Toward understanding superstring theory in $AdS_5 \times S^5$

Arkady Tseytlin

 recent progress in perturbative GS superstring: first 2-loop computation

R. Roiban and A. T., arXiv:0709.0681

• Reformulation of $AdS_5 \times S^5$ superstring in terms of currents: "Pohlmeyer reduction"

M. Grigoriev and A. T., arXiv:0711.0155

AdS/CFT

$$\mathcal{N}=4$$
 SYM at $N=\infty$ dual to type IIB superstrings in $AdS_5 \times S^5$ $\lambda=g_{_{YM}}^2N$ related to string tension $2\pi T=\frac{R^2}{\alpha'}=\sqrt{\lambda}$ $g_s=\frac{\lambda}{4\pi N}\to 0$

need to go beyond BPS states and "supergravity + classical probes" approximation

Problems:

- spectrum of states (exact energies in λ)
- construction of vertex opeartors (closed and open string ones)
- computation of their correlation functions (graviton scattering, application to DIS in QCD ?)
- expectation values of various Wilson loops
- gluon scattering amplitudes
- generalizations to simplest less supersymmetric cases
 - orbifolds, exactly marginal deformations, ...
- strings at finite temperature in $AdS_5 \times S^5$ (without black hole and with it ...)
- solution of type 0 theory in $AdS_5 \times S^5$...
- non-critical superstrings: $AdS_5 \times S^1$, ...

$AdS_5 \times S^5$

Recent remarkable progress in quantitative understanding interpolation from weak to strong 't Hooft coupling based on using perturbative gauge theory (4-loop in λ) and perturbative string theory (2-loop in $\frac{1}{\sqrt{\lambda}}$) "data" and assumption of exact integrability string energies = dimensions of gauge-invariant operators

$$E(\sqrt{\lambda},J,m,\ldots) = \Delta(\lambda,J,m,\ldots)$$

J - charges of $SO(2,4)\times SO(6)$:

spins $S_1, S_2; J_1, J_2, J_3$

m - windings, folds, cusps, oscillation numbers, ...

Operators: $\text{Tr}(\Phi_1^{J_1}\Phi_2^{J_2}\Phi_3^{J_3}D_+^{S_1}D_{\perp}^{S_2}...F_{mn}...\Psi...)$

Solve susy 4-d CFT = string in R-R background: compute $E = \Delta$ for any λ (and J,m)

Perturbative expansions are opposite: $\lambda \gg 1$ in perturbative string theory $\lambda \ll 1$ in perturbative planar gauge theory use perturbative results on both sides and other properties (integrability, susy,...) to come up with an exact answer – Bethe ansatz Last 5 years: remarkable progress: "semiclassical" string states with large quantum numbers dual to "long" gauge operators (BMN, GKP, ...) $E = \Delta$ - same dependence on J, m, ...coefficients = interpolating functions of λ

SYM: dilatation operator that determines Δ is same as an integrable spin chain Hamiltonian integrability at both perturbative gauge ($\lambda \ll 1$) and string ($\lambda \gg 1$) sides suggests Bethe ansatz for the spectrum at any λ

Heisenberg-model type BA

(Beisert, Dippel, Staudacher 04; Staudacher 05)

$$e^{ip_k J} = \prod_{j \neq k}^M S(p_k, p_j; \lambda), \qquad S = S_1 e^{i\theta}$$

$$S_1 = \frac{u_k - u_j + i}{u_k - u_j - i}$$
, $\theta = \theta(p_k, p_j; \lambda)$

scattering of elementary excitations (magnons) with 1-d momenta p_i and rapidities u_i

$$u_{j}(p_{j}, \lambda) = \frac{1}{2} \cot \frac{p_{j}}{2} \sqrt{1 + \frac{\lambda}{\pi^{2}} \sin^{2} \frac{p_{j}}{2}}$$
$$E = J + \sum_{j=1}^{M} \left(\sqrt{1 + \frac{\lambda}{\pi^{2}} \sin^{2} \frac{p_{j}}{2}} - 1 \right)$$

What about phase θ ?

structure fixed by symmetries (Beisert 05)

$$\theta(p, p'; \lambda) = \sum_{r=2}^{\infty} \sum_{s=r+1}^{\infty} c_{rs}(\lambda) \left[q_s(p') q_r(p) - q_s(p) q_r(p') \right]$$

$$q_{r+1}(p) = \frac{2}{r} \sin \frac{rp}{2} \left(\frac{\sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p}{2}} - 1}{\frac{\lambda}{\pi^2} \sin \frac{p}{2}} \right)^r,$$

$$c_{rs}(\lambda) = ?$$

crucial input from string theory:

$$c_{rs}(\lambda \gg 1) = \lambda^{\frac{r+s-1}{2}} \left[\delta_{r,s-1} + \frac{1}{\sqrt{\lambda}} a_{rs} + \frac{1}{(\sqrt{\lambda})^2} b_{rs} + \dots \right]$$

String 1-loop corrections to string energies

(Frolov, AT 03; Park, Tirziu, AT 05) $\rightarrow a_{rs} \neq 0$ (Beisert, AT 05)

1-loop string results translate into (Hernandez, Lopez 06)

$$a_{rs} = \frac{2}{\pi} [1 - (-1)^{r+s}] \frac{(r-1)(s-1)}{(r-1)^2 - (s-1)^2}$$

Consistent (Arutyunov, Frolov 06; Beisert 06)

with "crossing" (Janik 06)

All-order guess for strong coupling expansion (Beisert, Hernandez, Lopez 06)

A year ago finally fixed completely (Beisert, Eden, Staudacher 06) comparing to weak-coupling results (4-loop result of Bern et al)

