightarrow 2$ scattering
 - NLO corrections to many-particle processes
- necessity to develop tools & methods is highlighted in examples
- not or barely covered:

physics beyond SM, automatization, MC and simulation tools, multi-loop techniques, unitarity-/twistor-inspired methods, resummation, topics presented in dedicated talks

→ see, in particular, talks of P.Ciafaloni, G.Degrassi, A.Ferroglia, A.Hoang,
 W.Hollik, P.Mastrolia, S.Moretti, G.Passarino, S.Pozzorini, G.Zanderighi

State-of-the-art in precision calculations

State-of-the-art in precision calculations

State-of-the-art in precision calculations

2 NNLO calculations

2.1 EW precision observables

Most important precision observables:

• $M_{\rm W}$ (direct measurement vs. muon decay)	Djouadi, Verzegnassi '87; Djouadi '88; Kniehl, Kühn, Stuart '88; Kniehl, Sirlin '93 Djouadi, Gambino '94 Freitas, Hollik, Walter, Weiglein '00 Awramik, Czakon '02 Onishchenko, Veretin '02
 mixed QCD/EW 2-loop corrections known 	
complete EW 2-loop corrections known	
\diamond improvements by 3-loop $\Delta \rho$ Avdeev et al.	'94; Chetyrkin, Kühn, Steinhauser '95

- and 4-loop QCD $\Delta \rho$ Schröder, Steinhauser '05; Chetyrkin et al. '06; Boughezal/Czakon '06
- \hookrightarrow theoretical uncertainty $\Delta M_{\rm W} \sim 4 \,{
 m MeV}$
- $\sin^2 \theta_{\text{eff}}^{\text{lept}}$ (from various asymmetries)
 - $^{\diamond}$ mixed QCD/EW 2-loop and 3-loop $\Delta
 ho$ corrections as for $M_{
 m W}$
 - ◊ complete EW 2-loop corrections

Awramik, Czakon, Freitas, Weiglein '04 Hollik, Meier, Uccirati '05,'06 Awramik, Czakon, Freitas '06

- \hookrightarrow theoretical uncertainty $\Delta \sin^2 \theta_{\rm eff}^{\rm lept} \sim 5 \times 10^{-5}$
- \hookrightarrow Predictions in good shape for LHC, further steps desirable for ILC

2.2 NNLO calculations for $2{\rightarrow}2$ processes

General structure of NNLO predictions:

$$\Delta \sigma_{\text{NNLO}} = F_{\text{flux}} \int d\Phi_2 \left[2 \operatorname{Re} \left\{ \mathcal{M}_{2\text{-loop}}^{(2 \to 2)} \mathcal{M}_{\text{tree}}^{(2 \to 2)*} \right\} + \left| \mathcal{M}_{1\text{-loop}}^{(2 \to 2)} \right|^2 \right]$$

$$+ F_{\text{flux}} \int d\Phi_3 2 \operatorname{Re} \left\{ \mathcal{M}_{1\text{-loop}}^{(2 \to 3)} \mathcal{M}_{\text{tree}}^{(2 \to 3)*} \right\} + F_{\text{flux}} \int d\Phi_4 \left| \mathcal{M}_{\text{tree}}^{(2 \to 4)} \right|^2$$

Major difficulties:

- 2-loop amplitudes $\mathcal{M}_{2-\text{loop}}^{(2\rightarrow 2)}$
- extraction and cancellation of IR (soft / collinear) singularities
 - $\, \hookrightarrow \,$ in particular: single and double unresolved limits in real emission amplitudes

2-loop amplitudes for $2{\rightarrow}2$ and $1{\rightarrow}3$ processes

• Algebraic reduction to master integrals Anastasiou, Gehrmann, Glover, Laporta, Lazopoulos, Oleari, Remiddi, Smirnov, Tausk, Veretin '00–'05

by integration by parts, Lorentz invariance identities

 \hookrightarrow calculation of master integrals by Mellin–Barnes technique,

Anastasiou, Czakon, Smirnov, Tausk, Tejeda-Yeomans '99–'05 differential equations, Gehrmann, Remiddi '00, '01

