Energy Dependence of Multiplicity Fluctuations in Heavy Ion Collisions

Benjamin Lungwitz, IKF Universität Frankfurt for the NA49 collaboration

Outline

- Introduction
- Analysis of energy dependence
- Energy dependence of multiplicity fluctuations
 - Acceptance scaling
 - Model comparison
- Summary

Motivation

- Anomalies in energy dependence seen at low SPS energies -> hint for onset of deconfinement ?
- Models predict large fluctuations near onset of deconfinement or critical point

3

Centrality Selection

 N_P^{Proj}

- Veto calorimeter -> projectile spectators, number of projectile participants N_P^{Proj}
- Target spectators not measured in NA49 !

Benjamin Lungwitz, IKF Universität Frankfurt

System Size Dependence of n- Fluctuations 158A GeV

- Peripheral collisions: Large N_P^{Targ} fluctuations may cause large ω in forward hemisphere (e.g. mixing)
- Central collisions: N_P^{Targ} fluctuations negligible

034902

Track Selection

- Only hadrons in a limited forward acceptance (projectile hemisphere) were selected (158A GeV: equal to M. Rybczynski)
 - Safe acceptance (no problems with efficiency etc.)
 - (p_T, φ) cut:
 C. Alt et al.,
 Phys.Rev.C70:064903, 2004

• **y-cut:** 20*A* – 80*A* GeV: 1<y<y_{beam} 158A GeV: 1.08<y<2.57

Benjamin Lungwitz, IKF Universität Frankfurt

Experimental Acceptance

- Strong energy dependence of experimental acceptance
 - Difficult to compare different energies
- Small acceptance (1<y<(y_{beam}-1)/2+1) used to study acceptance effects

Benjamin Lungwitz, IKF Universität Frankfurt

Multiplicity Distributions

40A GeV

158A GeV

black: data red: Poisson distribution

all data are preliminary !

 Multiplicity distributions for central collisions are significantly narrower than Poisson distribution !

Benjamin Lungwitz, IKF Universität Frankfurt

Centrality Dependence at all Energies

Corrections and Biases

Correction applied for finite size of centrality bins

 $\delta_{bw} = \langle n \rangle \frac{Var(N_P^{Proj})}{\langle N_P^{Proj} \rangle^2}$ in the order of 2%

- Known uncorrected biases:
 - N^P_{Proj} fluctuations due to finite Veto calorimeter resolution (estimated to be <2%)
 - A possible N^P_{Targ} fluctuations contribution to projectile hemisphere
- -> They both increase fluctuations

Benjamin Lungwitz, IKF Universität Frankfurt

Energy Dependence of n- Fluctuations

Note: different acceptance for different energies !

only statistical errors shown

- Scaled variance for h⁺, h⁻ smaller than 1
- ω for h⁺⁻ < 1 for low energies, ω^{+-} > 1 for higher energies
- ω(p+p) ≈ ω(central Pb+Pb) at 158A GeV

Effect of Limited Acceptance

- Assuming no correlations in momentum space $\omega(acc) = (\omega(4\pi) - 1) \cdot p(acc) + 1 \quad (*)$
- $\omega(4\pi) > 1 \le \omega(acc) > 1$, $\omega(4\pi) \le 1 \le \omega(acc) \le 1$

- Formula (*) not valid if more than one daughter particle of a decay is detected
 - very few particles decay into 2 h⁻
 - many particles decay into h⁺ and h⁻

12

Acceptance Scaling for h-

small and standard acceptance

• Data comparable with acceptance scaling and no (or weak) energy dependence of multiplicity fluctuations in 4π

Statistical Model

M. Hauer et. al. nucl-th/0606036

- Grand canonical ensemble (no charge conservation):
 - ω >1 for all energies
- Canonical ensemble (B,Q,S conserved):
 - ω <1 for h⁺ and h⁻, ω crosses 1 for h⁺⁻
- Final state: resonance decays

Statistical Model and Data

- 4π values scaled down to exp. acceptance assuming no correlations in momentum space (eg. due to resonance decays)
- Grand canonical model overpredicts fluctuations
- Canonical model works better, but its fluctuations are also too high (energy conservation needed ?)

String Hadronic Models: Venus, HSD

- HSD: works good for 20A 40A GeV, but overpredicts data at 80A and 158A GeV
- Venus overpredicts data for energies > 20A GeV

Benjamin Lungwitz, IKF Universität Frankfurt

String Hadronic Models: Venus, HSD (2)

 All string hadronic models overpredict fluctuations of h⁺⁻ for energies > 20A GeV

Summary

- Multiplicity fluctuations in central Pb+Pb collisions for h⁺, h⁻ and h⁺⁻ at 20, 30, 40, 80 and 158A GeV were analysed
- ω⁻ scales with p(acc) for h⁻ at all energies
 -> weak energy dependence of ω in 4π [ω(4π) ≈ 0.3]
- ω⁺ and ω⁻ smaller than 1 for all energies
 -> Grand canonical ensemble does not work !
- Canonical statistical model shows similar trend as the data but ω(data) < ω(CE)
- String hadronic models (Venus, HSD) work for lower energies (20-40A GeV) but fail for higher (80-158A GeV)

Backup

Multiplicity Distributions

158A GeV

negative hadrons, N_{P}^{Proj} fixed

Used measure of fluctuations: scaled variance

$$\omega(n) = \frac{Var(n)}{\langle n \rangle} = \frac{\langle n^2 \rangle - \langle n \rangle^2}{\langle n \rangle}$$

[=1 for Poissonian distribution]

Centrality and System Size Dependence

158A GeV

- Var(n)/<n> increases with decreasing centrality
- Approximate scaling in N_P^{Proj}/A^{Proj}

Benjamin Lungwitz, IKF Universität Frankfurt

Different Extreme Reaction Scenarios

for analysis

N_P^{Targ} fluctuations contribute in target hemisphere (most string hadronic models)

N_P^{Targ} fluctuations contribute in both hemispheres (most statistical models)

N_P^{Targ} fluctuations contribute in projectile hemisphere

M. Gazdzicki, M. Gorenstein arXiv:hep-ph/0511058

22

Multiplicity fluctuations sensitive to reaction scenario

String Hadronic Models

- String hadronic models shown (UrQMD, HSD, HIJING) belong to transparency class
- They do not reproduce data on multiplicity fluctuations

Reflection, Mixing and Transparency

Projectile hemisphere

> Model calculation: M. Gazdzicki, M. Gorenstein arXiv:hep-ph/0511058

24

 Significant amount of mixing of particles produced by projectile and target sources