But first-principles derivation remains to be given

Problem:

solve string theory in $AdS_5 \times S^5$ in particular, on an infinite line \rightarrow determine the magnon (BMN excitation) scattering S-matrix \rightarrow derive BA with the right BHL/BES phase

String Theory in $AdS_5 \times S^5$

bosonic coset $\frac{SO(2,4)}{SO(1,4)} \times \frac{SO(6)}{SO(5)}$ generalized to supercoset $\frac{PSU(2,2|4)}{SO(1,4)\times SO(5)}$ (Metsaev, AT 98)

$$S = T \int d^2 \sigma \left[G_{mn}(x) \partial x^m \partial x^n + \bar{\theta} (D + F_5) \theta \partial x + \bar{\theta} \bar{\theta} \bar{\theta} \partial x \partial x + \dots \right]$$

tension $T = \frac{R^2}{2\pi\alpha'} = \frac{\sqrt{\lambda}}{2\pi}$ Conformal invariance: $\beta_{mn} = R_{mn} - (F_5)_{mn}^2 = 0$ Classical integrability of coset σ -model (Luscher-Pohlmeyer 76) same for $AdS_5 \times S^5$ superstring (Bena, Polchinski, Roiban 02) Progress in understanding of implications of (semi)classical integrability (Kazakov, Marshakov, Minahan, Zarembo 04; Beisert et al 05; Dorey, Vicedo 06,...) Explicit computation of 1-loop quantum superstring corrections to classical string energies (Frolov, AT 02-4, ...) results were used as input for 1-loop term in strong-coupling expansion of the phase θ in BA

Tree-level S-matrix of BMN states from $AdS_5 \times S^5$ GS string agrees with limit of elementary magnon S-matrix (Klose, McLoughlin, Roiban, Zarembo 06)

Semiclassical S-matrix in different limits: string solitons on an infinite line – Giant magnons (Hofman, Maldacena 06; Dorey 06, ...) "Near-flat" limit (Hofman, Maldacena 07) studied at 1-loop level with consistent results...

Last year:

- 2-loop string corrections (Roiban, Tirziu, AT; Roiban, AT 07)2-loop check of finiteness of the GS superstring;agreement with BA
- implicit check of integrability of quantum string theory
- non-trivial confirmation of BES exact phase in BA
- comparison to strong-coupling expansion
 of BES equation (Basso, Korchemsky, Kotansky 07)
 should extend to higher loop level

Universal scaling function = Cusp anomalous dimension

gauge theory: $Tr(\Phi D_+^S \Phi)$

$$\Delta = S + 2 + f(\lambda) \ln S + ..., \qquad S \gg 1$$

$$f(\lambda \ll 1) = c_1 \lambda + c_2 \lambda^2 + c_3 \lambda^3 + c_4 \lambda^4 + \dots$$

 c_n are given by Feynmann graphs of 4d CFT – N=4 SYM

string theory: GKP folded string with spin S in AdS_5

$$f(\lambda \gg 1) = \frac{\sqrt{\lambda}}{\pi} \left[a_0 + \frac{a_1}{\sqrt{\lambda}} + \frac{a_2}{(\sqrt{\lambda})^2} + \dots \right]$$

 a_n are given by Feynmann graphs of 2d CFT – $AdS_5 \times S^5$ string

Explicitly:

$$f_{\lambda \ll 1} = \frac{1}{2\pi^2} \left[\lambda - \frac{\lambda^2}{48} + \frac{11\lambda^3}{2^8 \times 45} - \left(\frac{73}{630} + \frac{4(\zeta(3))^2}{\pi^6} \right) \frac{\lambda^4}{2^7} + \ldots \right]$$

 c_3 : Kotikov, Lipatov, et al 03; c_4 : Bern, Dixon, et al 06

$$f_{\rm lights} = \frac{\sqrt{\lambda}}{\pi} \left[1 - \frac{3\log 2}{\sqrt{\lambda}} - \frac{K}{(\sqrt{\lambda})^2} + \ldots\right]$$

 a_0 : Gubser, Klebanov, Polyakov 02;

 a_1 : Frolov, AT 02

 a_2 : Roiban, AT 07

 $K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} = 0.915...$ – Catalan's constant appears from 2-loop sigma model integrals Smooth interpolation from weak to strong coupling

Remarkably, both expansions are reproduced from single Beisert-Eden-Staudacher integral equation for $f(\lambda)$ obtained using the exact BES phase in the BA

Beyond 2-loop order in string theory?

Deeper understanding of quantum string theory from integrability point of view?

Exact string S-matrix?

Proof of the BES Bethe ansatz?

Green-Schwarz superstring in $AdS_5 \times S^5$

Superstring in curved type II supergravity background

$$\int d^2 \sigma \ G_{MN}(Z) \partial Z^M \partial Z^N + \dots, \quad Z^M = (x^m, \theta^I_{\alpha})$$

 $m = 0, 1, \dots 9, \quad \alpha = 1, 2 \dots, 16, \quad I = 1, 2$

Explicit form of action is generally hard to find

 $AdS_5 \times S^5$: coset space symmetry facilitates explicit construction Algebraic construction of unique κ -invariant action as in flat space GS superstring in flat space:

$$R^{1,9} = \frac{G}{H} = \frac{\text{Poincare}}{\text{Lorentz}}$$

Flat superspace = $\frac{\widehat{G}}{H}$ = $\frac{\text{SuperPoincare}}{\text{Lorentz}}$

structure of action is fixed by superPoincare algebra (P, M, Q)

$$[P, M] \sim P, \ [M, M] \sim M, \ [M, Q] \sim Q, \ \{Q, Q\} \sim P$$

 $g^{-1}dg = J^m P_m + J^I_{\alpha} Q^{\alpha}_I + J^{mn} M_{mn}$

Supercoset action= $\int \text{Tr}(g^{-1}dg)_{G/H}^2$ + fermionic WZ-term

$$I = \int d^2 \sigma (J^m J^m + a \bar{J}^I J^I) + b \int J^m \wedge \bar{J}^I \Gamma_m J^J s_{IJ}$$

$$s_{IJ} = (1, -1)$$

$$J^m = dx^m - i\bar{\theta}^I \Gamma^m \theta^I, \quad J^I_\alpha = d\theta^I_\alpha$$