- Direct reduction of full 2-loop amplitudes → higher transcendental functions → nested harmonic sums
- Upcoming alternative: fully numerical approach \rightarrow talk of G.Passarino
 - via sector decomposition (box master integrals, etc.) Binoth, Heinrich '00,'03
 - via Feynman parameter integrals (all 2-/3-point integrals)
 Actis, Ferroglia, Passera, Passarino, Uccirati '02–'06
 - ◊ via Mellin–Barnes representation (box master integrals, etc.) Anastasiou, Daleo '05
- Explicit algebraic results:
 - ♦ 2-loop amplitudes for massless $2 \rightarrow 2$ processes Ghincul

Anastasiou, Bern, v.d.Bij, DeFreitas, Dixon, Ghinculov, Glover, Oleari, Schmidt, Tejeda-Yeomans, Wong '01–'04

♦ 2-loop QCD amplitudes for $e^+e^- \rightarrow 3$ jets Garland, Gehrmann, Glover, Koukoutsakis, Moch, Remiddi, Uwer, Weinzierl '02

Towards NNLO QED corrections to Bhabha scattering \rightarrow talk of A.Ferroglia

Physics motivation:

- luminosity monitor at high-energy e^+e^- colliders (LEP/ILC)
 - \hookrightarrow small-angle Bhabha scattering at LEP: BHLUMI (Jadach et al. –'97)

```
(1-loop EW + higher-order QED log's)
```

- large cross-section \rightarrow high-precision QED / EW test

Full NNLO QED prediction very important for running and future $\mathrm{e^+e^-}$ colliders

Status of 2-loop and (1-loop)² virtual corrections

- known: m_e = 0 Bern, Dixon, Ghinculov '00

 closed fermion loops for m_f ≠ 0 Bonciani et al. '04; Actis, Czakon, Gluza, Riemann '07
 m_e → 0 (translated m_e=0 result via known IR structure) Penin '05 Becher, Melnikov '07

 in progress: m_e ≠ 0 directly from massive master integrals (MI)

 Smirnov '01: Bonciani, Mastrolia, Remiddi '02
 - all but few MI for boxes exist Heinrich, Smirnov '04; Czakon, Gluza, Riemann '04–'06
 - reduction of amplitudes to MI Czakon, Gluza, Riemann '04-'06 Bonciani, Ferroglia '05

Final steps to be made:

- some missing MI for massive 2-loop boxes
- combination of 2-loop virtual with (1-loop) \otimes (1 γ real) and (2 γ/ee) real emission

Integration techniques for real radiation at NNLO

Soft/collinear singularities have very complicated overlapping structure !

 \rightarrow behaviour, e.g., described by "antenna functions" Kosower '03

Different approaches to singular integrations

- subtraction techniques
 - subtraction terms widely worked out Weinzierl '03; Kilgore '04; Frixione, Grazzini '04 Gehrmann-DeRidder, Gehrmann, Glover '04,'05 and integrated for $e^+e^- \rightarrow n$ jets Del Duca, Somogyi, Trocsanyi '05; Catani, Grazzini '07
 - ♦ first applications:

 $e^+e^- \rightarrow 3$ jets

 $e^+e^- \rightarrow 2$ jets Gehrmann-DeRidder, Gehrmann, Glover '04; Frixione, Grazzini '04 (subtr. terms) Weinzierl '06 (full result) Gehrmann-DeRidder, Gehrmann, Glover '05 (subtr. terms) Gehrmann-DeRidder, Gehrmann, Glover, Heinrich '07 (full result)

- direct numerical integration via sector decomposition
 - technique described in detail
 Heinrich '02,'06; Gehrmann-DeRidder, Gehrmann, Heinrich '03
 Gehrmann-DeRidder, Gehrmann, Glover '03 Anastasiou, Melnikov, Petriello '04; Binoth, Heinrich '04

♦ first applications:

 $e^+e^- \rightarrow 2$ jets, pp $\rightarrow H+X, W+X$ in NNLO QCD, $\mu \rightarrow e\bar{\nu}_e \nu_\mu$ in NNLO QED

