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WHY EVENT-BY-EVENT FLUCTUATIONS?

Non-statistical event-by-event fluctuations in relativistic heavy ion
collisions has been proposed as as probe of phase instabilities near
de QCD phase transition.

The fluctuations of the mean transverse momentum or mean
multiplicity are related to the fundamental properties of the system, so
may reveal information about the QCD phase boundary.

A phase transition in the evolution of the system created in relativistic heavy
ion collisions may lead to a divergence of the specific heat which could
be observed as event-by-event fluctuations.
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EVENT-BY-EVENT PT FLUCTUATIONS

Event-by-event fluctuations of pT have been measured at SPS and RHIC

Behaviour of the non-statistical fluctuations as a function of the centrality
of the collision:

• grow as the centrality increases

• maximum at mid centralities

• decrease at larger centralities

Different mechanisms have been proposed in order to explain those data:

• complete or partial equilibration

• critical phenomena

• production of jets

• string clustering or string percolation.

3



We are going to use:

CLUSTERING OF COLOR SOURCES

(Armesto, Braun, Ferreiro, Pajares, PRL77 (96) 3736)

• Color strings are stretched between the projectile and target

• Strings = Particle sources: particles are created via sea qq̄ production in
the field of the string

• Color strings = Small areas in the transverse space filled with color field
created by the colliding partons

• With growing energy and/or atomic number of colliding particles, the
number of sources grows

• So the elementary color sources start to overlap, forming clusters, very
much like disk in the 2-dimensional percolation theory

• In particular, at a certain critical density, a macroscopic cluster appears,
which marks the percolation phase transition
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• So we try to introduce a phase transition (≡QGP?)
(N. Armesto et al., PRL77 (96); J.Dias de Deus et al., PLB491 (00); M. Nardi and H.

Satz).

• How?: Strings fuse forming clusters. At a certain critical density ηc

(central PbPb at SPS, central AgAg at RHIC, central SS at LHC ) a
macroscopic cluster appears which marks the percolation phase transition
(second order, non thermal).

η = Nst
S1

SA
, S1 = πr2

0, r0 = 0.2 fm, ηc = 1.1 ÷ 1.2.

• Hypothesis: clusters of overlapping strings are the sources of
particle production, and central multiplicities and transverse momentum
distributions are little affected by rescattering.
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• For a cluster of n overlapping strings covering an area Sn we calculate
the multiplicity and pT of the produced particles :

Color charge of the cluster=Vectorial sum of the strings charges

~Qn =
n

∑

i=1

~Q1i 〈 ~Q1i · ~Q1j〉 = 0 ~Q2
n = n~Q2

1

Qn =
√

nSn
S1

Q1 µn =
√

nSn
S1

µ1 〈p2
T〉n =

√

nS1

Sn
〈p2

T〉1

For strings without interaction:

Sn = nS1 Qn = nQ1 =⇒ µn = nµ1 〈p2
T 〉n = 〈p2

T 〉1

For strings with max overlapping:

Sn = S1 Qn =
√

nQ1 =⇒ µn =
√

nµ1 〈p2
T 〉n =

√
n〈p2

T 〉1
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IN THE CLUSTERING APPROACH:

The behaviour of the pT fluctuations can be understood as follows:

• At low density: most of the particles are produced by individual strings
with the same < pT >1

⇒ fluctuations are small

• At large density above the critical point: only one cluster

⇒ fluctuations are not expected either ”equilibration”

• Just below the percolation critical density: Large number of clusters
formed by different number of strings, different size and different < pT >n

⇒ fluctuations are maximal
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Variables to measure event-by-event pT fluctuations

FpT
quantifies the deviation of the observed fluctuations from statistically

independent particle emission

FpT
= ωdata−ωrandom

ωrandom
, ω =

√
<p2

T>−<pT>2

<pT>

φ =
√

<Z2>
<µ> −

√
< z2 >

zi = pT i− < pT > is defined for each particle

Zi =
PNi

j=1
zj is defined for each event

FpT
= φ√

<z2>
= 1√

<z2>

√

<Z2>
<µ> − 1
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• Mean cluster multiplicity and mean cluster pT :

< µ >n=

√

nSn

S1

< µ >1 , < pT >n=
(nS1

Sn

)1/4

< pT >1

where < µ >1 and < pT >1 correspond to the mean multiplicity and the mean

transverse momentum of the particles produced by one individual string.

