SUSY LEPTON FLAVOR VIOLATING SIGNALS AT THE PHOTON COLLIDER

Mirco Cannoni

Università di Perugia e Istituto Nazionale di Fisica Nucleare Sezione di Perugia

> Firenze, September 14, 2007 ILC Physics in Florence

> > (日) (四) (문) (문) (문)

590

2 Photon Beams

Mirco Cannoni (UNIPG) SUSY LFV at Photon Colliders / 31

2 Photon Beams

3 $\gamma \gamma \to \ell \ell'$ WITH $\ell \neq \ell'$ AND $\ell, \ell' = e, \mu, \tau$, (ONE LOOP ORDER) IN THE SUSY SEE-SAW SCENARIO

Firenze, September 14, 2007 ILC P Mirco Cannoni (UNIPG) SUSY LFV at Photon Colliders

/ 31

2 Photon Beams

3 $\gamma \gamma \rightarrow \ell \ell'$ with $\ell \neq \ell'$ and $\ell, \ell' = e, \mu, \tau$, (one loop order) in the SUSY see-saw scenario

(4) $\gamma \gamma \rightarrow \mu \tau b \bar{b}$: Higgs-mediated LFV at large tan β

Firenze, September 14, 2007 ILC P

2 Photon Beams

3 $\gamma \gamma \rightarrow \ell \ell'$ with $\ell \neq \ell'$ and $\ell, \ell' = e, \mu, \tau$, (one loop order) in the SUSY see-saw scenario

(4) $\gamma \gamma \rightarrow \mu \tau b \bar{b}$: Higgs-mediated LFV at large $\tan \beta$

5 SUMMARY

2 Photon Beams

3 $\gamma\gamma \to \ell\ell'$ with $\ell \neq \ell'$ and $\ell, \ell' = e, \mu, \tau$, (one loop order) in the SUSY see-saw scenario

(4) $\gamma \gamma \rightarrow \mu \tau b \bar{b}$: Higgs-mediated LFV at large $\tan \beta$

5 SUMMARY

Firenze, September 14, 2007 ILC P

Introduction

MOTIVATIONS

- Neutrino masses $\neq 0$ hint to lepton flavour violation (LFV) $\ell \to \ell' + \gamma$. However in the standard Model (SM) such processes are strongly suppressed: $Br \approx \mathcal{O}(10^{-40})$
- $Br(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11} Br(\tau \rightarrow e\gamma) < 3.9 \times 10^{-7} Br(\tau \rightarrow \mu\gamma) < 6.8 \times 10^{-8}$
- New Physics is needed to have rates which would be detectable. The SUSY see-saw mechanism provides sources of LFV potentially observable
- LFV reaction γγ → ℓℓ' with ℓ ≠ ℓ' and ℓ, ℓ' = e, μ, τ, (one loop order) in the SUSY see-saw scenario [M. C., C. Carimalo, W. Da Silva and O. Panella, Phys. Rev. D 72, 115004 (2005)]
- Study the lepton flavor violating reaction $\gamma\gamma \rightarrow \mu\tau b\bar{b}$ through Higgs-madieted LFV at large tan β [M. C., P. Paradisi and O. Panella, in preparation]

2 Photon Beams

3 $\gamma\gamma \to \ell\ell'$ with $\ell \neq \ell'$ and $\ell, \ell' = e, \mu, \tau$, (one loop order) IN THE SUSY SEE-SAW SCENARIO

(4) $\gamma \gamma \rightarrow \mu \tau b \bar{b}$: Higgs-mediated LFV at large $\tan \beta$

5 SUMMARY

- High energy photons beams will be obtained from Compton back-scattered (CB) low energy laser photons with energy ω_0 off high energy electron beams with energy E_0 .
- High energy photon beams will not be monochromatic but will present instead an energy spectrum, mainly determined by the Compton cross section, up to a maximum energy $y_m E_0$, where $y_m = x/(x+1)$ with $x = 4E_0\omega_0/m_e^2$.
- Full simulations show that there will be also a low energy broad peak (multiple compton scattering and beamstrahlung)
- However the high energy peak is well described by the analytical Compton spectrum