Manifest superPoincare symmetry, but unitarity and right fermionic spectrum iff $a=0,\ b=\pm 1$: κ -invariance \to Green-Schwarz action:

$$L = -\frac{1}{2} (\partial_a x^m - i\bar{\theta}^I \Gamma^m \partial_a \theta^I)^2$$
$$+ i\epsilon^{ab} s_{IJ} \bar{\theta}^I \Gamma_m \partial_a \theta^J (\partial_b x^m - \frac{i}{2} \bar{\theta}^K \Gamma^m \partial_b \theta^K)$$

peculiar "degenerate" Lagrangian: no $\partial \bar{\theta} \partial \theta$ term $L \sim \partial x \partial x + \partial x \bar{\theta} \partial \theta + (\bar{\theta} \partial \theta)^2$ perturbative expansion is well-defined near \bar{x} background, e.g., $x^m = N_a^m \sigma^a$ $x = \bar{x} + \xi, \;\; \theta' = \sqrt{\partial \bar{x}} \; \theta$ $L \sim \partial \xi \partial \xi + \bar{\theta}' \partial \theta' + \frac{1}{\sqrt{\partial \bar{x}}} \partial \xi \bar{\theta}' \partial \theta' + \dots$ non-renormalizable by power counting but κ -symmetry (uniqueness of action) implies finiteness

direct check of cancellation of 2-loop logarithmic UV divergences and trivial partition function (Roiban, Tirziu, AT 07) preservation of κ -symmetry implies that semiclassical loop (α') expansion must be finite also in curved space but regularization issues are non-trivial starting with 2 loops

$$AdS_5 \times S^5 = \frac{SO(2,4)}{SO(1,4)} \times \frac{SO(6)}{SO(5)}$$

Killing vectors and Killing spinors of $AdS_5 \times S^5$:

PSU(2,2|4) symmetry

replace G/H=SuperPoincare/Lorentz in flat GS case by

$$\frac{PSU(2,2|4)}{SO(1,4)\times SO(5)}$$

generators: $(P_q, M_{pq}); (P'_r, M'_{rs}); Q^I_{\alpha}, m = (q, r)$

$$[P, P] \sim M, \quad [P, M] \sim P, \quad [M, M] \sim M,$$
$$[Q, P_q] \sim \gamma_q Q, \quad [Q, M_{pq}] \sim \gamma_{pq} Q$$
$$\{Q^I, Q^J\} \sim \delta^{IJ} (\gamma \cdot P + \gamma' \cdot P') + \epsilon^{IJ} (\gamma \cdot M + \gamma' \cdot M')$$

PSU(2,2|4) invariant action:

$$\int \text{Tr}(g^{-1}dg)_{G/H}^2 + \text{WZ-term}$$

$$J = g^{-1}dg = J^m P_m + J_\alpha^I Q_I^\alpha + J^{mn} M_{mn}$$

$$I = \frac{\sqrt{\lambda}}{2\pi} \left[\int d^2 \sigma (J^m J^m + a \bar{J}^I J^I) + b \int J^m \wedge \bar{J}^I \Gamma_m J^J s_{IJ} \right]$$

as in flat space $a=0,\ b=\pm 1$ required by κ -symmetry unique action with right symmetry and right flat-space limit

Formal argument for UV finiteness (2d conformal invariance):

- 1. global symmatry only overall coefficient of J^2 term (radius) can run
- 2. non-renormalization of WZ term (homogeneous 3-form)
- 3. preservation of κ -symmetry at the quantum level
 - relating coefficients of J^2 and WZ terms

Component form:

coset representative $g(x,\theta)=f(x)e^{\theta Q}$ $J^m=e^m(x)-i\bar{\theta}^I\Gamma^mD\theta^I+O(\theta^4),\quad J^I=D\theta^I+O(\theta^3)$ solving Maurer-Cartan eqs:

$$J_a^A = \partial_a x^m e_m^A - 4i\bar{\theta}^I \Gamma^A \left[\frac{\sinh^2(\frac{s}{2}\mathcal{M})}{\mathcal{M}^2} \right]_{IJ} D_a \theta^J, \qquad J_a^I = \left[\frac{\sinh(s\mathcal{M})}{\mathcal{M}} D_a \theta \right]^I,$$

$$D\theta^I = \mathcal{D}\theta^I - \frac{i}{2}\epsilon^{IJ}e^A(x)\Gamma_*\Gamma_A\theta^J$$
, $\mathcal{D}\theta^I = d\theta^I + \frac{1}{4}\omega^{AB}(x)\Gamma_{AB}\theta^I$,

$$(\mathcal{M}^2)^{IL} = -\epsilon^{IJ} \Gamma_* \Gamma^A \theta^J \bar{\theta}^L \Gamma_A + \frac{1}{2} \epsilon^{LK} (\Gamma^{pq} \theta^I \bar{\theta}^K \Gamma_{pq} \Gamma_* - \Gamma^{rs} \theta^I \bar{\theta}^K \Gamma_{rs} \Gamma_*')$$

$$e^A(x) = dx^m e_m^A(x), \quad A = (p, r)$$

$$\Gamma_* = i\Gamma_0\Gamma_1\Gamma_2\Gamma_3\Gamma_4, \quad \Gamma'_* = i\Gamma_5\Gamma_6\Gamma_7\Gamma_8\Gamma_9$$