Anastasiou, Melnikov, Petriello '04-'06

parts of $e^+e^- \rightarrow 3$ jets in NNLO QCD Heinrich '06

Numerical results for $e^+e^- \rightarrow 3jets$ in NNLO QCD

Gehrmann-DeRidder, Gehrmann, Glover, Heinrich '07

Thrust distribution:

Residual ren. scale dependence:

- NNLO corrections significant (15–20%)
- renormalization scale dependence (theoretical uncertainty) decreased in NNLO
- NNLO result will have impact on α_s determination from LEP event-shape data

- **3** NLO corrections to multi-particle production
- 3.1 General considerations

Existing precision calculations for many-particle processes at LHC and ILC with up to 5-point loop diagrams:

 $e^+e^- \rightarrow 4jets$ (QCD), $\nu\bar{\nu}H$, $t\bar{t}H$, $e\bar{e}H$, $\nu\bar{\nu}\gamma$, ZHH, ZZH, $\gamma\gamma \rightarrow t\bar{t}H$ NLO EW/QCD: Glover/Miller, Campbell et al., Bern et al., Dixon/Signer, Nagy/Trocsanyi, Weinzierl/Kosower, GRACE-loop, Denner et al., You et al., Chen et al.,

Zhang et al., Zhou et al. '96–'06 pp \rightarrow 3jets, $\gamma\gamma$ +jet, V+2jets, $Q\bar{Q}H$, $t\bar{b}H^-$, $b\bar{b}V$, HHH, $t\bar{t}$ +jet,

 $\mathrm{H}{+}2jets$ (QCD+EW), $\mathrm{VV}{+}2jets$ (VBF)

- NLO QCD: Bern et al., Kunszt et al., Kilgore/Giele, Campbell et al., Nagy, Del Duca et al., Campbell/Ellis, Beenakker et al., Dawson et al., Dittmaier et al., Peng et al., Plehn/Rauch, Febres Cordero et al., Jäger et al., Ciccolini et al. '96–'07
- $H \rightarrow 4 \text{ fermions:} \text{ NLO EW+QCD}$

Bredenstein et al. '06

Carloni-Calame et al. '06

NLO QED

Existing precision calculations for many-particle processes at LHC and ILC with up to 6-point loop diagrams (current technical frontier)

Cross-section calculations:

$e^+e^- \rightarrow 4$ fermions (CC):	NLO EW	Denner, Dittmaier, Roth, Wieders, '05
$e^+e^- \rightarrow \nu \bar{\nu} HH:$	NLO EW	GRACE-loop '05
$\gamma\gamma ightarrow { m tar t}{ m b}{ m ar b}$:	NLO QCD	Guo, Ma, Han, Zhang, Jing '07
Amplitude calculations "onl $gg \rightarrow gggg$:	y": NLO QCD	Bern et al. '05,'06; Britto et al. '06; Berger,Forde '06 (analytically) R.K.Ellis, Giele, Zanderighi '06; R.K.Ellis, Giele, Kunszt (numerically)
$\gamma\gamma o \gamma\gamma\gamma\gamma\gamma$:	NLO QED	Nagy, Soper '06; Ossola, Papadopoulos, Pittau '07 (numerically) Binoth, Heinrich, Gehrmann, Mastrolia '07 (analytically)

'07

Complications in corrections to many-particle processes

- huge amount of algebra, long final expressions
 - \hookrightarrow computer algebra / automatization
- multi-dimensional phase-space integration
 - \hookrightarrow Monte Carlo techniques
- complicated structure of singularities and matching of virtual and real corrections
 - → subtraction
 R.K.Ellis et al. '81; S.D.Ellis et al. '89; Mangano et al. '92; Kunszt/Soper '92; Frixione et al. '96; Nagy/Z. Trócsányi '96; Campbell et al. '98; Catani/Seymour '96; Dittmaier '99; Phaf/Weinzierl '01; Catani et al. '02

and slicing techniques

Giele/Glover '92; Giele et al. '93; Keller/Laenen '98; Harris/Owens '01, etc.