Ginzburg, Kotkin, Serbo and Telnov, Ginzburg, Kotkin, Panfil, Serbo and Telnov

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

DIFFERENTIAL CB LUMINOSITY

• The high energy peak is almost independent from technological details and \approx by the product of two CB spectra $(y_{1,2} = E_{\gamma_{1,2}/E_0})$:

$$rac{dL^{CB}_{\gamma\gamma}}{dy_1\,dy_2} = \, F_c(x,y_1)\,F_c(x,y_2)$$

• The theoretical differential luminosity spectrum is:

$$\frac{dL_{\gamma\gamma}^{CB}}{dz} = 2z \int_{-\ln\frac{y_m}{z}}^{\ln\frac{y_m}{z}} d\eta F_c(x, ze^{+\eta}) F_c(x, ze^{-\eta})$$
$$(z = \sqrt{y_1 y_2} = W_{\gamma\gamma}/2E_0 = \sqrt{s_{\gamma\gamma}/s_{ee}} \text{ and}$$
$$\eta = \ln\sqrt{y_1/y_2})$$

 Photons also show an helicity spectrum. In the high energy peak (y ≈ y_m) photons have a high degree of circular polarization
 P_γ = −P_ℓ = P_{laser}

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー わんで

Photon Beams

NORMALIZATION OF LUMINOSITY SPECTRUM

• $\gamma\gamma$ peak luminosities $L_{\gamma\gamma}(z > 0.8z_m)$ of TESLA

$\sqrt{s_{ee}} = 2E_0$	$\frac{L_{\gamma\gamma}}{10^{34} \text{ cm}^{-2} \text{ s}^{-1}}$	$L_{\gamma\gamma}$ fb ⁻¹ yr ⁻¹
$200 {\rm GeV}$	19.1	130
$500 { m GeV}$	1.15	340
$800 {\rm GeV}$	1.7	530

Badelek *et al.* [ECFA/DESY Photon Collider Working Group], "TESLA TDR, Part VI, Chapter 1: Photon collider at TESLA,

• We normalize the ideal spectrum to TESLA luminosities. T he *effective* cross is:

$$\sigma^{effective} = \int_{z_{min}}^{z_{max}} dz \frac{dL_{\gamma\gamma}^{norm}}{dz} \sigma(W_{\gamma\gamma})$$

• The total number of events is given by

$$N_{events} = L_{\gamma\gamma} \times \sigma^{effective}$$

Mirco Cannoni (UNIPG)

OUTLINE

1 INTRODUCTION

2 Photon Beams

3 $\gamma \gamma \rightarrow \ell \ell'$ with $\ell \neq \ell'$ and $\ell, \ell' = e, \mu, \tau$, (one loop order) in the SUSY see-saw scenario

(4) $\gamma \gamma \rightarrow \mu \tau b \bar{b}$: Higgs-mediated LFV at large $\tan \beta$

5 SUMMARY

$\gamma\gamma \rightarrow \ell\ell' \text{ with } \ell \neq \ell' \text{ and } \ell, \ell' = \ell, u, \tau$ SUSY SEE-SAW MECHANISM

• The superpotential W contains three $SU(2)_L$ singlet neutrino superfields N_i with the following couplings:

$$W = (Y_{\nu})_{ij} \varepsilon_{\alpha\beta} H_2^{\alpha} N_i L_j^{\beta} + \frac{1}{2} (M_R)_i N_i N_i.$$

 H_2 is a Higgs doublet superfield, L_i are the $SU(2)_L$ doublet lepton superfields, Y_{ν} is a Yukawa coupling matrix and M_R is the $SU(2)_L$ singlet neutrino mass matrix.

• With the additional Yukawa couplings and the new mass scale (M_R) the RGE evolution from the GUT scale down to M_R induce off-diagonal matrix elements in charged sleptons mass matrix $(m_{\tilde{t}}^2)_{ij}$.

Firenze, September 14, 2007 ILC PJ

SUSY SEE-SAW MECHANISM

 $\gamma \gamma \rightarrow \ell \ell'$ with $\ell \neq \ell'$ and $\ell, \ell' = e, \mu, \tau$

• In the one loop approximation the off-diagonal elements of the charged sleptons mass matrix are [Borzumati,Masiero, Hisano]

$$(m_{\tilde{L}}^2)_{ij} \simeq -\frac{1}{8\pi^2} (3+a_0^2) m_0^2 (Y_{\nu}^{\dagger} Y_{\nu})_{ij} \ln\left(\frac{M_{GUT}}{M_R}\right).$$

where a_0 is a dimensionless parameter appearing in the matrix of trilinear mass terms $A_{\ell} = Y_{\ell} a_0 m_0$ contained in V_{soft} .