RR coupling: "mass term" in D

D in IIB Killing spinor eq. $D^{IJ}\epsilon^J=0,\ [D_M,D_N]=0$

Expansion near string soliton solution $x=\bar{x}$: conformal gauge and κ -symmetry gauge $\theta^1=\theta^2$

$$I = \frac{\sqrt{\lambda}}{2\pi} \int d^2\sigma \left(L_{\rm kin} + L_{\rm WZ} \right)$$

$$L_{\rm kin} = -\frac{1}{2} \partial_a x^{\mu} \partial^a x^{\nu} G_{\mu\nu}(x) + 2i e_a^A \bar{\theta} \Gamma_A \mathcal{D}^a \theta + 2\bar{\theta} \Gamma^A \mathcal{D}_a \theta \bar{\theta} \Gamma_A \mathcal{D}^a \theta + \frac{1}{12} e_a^A e^{aB} \bar{\theta} \Gamma_A (\Gamma^{pq} \theta \bar{\theta} \Gamma_{pq} - \Gamma^{rs} \theta \bar{\theta} \Gamma_{rs}) \Gamma_B \theta + O(\theta^6)$$

$$L_{WZ} = \epsilon^{ab} \left[-e_a^A e_b^B \bar{\theta} \Gamma_A \Gamma_* \Gamma_B \theta + \frac{4i}{3} e_a^A \bar{\theta} \Gamma_A \Gamma_* \Gamma_B \theta \bar{\theta} \Gamma^B \mathcal{D}_b \theta \right] + O(\theta^6)$$

Expansion: $x\to x+\xi, \quad L=\xi D^2\xi+\bar\theta D\theta+\xi^3+\xi^4+\xi\theta^2+\theta^4+\dots$ 1-loop results:

- ullet check of finiteness of GS action for generic \bar{x} solution
- computation of 1-loop quantum string corrections to energies of rigid rotating string solutions (Frolov, AT 02,03; Park, AT 05)
- data for reconstructing 1-loop term in strong-coupling expansion
 of phase in BA (Beisert, AT 05; Hernandez, Lopez 06)

Simple form of the $AdS_5 \times S^5$ action

special choice of coordinates (Poincare) and special κ -symmetry gauge: $\theta^1=\Gamma_{0123}\theta^2$ plus "Killing spinor" redefn of fermions (Kallosh, Rajaraman 98)

$$I = \frac{\sqrt{\lambda}}{4\pi} \int d^2\sigma \left[z^2 (\partial_a x^m - i\bar{\theta}\Gamma^m \partial_a \theta)^2 + \frac{1}{z^2} \partial^a z^s \partial_a z^s + 4\epsilon^{ab}\bar{\theta}\partial_a z^s \Gamma_s \partial_b \theta \right]$$

 $m=0,1,2,3;\ s=4,...,9,\ z^2=z^sz^s,\ a,b=0,1$ after formal T-duality: $x^m\to\widetilde{x}^m$ action becomes exactly quadratic in θ (Kallosh, AT 98)

$$I = \frac{\sqrt{\lambda}}{4\pi} \int d^2\sigma \left[\frac{1}{z^2} (\partial^a x^m \partial_a x_m + \partial^a z^s \partial_a z^s) + 4\epsilon^{ab} \bar{\theta} (\partial_a x^m \Gamma_m + \partial_a z^s \Gamma_s) \partial_b \theta \right]$$

starting point of computation of 2-loop string correction to cusp anomalous dimension (Roiban, AT 07) check of 2-loop finiteness of $AdS_5 \times S^5$ GS string check of BES phase proposal against 2-loop string theory

How to solve quantum string theory in $AdS_5 \times S^5$?

GS string on supercoset $\frac{PSU(2,2|4)}{SO(1,4)\times SO(5)}$ not of known solvable type (cf. free oscillators; WZW) analogy with exact solution of O(n) model (Zamolodchikovs) or principal chiral model (Polyakov-Wiegmann; KWZ; ...)? -2d CFT – no mass generation

Try as in flat space – light-cone gauge: analog of $x^+=p^+\tau,\;p^+={\rm const},\;\Gamma^+\theta=0$ Two natural options:

(i) null geodesic parallel to the boundary in Poincare patch – action/Hamiltonian quartic in fermions (Metsaev, Thorn, AT, 01) (ii) null geodesic wrapping S^5 :

hidden $su(2|2) \times su(2|2)$ symmetry

but complicated action (Callan et al, 03;

Arutyunov, Frolov, Plefka, Zamaklar, 05-06)

Common problem:

lack of manifest 2d Lorentz symmetry

hard to apply known 2d integrable field theory methods – S-matrix depends on two rapidities, not on their difference only constraints on it are unclear, etc.