• numerically stable evaluation of one-loop integrals with up to 5,6,... external legs

\hookrightarrow techniques to solve problems with inverse kinematical (e.g. Gram) det's

Stuart et al. '88/'90/'97; v.Oldenborgh/Vermaseren '90; Campbell et al. 96; Ferroglia et al. '02; del Aguila/Pittau '04; Binoth et al. '02/'05; Denner/Dittmaier '02/'05; v.Hameren et al. '05; R.K.Ellis et al. '05; Anastasiou/Daleo '05; Ossola et al. '06/'07; Lazopoulos et al. '07; Forde '07

[But: many proposed methods not (yet?) used in complicated applications]

treatment of unstable particles, issue of complex masses

Problem of unstable particles:

description of resonances requires resummation of propagator corrections

 \hookrightarrow mixing of perturbative orders potentially violates gauge invariance

Proposed solutions for loop calculations:

- naive fixed-width scheme
 - → breaks gauge invariance only mildly (?),
 but partial inclusion of widths in loops screws up singularity structure
- pole expansions Stuart '91; Aeppli et al. '93, '94; etc.
 - → consistent, gauge invariant,
 but not reliable at threshold or in off-shell tails of resonances
- effective field theory approach Beneke et al. '04,'07; Hoang, Reisser '04
 - $\hookrightarrow\,$ involves pole expansions,
 - can be combined with threshold expansions \rightarrow talk of G.Zanderighi
- complex-mass scheme Denner, Dittmaier, Roth, Wieders '05
 - \hookrightarrow gauge invariant, simple, valid everywhere in phase space

3.2 NLO EW corrections to $e^+e^- \rightarrow 4$ fermions Denner, Dittmaier, Roth Wieders '05

Details of the calculation:

- final states: $\nu_{\tau}\tau^{+}\mu^{-}\bar{\nu}_{\mu}$, $u\bar{d}\mu^{-}\bar{\nu}_{\mu}$, $u\bar{d}s\bar{c}$ (charged current)
- complex-mass scheme proposed for unstable particles in loop calculations
- new tensor reduction methods for numerical stabilization Denner, Dittmaier '02,'05
- real corrections $e^+e^- \rightarrow 4f + \gamma$ from RACOONWW Denner et al. '99–'01
- checks: UV/IR/mass singularities, gauge invariance, slicing/subtraction
 two independent calculations

Physics motivation:

Improvement over "double-pole approximation" (DPA) for $e^+e^- \rightarrow WW \rightarrow 4f$

needed for ILC: $-M_W$ from WW threshold scan where DPA insufficient - TGC analysis at high energies

Recent related result:

 σ_{tot} for $e^+e^- \rightarrow u \bar{d} \mu^- \bar{\nu}_{\mu}$ via effective field theory for pole \oplus threshold expansion \hookrightarrow "continuation" of DPA to WW threshold Beneke, Falgari, Schwinn, Signer, Zanderighi '07

Some Feynman diagrams...

...for LO:

...for NLO: total number = $\mathcal{O}(1200)$

40 hexagons

+ graphs with reversed fermion-number flow in final state

+ 112 pentagons

+ 227 boxes ('tHF gauge) + many vertex and self-energy corrections

Numerical results for LEP2 energies

Complete $\mathcal{O}(\alpha)$ corrections to the total cross section

Denner, Dittmaier, Roth, Wieders '05

- $|ee4f DPA| \sim 0.5\%$ for $170 \, GeV \lesssim \sqrt{s} \lesssim 210 \, GeV$
- $|ee4f IBA| \sim 2\%$ for $\sqrt{s} \lesssim 170 \, GeV$

 \hookrightarrow agreement with error estimates of DPA and "Improved Born Approximation"

3.3 NLO EW corrections to ${f e}^+ {f e}^- o u ar u {f H} {f H}$

Boudjema, Fujimoto, Ishikawa, Kaneko, Kato, Kurihara, Shimizu, Yasui '05

Full $2 \rightarrow 4$ calculation performed with GRACE-LOOP package Belanger et al.

hep-ph/0308080

- number of loop diagrams (non-linear gauge, $m_e \rightarrow 0$): #(e⁺e⁻ $\rightarrow \nu_e \bar{\nu}_e HH$) ~ 3400, #(e⁺e⁻ $\rightarrow \nu_\mu \bar{\nu}_\mu HH$) ~ 1800
- gauge-invariance check via non-linear gauge with gauge parameters (for vanishing particle widths)
- REDUCE and FORM used to process interference of LO and NLO amplitudes
 - \hookrightarrow 5- and 6-point integrals converted into 4-point integrals
- in-house library \oplus FF for loop integrals v.Oldenborgh '91