• These off diagonal matrix elements can be potentially large because they are not directly related to the mass of the light neutrinos, but only through the seesaw relation $m_{\nu} \simeq m_D^2/M_R = v^2 Y_{\nu}^2/M_R$.

Two generation model

 $\gamma \gamma \rightarrow \ell \ell'$ with $\ell \neq \ell'$ and $\ell, \ell' = e, \mu, \tau$

• Assume for the mass matrix of the charged left-sleptons (and sneutrinos):

$$\widetilde{m}_L^2 = \left(egin{array}{cc} \widetilde{m}^2 & \Delta m^2 \ \Delta m^2 & \widetilde{m}^2 \end{array}
ight),$$

with eigenvalues: $\tilde{m}_{\pm}^2 = \tilde{m}^2 \pm \Delta m^2$ and maximal mixing.

• After diagonalization of the mass matrix the LFV propagator for a scalar line is

$$\langle \tilde{\ell}_i \tilde{\ell}_j^{\dagger} \rangle_0 = \frac{i}{2} \left(\frac{1}{p^2 - \tilde{m}_+^2} - \frac{1}{p^2 - \tilde{m}_-^2} \right) = i \frac{\Delta m^2}{(p^2 - \tilde{m}_+^2)(p^2 - \tilde{m}_-^2)}$$

- The quantity $\delta_{LL} = \Delta m^2 / \tilde{m}^2$ is the dimension-less parameter that controls the magnitude of the LFV effect.
- Our propagator corresponds to the one in the Mass Insertion Approximation (MIA) when one assumes equal diagonal mass squared (good at EW scale due to degeneracy of sleptons) and $\Delta m^2 \ll \tilde{m}^2$ which is necessary for the expansion in power of δ_{LL}
- This approach allows us to study the signal in a quite model-independent way by means of scans in the parameter space the \tilde{m}, δ_{LL} plane which is already constrained by the experimental bounds of radiative lepton decay processes.

Contributing diagrams to $\gamma \gamma \rightarrow \ell \ell'$

- (a) Penguin
- (b) Self-energy
- (c) Sea-gull and Box diagrams
- The full black circle stands for a LFV propagator

▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - のへで

MONOCHROMATIC ANGULAR DISTRIBUTIONS

- $\mathcal{M}^{(+,-)}$ peaked in the backward direction $\mathcal{M}^{(-,+)}$ peaked in the forward direction $(J_z = \pm 2)$
- Dominance of diagrams with exchange of a massless lepton in t and u channel
- M^{++} and M^{--} $(J_z = 0)$ are suppressed !
- The values of the masses are: $M_1 = 100, M_2 = 200,$ $\langle \tilde{m}_{\ell} \rangle = 150 \text{ GeV}, \Delta m^2 = 6000$ $\text{GeV}^2, \sqrt{s_{\gamma\gamma}} = 128 \text{ GeV}$

590

MONOCHROMATIC TOTAL CROSS-SECTIONS

- Configurations with opposite helicity photons $\sigma_{(+,-)}$ and $\sigma_{(-,+)}$ ($J_z = \pm 2$) in the initial state dominate the signal.
- Those with same helicity photons $(J_z = 0)$ give a negligible cross sections
- The values of the masses are: $M_1 = 100$, $M_2 = 200$, $\langle \tilde{m}_{\ell} \rangle = 150$ GeV, $\Delta m^2 = 6000$ GeV²

12

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

EFFECT OF SPECTRA

• The effect of photon spectra is small: use monochromatic photons at the maximum energy

< □ > < □ > < □ > < □ > < □ > < □ >

500

Ð

SCAN OF THE SUSY PARAMETER SPACE (\tilde{m}, δ_{LL})

 $(\delta_{LL})_{ii}$

• $N_{events} = \sigma \times \mathcal{L} > 5$

- $(\delta_{LL})_{ii}$ 1000 • $B(\tau \to \mu \gamma) < 6.8 \times 10^{-8}$ B(µ → eγ) < 1.2 × 10⁻¹¹ • $N_{events} = \sigma \times \mathcal{L} > 5$