An alternative approach: "Pohlmeyer reduction" use conf. gauge, solve Virasoro conditions in terms of currents, find "reduced" action for physical number of d.o.f., use it as a starting point for quantization

compare to two related models:

I. "non-abelian dual" for PCM(Zakharov, Mikhailov 78; Nappi 80)– solve EOM's in terms of currents,

consider flatness condition (MC) as dynamical

$$L = \text{Tr}(J_a J^a), \qquad J_a = g^{-1} \partial_a g$$

$$\partial_a J^a = 0$$
, $\partial_a J_b - \partial_b J_a + [J_a, J_b] = 0$

Solve EOM by $J_a = \epsilon_{ab} \partial^b \chi$, $\chi \in \mathfrak{g}$ then from flatness (MC)

$$\partial^a \partial_a \chi - \epsilon^{ab} \partial_a \chi \partial_b \chi = 0$$

following from

$$L = \text{Tr}(\partial^a \chi \partial_a \chi + \frac{2}{3} \epsilon^{ab} \chi [\partial_a \chi, \partial_b \chi])$$

corresponds to a gauge-equivalent choice of classical Lax pair (Mikhailov-Zakharov 78)

But: does not solve Virasoro conditions; does not define equivalent quantum theory (Nappi; Fridling, Jevicki 84; Fradkin, AT 85) Another attempt:

II. FR model (Faddeev, Reshetikhin 86) express PCM + Virasoro in terms of two constrained currents as basic variables fix conf. symm. or add Virasoro for $R_t \times G$ ($X^0 = \mu \tau$)

$$Tr(J_+J_+) = \mu^2$$
, $Tr(J_-J_-) = \mu^2$

in addition to EOM combined with MC into

$$D_{-}J_{+}=0$$
, $D_{+}J_{-}=0$, $D_{a}=\partial_{a}+[J_{a},]$

e.g. $G = S^3 = SU(2)$: take $n_{\pm}^i = \mu^{-1}J_{\pm}^i$ as two unit vectors to solve Virasoro; action:

$$S = \int d^2\sigma [C_+(n_-) + C_-(n_+) + \mu^2 n_+^i n_-^i] ,$$

where $C_a(J^i) \equiv -\frac{1}{2} \int_0^1 dy \; \epsilon_{ijk} n^i \partial_a n^j \partial_y n^k$ get first-order action for 2+2=4 independent d.o.f.

But: 2d Lorentz invariance is missing – broken by constraints

Remarkably, there is an alternative system with standard 2d Lorentz invariant second-order action for 2 dynamical d.o.f. (1+3-2=2) describing the same $R_t \times S^3$ string equations of motion Complex sine-Gordon model found by Pohlmeyer reduction (PR)

$$\widetilde{S} = \int d^2 \sigma [\partial_+ \varphi \partial_- \varphi + \cot^2 \varphi \, \partial_+ \theta \partial_- \theta + \frac{\mu^2}{2} \cos 2\varphi]$$

CSG: an example of non-abelian Toda model (Leznov, Saveliev): related to massive integrable perturbation of a coset WZW model —here SO(3)/SO(2) (Hollowood, Miramontes, Park 94) quantum-integrable: S-matrix is known (Dorey, Hollowood 95)

Aim: construct PR version for $AdS_5 \times S^5$ superstring

- (i) introduce new fields locally related to supercoset currents
- (ii) solve conformal gauge (Virasoro) condition explicitly
- (iii) find local 2d Lorentz-invariant action for independent (8B+8F) d.o.f
- fermionic generalization of non-abelian Toda theory

PR: a nonlocal map that preserves integrable structure

- 1. gauge-equivalent Lax pairs; map between soliton solutions gives integrable massive local field theory
- 2. quantum equivalence to original GS model? may expect for full $AdS_5 \times S^5$ string model = CFT
- 3. integrable theory: semiclassical solitonic spectrum may essentially determine quantum spectrum the two solitonic S-matrices should be closely related:

 Lorentz-invariant S-matrix of PR-model should effectively give the complicated magnon S-matrix

Pohlmeyer reduction: bosonic coset models

Prototypical example: S^2 -sigma model \rightarrow Sine-Gordon theory

$$L = \partial_{+} X^{m} \partial_{-} X^{m} - \Lambda (X^{m} X^{m} - 1), \qquad m = 1, 2, 3$$

Equations of motion:

$$\partial_+\partial_-X^m + \Lambda X^m = 0$$
, $\Lambda = \partial_+X^m\partial_-X^m$, $X^mX^m = 1$

Stress tensor: $T_{\pm\pm} = \partial_{\pm} X^m \partial_{\pm} X^m$

$$T_{+-} = 0$$
, $\partial_+ T_{--} = 0$, $\partial_- T_{++} = 0$

implies $T_{++} = f(\sigma_+), \quad T_{--} = h(\sigma_-)$

using the conformal transformations $\sigma_{\pm} \to F_{\pm}(\sigma_{\pm})$ can set

$$\partial_+ X^m \partial_+ X^m = \mu^2$$
, $\partial_- X^m \partial_- X^m = \mu^2$, $\mu = \text{const}$.

3 unit vectors in 3-dimensional Euclidean space:

$$X^m, \qquad X_+^m = \mu^{-1} \partial_+ X^m, \qquad X_-^m = \mu^{-1} \partial_- X^m,$$

 X^m is orthogonal $(X^m \partial_{\pm} X^m = 0)$ to both X^m_+ and X^m_- remaining SO(3) invariant quantity is scalar product

$$\partial_+ X^m \partial_- X^m = \mu^2 \cos 2\varphi$$

then $\partial_+\partial_-\varphi+\frac{\mu^2}{2}\sin2\varphi=0$ following from sine-Gordon action (Pohlmeyer, 1976)

$$\widetilde{L} = \partial_{+}\varphi \partial_{-}\varphi + \frac{\mu^{2}}{2}\cos 2\varphi$$

2d Lorentz invariant despite explicit constraints Classical solutions and integrable structures (Lax pair, Backlund transformations, etc) are directly related e.g., SG soliton mapped into rotating folded string on S^2 "giant magnon" in the $J=\infty$ limit (Hofman, Maldacena 06) other examples for CSG (Chen, Dorey, Okamura 06; Okamura, Suzuki, Hayashi, Vicedo 07; Jevicki, Spradlin, Volovich, et al 07)