Physics motivation:

Higgs self-coupling enters $e^+e^- \rightarrow ZHH$ and $e^+e^- \rightarrow \nu \bar{\nu}HH$ in LOlarger cross-section for $\sqrt{s} \lesssim 1 \, \text{TeV}$ $\sqrt{s} \gtrsim 1 \, \text{TeV}$

- $\,\hookrightarrow\,$ check of Higgs mechanism / information on EWSB
- But: Both reactions have very small cross sections: $\sigma_{ZHH+\nu\bar{\nu}HH} \sim 0.1-1 \, \text{fb}$

Some Feynman diagrams...

...for LO: total number = 18

...for NLO: total number = $\mathcal{O}(4600)$ in 'tHF gauge

89 hexagons, 250 pentagons ('tHF gauge), etc.

Numerical results: Boudjema et al. '05

Higgs production processes at the ILC in LO:

Weak (non-photonic) NLO corrections to $e^+e^- \rightarrow \nu \bar{\nu} HH$:

$$G_{\mu}$$
-scheme:
 $\delta^{G}_{W} = \delta_{W} - 4\Delta r$

3.4 NLO QCD corrections to $\gamma\gamma \to t \overline{t} b \overline{b}$ Guo, Ma, Han, Zhang, Jing '07

Details of the calculation:

- FEYNARTS for diagram generation Hahn '01
- FORMCALC for algebraic reduction of amplitudes Hahn, Perez-Victoria '99
- 5-/6-point integrals reduced with known techniques Denner, Dittmaier '02,'05; Binoth et al. '03
- up to 4-point loop integrals evaluated with LOOPTOOLS (including FF library) Hahn, Perez-Victoria '99 v.Oldenborgh '91
- 5-particle phase space integrated with COMPHEP Boos et al. '04
- phase-space slicing for treating IR divergence (b quarks massive)

Note: consistent use of available tools and techniques !

Physics motivation:

- background to $\gamma\gamma \rightarrow t\bar{t}H$ at a future $\gamma\gamma$ collider
- but first step towards $pp \to t\bar{t}b\bar{b}$ (important background to $pp \to t\bar{t}H$)

Some Feynman diagrams...

total number = 10...for LO: γ b t \mathbf{t} b $\overline{\mathrm{t}}$ b q000 000 ggb b

...for NLO QCD: total number = $\mathcal{O}(500)$

12 hexagons, 48 pentagons, etc.

Numerical results: Guo et al. '07

Production cross section for $\gamma\gamma \rightarrow t\bar{t}b\bar{b}$ and renormalization scale dependence

- K factor ~ 1.55 for $\sqrt{s} = 500 \,\mathrm{GeV}$ ~ 1.14 for $\sqrt{s} = 2000 \,\mathrm{GeV}$
- dependence on renormalization scale μ stabilizes considerably in NLO

4 Conclusions

Recent progress on our way to the ILC:

- NNLO (and beyond) calculations for static quantities, vertices, $2\rightarrow 2$ scattering ($\Delta \rho$, μ decay, $\sin^2 \theta_{\text{eff}}^{\text{lept}}$, $gg \rightarrow \text{H}$, Drell–Yan, Bhabha, $e^+e^- \rightarrow 3\text{jets}$, etc.)
- first 2 \rightarrow 4 processes at NLO (ee \rightarrow 4f, ee \rightarrow $\nu\nu$ HH, $\gamma\gamma \rightarrow$ ttbb, 6q/6 γ amplitudes)
- progress in many-particle production (matrix elements, showers, etc.)
- great technical and conceptual progress in perturbative QFT (loop techniques, unitarity/twistor-inspired methods, unstable particles, etc.)
- etc.

Phenomenological progress and development of tools & methods go hand in hand.

Important tools under construction:

- subtraction formalisms for real corrections at NNLO
- automatization of / libraries for NLO multi-leg calculations
- matching of parton showers with matrix-element calculations in NLO
- etc.