- \widetilde{m} and δ_{LL} varied freely, for fixed value of gaugino masses
- Cyan region (\approx whole plane) is allowed by $Br(\tau \rightarrow \mu \gamma) < 6.8 \times 10^{-1}$ $Br(\tau \to e\gamma) < 3.9 \times 10^{-7}$
- Red region is allowed by $Br(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11}$
- magenta region is where a PC can provide a positive signal of LFV: $N_{events} = L_{\gamma\gamma} \times \sigma_{signal} > 5$
- Little overlap (tail in the $\delta_{LL} \approx 1$ part). Observation in the $(e\mu)$ channel is essentially excluded by the non observation of the $\mu \to e\gamma$ decay. The LFV signal is observable only in the $e\tau$ or $(\mu\tau)$ channels.

200 (日) (部) (王) (王)

$\gamma\gamma \rightarrow \ell\ell' \text{ with } \ell \neq \ell' \text{ and } \ell, \ell' = e, u, \tau$ STANDARD MODEL BACKGROUND

• The $e\mu$ final state almost completely excluded by the strong bounds from the non observation of the radiative decay $\mu \rightarrow e\gamma$. Thus we consider signals with τ 's

(a)
$$\gamma\gamma \to \tau^- \tau^+ \to \tau^- \nu_e \bar{\nu}_\tau e^+$$

(b) $\gamma\gamma \to W^{-*} W^{+*} \to \tau^- \bar{\nu}_\tau e^+ \nu_e$
(c) $\gamma\gamma \to e^+ e^- \tau^+ \tau^-$

with similar processes for the production of $\mu\tau$ pairs.

- The signal has two back-to-back leptons without missing transverse momentum and energy.
- The angular cut $|\cos(\theta)| < 0.9$ ($\theta < 25.8^{\circ}$) applied to the signal is also applied to the background.
- We impose the back-to-back condition on the background processes requiring $180^\circ \theta_{\ell\ell'} < 5^\circ$.
- Leptons are required to have energy close to E_{γ} , at least 85% of the maximum photons energy $E_{max}^{\gamma} = y_{max}E_0$.

SM BACKGROUND

$2E_0$ (GeV)	$\gamma\gamma \to \tau\tau$	$\gamma\gamma \rightarrow WW$	$\gamma\gamma \rightarrow \tau\tau ee$
	$\rightarrow \tau e \nu \bar{\nu}$	$\rightarrow e \tau \nu \bar{\nu}$	
200	$0.58 { m ~fb}$	2.3×10^{-1}	36.7 pb
	$1.49 \times 10^{-6} \text{ fb}$	/	$4.4 \times 10^{-2} \text{ fb}$
300	3.1 fb	0.48 pb	38.9 pb
	$16.3 \times 10^{-6} \text{ fb}$	/	$3.7 \times 10^{-2} \text{ fb}$
400	4.9 fb	0.69 pb	39.5 pb
	$3.9 \times 10^{-4} \text{ fb}$	2.1×10^{-2}	$2.9 \times 10^{-2} \text{ fb}$
500	6.1 fb	0.77 pb	39.9 pb
	$9.7 \times 10^{-4} { m ~fb}$	1.0×10^{-1}	$2.4 \times 10^{-2} \text{ fb}$

$$SS = \frac{\mathcal{L}\sigma_{cut}^{Sig}}{\sqrt{\mathcal{L}\sigma_{cut}^{BG}}} \ge 3$$

This implies (with simulated annual luminosity for TESLA):

$$\begin{split} \sqrt{s_{ee}} &= 200 \text{ GeV} \Rightarrow \sigma_{cut}^{Sig} > 5.4 \times 10^{-2} \text{ fb} \Rightarrow \delta_{LL} \gtrsim 10^{-1} \\ \sqrt{s_{ee}} &= 500 \text{ GeV} \Rightarrow \sigma_{cut}^{Sig} > 2.5 \times 10^{-2} \text{ fb} \Rightarrow \delta_{LL} \gtrsim 10^{-1} \end{split}$$

Mirco Cannoni (UNIPG)

OUTLINE

1 INTRODUCTION

2 Photon Beams

3 $\gamma \gamma \rightarrow \ell \ell'$ with $\ell \neq \ell'$ and $\ell, \ell' = e, \mu, \tau$, (one loop order) in the SUSY see-saw scenario