Analogous construction for S^3 model gives

Complex sine-Gordon model (Pohlmeyer; Lund, Regge 76)

$$\widetilde{L} = \partial_{+}\varphi \partial_{-}\varphi + \cot^{2}\varphi \,\,\partial_{+}\theta \partial_{-}\theta + \frac{\mu^{2}}{2}\cos 2\varphi$$

 φ, θ are SO(4)-invariants:

$$\mu^{2} \cos 2\varphi = \partial_{+} X^{m} \partial_{-} X^{m}$$
$$\mu^{3} \sin^{2} \varphi \, \partial_{\pm} \theta = \mp \frac{1}{2} \epsilon_{mnkl} X^{m} \partial_{+} X^{n} \partial_{-} X^{k} \partial_{\pm}^{2} X^{l}$$

"String on $R_t \times S^n$ " interpretation

conformal gauge plus $t = \mu \tau$ to fix conformal diffeomorphisms:

$$\partial_{\pm}X^{m}\partial_{\pm}X^{m}=\mu^{2}$$
 are Virasoro constraints

Similar construction for AdS_n case,

i.e. string on $AdS_n \times S_{\psi}^1$ with $\psi = \mu \tau$

e.g. reduced theory for $AdS_3 \times S^1$

$$\widetilde{L} = \partial_{+}\phi\partial_{-}\phi + \coth^{2}\varphi \,\partial_{+}\chi\partial_{-}\chi - \frac{\mu^{2}}{2}\cosh 2\phi$$

Comments:

- Virasoro constraints are solved by a special choice of variables related nonlocally to the original coordinates
- Although the reduction is not explicitly Lorentz invariant the resulting Lagrangian turns out to be 2d Lorentz invariant
- The reduced theory is formulated in terms of manifestly SO(n) invariant variables: "blind" to original global symmetry
- reduced theory is equivalent to the original theory as integrable system: the respective Lax pairs are gauge-equivalent
- PR may be thought of as a formulation in terms of physical d.o.f. coset space analog of flat-space l.c. gauge (where 2d Lorentz is unbroken)
- In general reduced theory can **not** be quantum-equivalent to the original one (e.g., conformal symmetry was assumed in the reduction procedure)

PR for bosonic F/G-coset model

To find reduced theory for $AdS_5 \times S^5$ GS model need to understand PR of F/G coset sigma models as G/H gauged WZW models modified by relevant integrable potential and then generalize to GS supercoset

F/G-coset sigma model:

symmetric space condition (\mathfrak{f} , \mathfrak{g} are Lie algebras of F and G)

$$\mathfrak{f}=\mathfrak{p}\oplus\mathfrak{g}\;,\qquad [\mathfrak{g},\mathfrak{g}]\subset\mathfrak{g}\,,\qquad [\mathfrak{g},\mathfrak{p}]\subset\mathfrak{p}\,,\qquad [\mathfrak{p},\mathfrak{p}]\subset\mathfrak{g}$$

with $\langle \mathfrak{g}, \mathfrak{p} \rangle = 0$ (choose $\langle a, b \rangle = \text{Tr}(ab)$)

Lagrangian:

$$L = -\text{Tr}(P_{+}P_{-}), \qquad P_{\pm} = (f^{-1}\partial_{\pm}f)_{\mathfrak{p}},$$

$$J = f^{-1}df = \mathcal{A} + P, \qquad \mathcal{A} = J_{\mathfrak{g}} \in \mathfrak{g}, \quad P = J_{\mathfrak{p}} \in \mathfrak{p}.$$

Symmetries: G gauge transformations $f \to fg$; global F-symmetry: $f \to f_0 f$, $f_0 = \text{const} \in F$ classical conformal invariance

Equations of motion in terms of currents

let J = A + P be fundamental variables, not f

$$D_{+}P_{-} = 0$$
, $D_{-}P_{+} = 0$, $D = d + [A,]$ - EOM
 $D_{-}P_{+} - D_{+}P_{-} + [P_{+}, P_{-}] + \mathcal{F}_{+-} = 0$ - Maurer-Cartan
 $\text{Tr}(P_{+}P_{+}) = -\mu^{2}$, $\text{Tr}(P_{-}P_{-}) = -\mu^{2}$ - Virasoro

Main idea: – first solve EOM and Virasoro and then MC using special choice of G gauge condition and conformal diffs then find reduced action giving eqs. resulting from MC gauge fixing that solves the first Virasoro constraint

$$P_{+} = \mu T = \text{const}, \qquad T \in \mathfrak{p} = \mathfrak{f} \ominus \mathfrak{g}, \qquad \text{Tr}(TT) = -1$$

choice of special element $T \to \operatorname{decomposition}$ of the algebra of F

$$\mathfrak{f} = \mathfrak{p} \oplus \mathfrak{g} , \qquad \mathfrak{p} = T \oplus \mathfrak{n} , \qquad \mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h} , \qquad [T, \mathfrak{h}] = 0 ,$$
 $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h} , \qquad [\mathfrak{m}, \mathfrak{h}] \subset \mathfrak{m} , \qquad [T, \mathfrak{m}] \subset \mathfrak{m} , \qquad [T, \mathfrak{n}] \subset \mathfrak{m} .$