• In order to obtain the mean pT and the mean multiplicity of the collision
at a given centrality:sum over all clusters and average over all events:

< µ >=

∑Nevents
i=1

∑

j < µ >nj

Nevents
, < pT >=

∑Nevents
i=1

∑

j < µ >nj
< pT >nj

∑Nevents
i=1

∑

j < µ >nj
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• Introducing our formula for the multiplicity of the cluster µnj
and the mean momentum

< pT >nj
we get:

< pT >=

PNevents
i=1

P
j

�
njSnj

S1

�1/2

µ1

�
njS1

Snj

�1/4

< pT >1PNevents
i=1

P
j

�
njSnj

S1

�1/2

µ1

• For the quantities < z2 > and < Z2 > we obtain:

< z
2

>=

PNevents
i=1

P
j

�
njSnj

S1

�1/2

µ1

��
njS1

Snj

�1/4

<pT >1−<pT >

�2PNevents
i=1

P
j

�
njSnj

S1

�1/2

µ1

and

< Z2 >

< µ >
=

PNevents
i=1

�P
j

�
njSnj

S1

�1/2

µ1

��
njS1

Snj

�1/4

<pT >1−<pT >

��2PNevents
i=1

P
j

�
njSnj

S1

�1/2

µ1
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FpT
=

φ√
< z2 >

=
1√

< z2 >

√

< Z2 >

< µ >
− 1

In order to compute FpT
we need:

• A Monte Carlo code for the cluster formation, in order to compute
the number of strings that come into each cluster and the area of the
cluster

• We do not use a Monte Carlo code for the decay of the cluster, since we
apply analytical expressions for the transverse momentum and the
multiplicities of the clusters

• We also need the value of µ1 –multiplicity produced by one individual
string–. The total multiplicity per unit rapidity produced by one string
has been taken as µ0 tot ' 1
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FLUCTUATIONS AT RHIC
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Figure 1: FpT
(%) versus the number of participants. Experimental data

from PHENIX at
√

s = 200 GeV are compared with our results (solid line).
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FLUCTUATIONS AT SPS
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Figure 2: φpT
versus the number of participants. Experimental data from

NA49 Collaboration at SPS energies are compared with our results (solid
line).
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Our formula for the scaled variance obeys:

V ar(µ)

< µ >
= 1+ < µ >1

〈(

∑

j

√

njSnj

S1

)2〉

−
〈

∑

j

√

njSnj

S1

〉2

〈

∑

j

√

njSnj

S1

〉

,

In order to obtain the scaled variance we have calculated < µ2 >:

< µ2 >=
1

Nevents

� NeventsX
i=1

�X
j

s
njSnj

S1

�2

< µ >2

1
+

NeventsX
i=1

X
j

s
njSnj

S1

< µ >1

�
where we have supposed that the multiplicity of each cluster follows a Poissonian of mean

value < µ >nj
, < µ2 >nj

=< µ >2

nj
+ < µ >nj

.
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Behaviour of the scaled varianza

• Low density limit –isolated strings that do not interact–:

V ar(µ)

< µ >
= 1+ < µ >1

< N2
s > − < Ns >2

< Ns >
' 1+ < µ >1

where Ns corresponds to the number of strings that, for a fixed number of participants:
<N2

s >−<Ns>2

<Ns> ' 1 (Poissonian distribution).

• In the large density regime –all the strings fuse into a single cluster
that occupies the whole interaction area–:

V ar(µ)

< µ >
= 1+ < µ >1

〈(√

NsSA
S1

)2〉

−
〈√

NsSA
S1

〉2

〈√

NsSA
S1

〉 ' 1

where SA is the nuclear overlap area.

The second element of the r.h.s. of this equation tends to zero.
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Figure 3: Our results for the scaled variance of negatively charged particles
in Pb+Pb collisions at Plab =158 AGeV/c compared to NA49 experimental
data. The dashed line corresponds to our result when clustering formation
is not included, the continuous line takes into account clustering.
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• We find a non-monotonic dependence of the multiplicity fluctuations with
the number of participants.

The centrality behaviour of these fluctuations is very similar to the one
found for the mean pT fluctuations.

• In our approach, the mechanism responsible for multiplicity and mean pT

fluctuations is the formation of clusters of strings that introduces correlations
between the produced particles.

• On the other hand, pT fluctuations have been attributed to jet production
in peripheral events, combined with jet suppression in central events.

• However, this hard-scattering interpretation can not be applied to SPS
energies, so it does not explain the non-monotonic behaviour of the mean
pT fluctuations neither the relation between mean pT and multiplicity
fluctuations at SPS energy.
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LONG RANGE CORRELATIONS

• A measurement of such correlations is the backward–forward dispersion

D2
BF =< nB nF > − < nB >< nF >

where nB (nF ) is the number of particles in a backward (forward) rapidity

• In a superposition of independent sources model, D2
BF is proportional to

the fluctuations (D2
N) on the number of independent sources (It is assumed

that Forward and backward are defined in such a way that there is a rapidity
window ∆η ≥ 1.0 to eliminate short range correlations).

• Cluster formation implies a decreasing number of independent sources.
Therefore DBF decreases.
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• Sometimes, it is a measured

< nB >= a + bnF

with

b ≡ D2
BF/D2

FF

• b in pp increases with energy. In hA increases with A

• Clustering of strings implies a supression of b
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CONCLUSIONS

• PT and multiplicity fluctuations an reasonable well described in a color
clustering approach.

• LONG Range correlations are supressed in comparison with models based
on independent scatterings.

• DBF is well described by the percolation of color sources.

20