(4) $\gamma\gamma \rightarrow \mu\tau b\bar{b}$: Higgs-mediated LFV at large $\tan\beta$

5 SUMMARY

PARAMETRIZATION OF HIGGS-MEDIATED LFV

- The presence of a non zero μ term, coupled with SUSY breaking, induce non-holomorphic Yukawa interactions for quarks and leptons. If there is a source of LFV among the sleptons, Higgs-mediated LFV is unavoidable.
- In the mass-eigenstate basis for both leptons and Higgs bosons, the effective LFV interactions are described by the four dimension operators:

$$-\mathcal{L} \simeq (2G_F^2)^{\frac{1}{4}} \frac{m_{l_i}}{c_\beta^2} \left(\Delta_L^{ij} \overline{l}_R^i l_L^j + \Delta_R^{ij} \overline{l}_L^i l_R^j \right) \times \left(c_{\beta-\alpha} h^0 - s_{\beta-\alpha} H^0 - iA^0 \right)$$

• Δ^{ij} terms are induced at one loop level by the exchange of gauginos and sleptons, provided a source of slepton mixing. In the MI approximation, Δ^{ij}_{LR} are given by

$$\Delta_L^{ij} = -\frac{\alpha_1}{4\pi} \mu M_1 \delta_{LL}^{ij} m_L^2 \left[I^{'}(M_1^2, m_R^2, m_L^2) + \frac{1}{2} I^{'}(M_1^2, \mu^2, m_L^2) \right]$$

$$\Delta_R^{ij} = \frac{\alpha_1}{4\pi} \mu M_1 m_R^2 \delta_{RR}^{ij} \left[I'(M_1^2, \mu^2, m_R^2) - (\mu \leftrightarrow m_L) \right]$$

• depend only on the ratio of the susy mass scales and they do not decouple for large m_{SUSY} We treat the $\Delta_{L,R}^{ij}$ terms in a model independent way. $\Delta_{L,R}^{ij}$ parameters, their contributions to LFV processes do not exceed the experimental bounds.

Diagrams for $\gamma\gamma \to \mu\tau b\bar{b}$

(c): " $\mu - \tau$ " fusion is the LFV analog of " $\tau - \tau$ " fusion channel which is enhanced for large tan β [Choi, Kalinowski, Lee, Muhlleitner, Spira, Zerwas]

Mirco Cannoni (UNIPG)

SUSY LFV at Photon Colliders

Firenze, September 14, 2007 ILC P

$\gamma \gamma \rightarrow \mu \tau b \overline{b}$

A/H decay widths and branching ratios

$$\Gamma(A \to \tau \mu) = \frac{\alpha_2}{8\pi} \frac{M_A}{M_W^2} m_\tau^2 t_\beta^4 (|\Delta_L|^2 + |\Delta_R|^2)$$

$$\mathcal{B}(A \to \mu^+ \tau^-) = t_\beta^2 \ (|\Delta_L|^2 + |\Delta_R|^2) \mathcal{B}(A \to \tau^+ \tau^-)$$

• For H (or h) there is a factor $(c_{\beta-\alpha}/s_{\alpha})^2$ [or $(s_{\beta-\alpha}/c_{\alpha})^2$]. $\mathcal{B}(A \to \mu\tau)$ can reach values of order 10^{-4} .

 $\gamma \gamma \rightarrow \mu \tau b \bar{b}$ $\gamma\gamma \rightarrow \mu\tau$ AND $\gamma\gamma \rightarrow \mu\tau bb$

• Resonant s-channel loop production

$$\sigma = 8\pi \frac{\Gamma(A \to \gamma \gamma) \Gamma(A \to \tau \mu)}{(S_{\gamma \gamma} - M_A^2)^2 + (\Gamma_A M_A)^2} (1 + \lambda_1 \lambda_2)$$

• " $\mu - \tau$ " fusion with the Equivalent Particle Approximation

$$\begin{aligned} \sigma &= \int dx dy P_{\gamma/\mu}(x) P_{\gamma/\tau}(y) \\ 4\pi \frac{\Gamma(A \to \tau\mu) \Gamma(A \to b\bar{b})}{(S_{\mu\tau} - M_A^2)^2 + (\Gamma_A M_A)^2} \end{aligned}$$