 \mathfrak{h} is a centraliser of T in \mathfrak{g}

EOM $D_-P_+=0$ is solved by

$$(\mathcal{A}_{-})_{\mathfrak{m}} = 0$$
, $\mathcal{A}_{-} = (\mathcal{A}_{-})_{\mathfrak{h}} \equiv A_{-}$

second Virasoro constraint is solved by

$$P_{-} = \mu \ g^{-1}Tg \ , \qquad g \in G$$

EOM $D_+P_-=0$ is solved by

$$A_{+} = g^{-1}\partial_{+}g + g^{-1}A_{+}g$$

To summarise:

solved EOM's and Virasoro constraints introducing new dynamical field variables

G-valued field
$$g$$
, \mathfrak{h} -valued fields A_+ , A_- , $[T, A_{\pm}] = 0$

what remains is the Maurer-Cartan equation on g, A_{\pm}

Relation to G/H gauged WZW model

Maurer-Cartan equation in terms of new parametrization:

$$\partial_{-}(g^{-1}\partial_{+}g + g^{-1}A_{+}g) - \partial_{+}A_{-}$$

$$+ [A_{-}, g^{-1}\partial_{+}g + g^{-1}A_{+}g] + \mu^{2}[g^{-1}Tg, T] = 0$$

Recall:
$$J = f^{-1}df = A + P$$
, $P_{+} = \mu T$, $P_{-} = \mu g^{-1}Tg$
 $A_{+} = g^{-1}\partial_{+}g + g^{-1}A_{+}g$, $A_{-} = A_{-}$

MC eq. has "on-shell" $H \times H$ gauge symmetry:

$$g \to h^{-1}g\bar{h}$$
, $A_+ \to h^{-1}A_+h + h^{-1}\partial_+h$, $A_- \to \bar{h}^{-1}A_-\bar{h} + \bar{h}^{-1}\partial_-\bar{h}$,

can choose a gauge:
$$A_{+} = (g^{-1}\partial_{+}g + g^{-1}A_{+}g)_{\mathfrak{h}},$$

$$A_{-} = (-\partial_{-}gg^{-1} + gA_{-}g^{-1})_{\mathfrak{h}}$$

remains left-right H gauge symmetry: $h = \bar{h}$

"off-shell" symmetry of corresponding gWZW action

G/H gWZW action with potential:

$$L = -\frac{1}{2} \text{Tr}(g^{-1}\partial_{+}gg^{-1}\partial_{-}g) + \text{WZ term}$$

$$- \text{Tr}(A_{+}\partial_{-}gg^{-1} - A_{-}g^{-1}\partial_{+}g - g^{-1}A_{+}gA_{-} + A_{+}A_{-})$$

$$- \mu^{2} \text{Tr}(Tg^{-1}Tg)$$

Pohlmeyer-reduced theory for F/G coset sigma model

(as first proposed by Bakas, Park, Shin 95) and thus also for strings on $R_t \times F/G$ or $F/G \times S^1_\psi$ integrable potential: relation at the level of Lax pairs

special case of non-abelian Toda theory:

"symmetric space Sine-Gordon model"

(Hollowood, Miramontes et al 96)

Similar reduction for G PCM or $\frac{G \times G}{G}$ coset leads to G/H theory with $H = [U(1)]^r$ = Cartan of G,

"homogeneous Sine-Gordon model", known to be quantum-integrable generalizes CSG model ($G=S^3=SO(3)$)

What to do with A_+, A_- : integrate out or gauge-fix

Reduced equation of motion in the "on-shell" gauge $A_{\pm}=0$:

On-shell $\partial_{-}A_{+} - \partial_{+}A_{-} + [A_{-}, A_{+}] = 0$ so can set $A_{\pm} = 0$

$$\partial_{-}(g^{-1}\partial_{+}g) - \mu^{2}[T, g^{-1}Tg] = 0,$$

$$(g^{-1}\partial_{+}g)_{\mathfrak{h}} = 0, \qquad (\partial_{-}gg^{-1})_{\mathfrak{h}} = 0.$$

$$F/G = SO(n+1)/SO(n) = S^n : G/H = SO(n)/SO(n-1)$$

$$g = \begin{pmatrix} k_1 & k_2 & \dots & k_n \\ \dots & \dots & \dots & \end{pmatrix}, \qquad \sum_{l=1}^n k_l k_l = 1$$

get (in general non-Lagrangian) EOM for k_m

$$\partial_{-}\left(\frac{\partial_{+}k_{\ell}}{\sqrt{1-\sum_{m=2}^{n}k_{m}k_{m}}}\right) = -\mu^{2}k_{\ell}, \qquad \ell = 2, \dots, n.$$

Linearising around the vacuum g = 1 (i.e. $k_1 = 1, k_\ell = 0$)

$$\partial_+\partial_-k_\ell + \mu^2 k_\ell + O(k_\ell^2) = 0$$

massive spectrum: non-trivial S-matrix with H global symmetry

$$F/G = SO(n+1)/SO(n) = S^n$$
:

parametrization of g in Euler angles

$$g = e^{T_{n-2}\theta_{n-2}}...e^{T_1\theta_1}e^{2T\varphi}e^{T_1\theta_1}...e^{T_{n-2}\theta_{n-2}}$$

and integrating out H = SO(n-1) gauge field A_{\pm} leads to reduced theory that generalizes SG and CSG

$$\widetilde{L} = \partial_{+}\varphi \partial_{-}\varphi + G_{pq}(\varphi, \theta)\partial_{+}\theta^{p}\partial_{-}\theta^{q} + \frac{\mu^{2}}{2}\cos 2\varphi$$

no B_{mn} coupling

gWZW for G/H = SO(n)/SO(n-1)

$$ds_{n=2}^2 = d\varphi^2$$
, $ds_{n=3}^2 = d\varphi^2 + \cot^2\varphi \ d\theta^2$

ironically, return of old metrics of "de Sitter" or " S^n " gWZW models (Bars, Nemeschansky,...)