 $P_{\gamma/l}(x)$ are photon's splitting functions

$$P_{\gamma\ell}(x) = \frac{\alpha}{2\pi} [x^2 + (1-x)^2] \log\left(\frac{\mu_F^2}{m_\ell^2}\right)$$

where the factorization scale is taken to be $\mu_F = M_A.$

Firenze, September 14, 2007 ILC P

/ 31

$\gamma \gamma \rightarrow \mu \tau b \overline{b}$

SIGNAL CROSS SECTION

- The analytical formulas give the correct order of magnitude of the cross section
- In COMPHEP all the diagrams are considered: the interference with the same diagrams with *H* give a factor of two in the cross section,
- "b-b fusion", give a cross section two order of magnitude smaller because diagrams with the *b* attached to a photon line bring a charge factor $(1/3)^2$.

Firenze, September 14, 2007 ILC P

ANGULAR DISTRIBUTIONS

- $M_A \simeq M_H = 400$ GeV, $\tan \beta = 50$, $|\Delta_L|^2 + |\Delta_R|^2 = 10^{-6}$ and the other parameters as before.
- mild cut on leptons and jets for detector acceptance
- Distribution is almost flat for the quarks, peaked along the collision axis for the leptons.
- cosine of the angle among the leptons and among the quarks: both are peaked at -1, thus both the particles and the jets will be separated being back-to-back.

TRANSVERSE MOMENTUM AND ENERGY DISTRIBUTIONS

 $\gamma \gamma \rightarrow \mu \tau b \bar{b}$

- Leptons have low p_T , the quarks have very high transverse momentum and energy peaking around $M_A/2$.
- A cut $p_{T_j} \ge 30$ GeV can be applied to the jets to suppress backgrounds without decreasing the signal cross section.

Firenze, September 14, 2007 ILC P

/ 31

INVARIANT MASS DITRIBUTIONS

 $\gamma \gamma \rightarrow \mu \tau b \overline{b}$

- the distribution of mass for the *bb* pair is peaked at the Higgs mass
- that for the $\mu\tau$ pair at $M_A/2$.

Firenze,

September 14, 2007

$\gamma \gamma \rightarrow \mu \tau b \bar{b}$

CONSTRAINTS FROM LOW ENERGY FLAVOR PHYSICS

- $(\mu, M_1, M_2, M_{\tilde{a}}, M_{\tilde{a}}, M_{\ell_L}, M_{\ell_R}) <$ 5TeV and $\tan \beta < 60$. Green dots: points of the parameter space satisfying all the constraints
- Blue dot: fulfill also $Br(\tau \to \mu \gamma) < 5 \times 10^{-9}$ and $\operatorname{Br}(B_s \to \mu^+ \mu^-) < 5 \times 10^{-9}$

/ 31

2 Photon Beams

3 $\gamma\gamma \to \ell\ell'$ with $\ell \neq \ell'$ and $\ell, \ell' = e, \mu, \tau$, (one loop order) in the SUSY see-saw scenario

(4) $\gamma \gamma \rightarrow \mu \tau b \bar{b}$: Higgs-mediated LFV at large $\tan \beta$

5 SUMMARY

Summarv

CONCLUSIONS

- In the range $\sqrt{s_{ee}} \approx 200 500$ GeV the cross section of the signal is $\sigma(\gamma\gamma \to \ell\ell') \approx \mathcal{O}(10^{-1} 10^{-2})$ fb, (sparticle masses $\approx 90 200$ GeV) i.e. a light SUSY spectrum somehow hinted to by fits on standard model parameters and SUSY benchmark points.
- **2** Observation of $\gamma\gamma \to e\tau$, $(\mu\tau)$ is not excluded by present bounds on the radiative lepton decays $\tau \to e\gamma$, $\tau \to \mu\gamma$. However a $\delta_{LL} = \Delta m^2 / \tilde{m}_{\ell}^2 \approx \mathcal{O}(10^{-1})$ is required, (possible only within some specific models of the SUSY see-saw framework).
- The $e\mu$ final state is almost excluded by $Br(\mu \to e\gamma) \le 1.2 \times 10^{-11}$, four orders of magnitude smaller than $Br(\tau \to e\gamma)$, $Br(\tau \to \mu\gamma)$.
- The heavy Higgs madiated LFV process $\gamma \gamma \rightarrow \mu \tau b \bar{b}$ at large tan β and heavy susy spectrum has large cross section!