$$G/H = SO(4)/SO(3)$$
 (Fradkin, Linetsky 91)

$$ds_{n=4}^2 = d\varphi^2 + \cot^2\varphi \left(d\theta_1 + \cot\theta_1 \tan\theta_2 d\theta_2\right)^2 + \tan^2\varphi \frac{d\theta_2^2}{\sin^2\theta_1}$$

change of variables $x = \cos \theta_1 \cos \theta_2$, $y = \sin \theta_2$

$$ds_{n=4}^{2} = d\varphi^{2} + \frac{\cot^{2}\varphi \, dx^{2} + \tan^{2}\varphi \, dy^{2}}{1 - x^{2} - y^{2}}$$

$$G/H = SO(5)/SO(4)$$
 (Bars, Sfetsos 92)

$$ds_{n=5}^{2} = d\varphi^{2} + \cot^{2}\varphi \left(d\theta_{1} + Ud\theta_{2} + Vd\theta_{3}\right)^{2}$$

$$+ \tan^{2}\varphi \left[\frac{d\theta_{2}^{2}}{\cos^{2}\theta_{1}} + \frac{d\theta_{3}^{2}}{\sin^{2}\theta_{1}}\right]$$

$$U = \frac{\tan\theta_{1}\sin2\theta_{2}}{\cos2\theta_{2} + \cos2\theta_{3}}, \quad V = \frac{\cot\theta_{1}\sin2\theta_{3}}{\cos2\theta_{2} + \cos2\theta_{3}}$$

no isometries, singularities

similar for
$$F/G = SO(2, n-1)/SO(1, n-1) = AdS_n$$
 case: $G/H = SO(1, n-1)/SO(n-1)$

Bosonic strings on $AdS_n \times S^n$

straightforward generalization:

Lagrangian and the Virasoro constraints

$$L = \text{Tr}(P_{+}^{A}P_{-}^{A}) - \text{Tr}(P_{+}^{S}P_{-}^{S}),$$

$$\operatorname{Tr}(P_{\pm}^{S}P_{\pm}^{S}) - \operatorname{Tr}(P_{\pm}^{A}P_{\pm}^{A}) = 0$$

fix conformal symmetry by

$$\operatorname{Tr}(P_{+}^{S}P_{+}^{S}) = \operatorname{Tr}(P_{+}^{A}P_{+}^{A}) = -\mu^{2}$$

then PR applies independently in each sector:

get direct sum of reduced systems for S^n and AdS_n

linked by Virasoro, i.e. common μ

e.g. for
$$F/G = AdS_2 \times S^2$$
:

$$\widetilde{L} = \partial_{+}\varphi \partial_{-}\varphi + \partial_{+}\phi \partial_{-}\phi + \frac{\mu^{2}}{2}(\cos 2\varphi - \cosh 2\phi)$$

$AdS_5 \times S^5$ superstring sigma-model

$$AdS_5 \times S^5 = \frac{SU(2,2)}{Sp(2,2)} \times \frac{SU(4)}{Sp(4)}$$

supercoset GS sigma model (Metsaev, AT 98)

$$\frac{\widehat{F}}{G} = \frac{PSU(2,2|4)}{Sp(2,2) \times Sp(4)}$$

basic superalgebra $\widehat{\mathfrak{f}} = psu(2,2|4)$

bosonic part $\mathfrak{f}=su(2,2)\oplus su(4)\cong so(2,4)\oplus so(6)$

admits \mathbb{Z}_4 -grading: (Berkovits, Bershadsky, et al 89)

$$\widehat{\mathfrak{f}} = \mathfrak{f}_0 \oplus \mathfrak{f}_1 \oplus \mathfrak{f}_2 \oplus \mathfrak{f}_3 , \qquad [\mathfrak{f}_i, \mathfrak{f}_j] \subset \mathfrak{f}_{i+j \bmod 4}$$

$$\mathfrak{f}_0 = \mathfrak{g} = sp(2,2) \oplus sp(4)$$

current $(J = f^{-1}\partial_a f, \ f \in \widehat{F})$ decomposes as

$$J_a = f^{-1}\partial_a f = \mathcal{A}_a + Q_{1a} + P_a + Q_{2a}$$

$$\mathcal{A} \in \mathfrak{f}_0, \quad Q_1 \in \mathfrak{f}_1, \quad P \in \mathfrak{f}_2, \quad Q_2 \in \mathfrak{f}_3.$$

GS Lagrangian:

$$L_{GS} = \frac{1}{2} \operatorname{STr}(\sqrt{-g} g^{ab} P_a P_b + \varepsilon^{ab} Q_{1a} Q_{2b}),$$

very simple structure – but not standard coset model: fermionic currents in WZ term only this leads to local fermionic κ -symmetry:

$$\delta_{\kappa} J_{a} = \partial_{a} \epsilon + [J_{a}, \epsilon]$$

$$(\delta_{\kappa} \sqrt{-g} g^{ab})^{ab} = \operatorname{STr} \left(W([ik_{1(-)}^{a}, Q_{1(-)}^{b}] + [ik_{2(+)}^{a}, Q_{2(+)}^{b}]) \right)$$

$$\epsilon = \epsilon_{1} + \epsilon_{2} = \{ P_{(+)a}, ik_{1(-)}^{a} \} + \{ P_{(-)a}, ik_{2(+)}^{a} \}$$

self-dual 2-vector parameters $k_{1(-)}$ and $k_{2(+)}$ take values in the degree 1 and degree 3 subspaces of u(2,2|4) $W=\mathrm{diag}(1,\ldots,1,-1,\ldots,-1)$

$$V_{(\pm)}^a \equiv \frac{1}{2} (\gamma^{ab} \mp \varepsilon^{ab}) V_b$$

conformal gauge:
$$\sqrt{-g}g^{ab} = \eta^{ab}$$

$$L_{\text{GS}} = \text{STr}[P_{+}P_{-} + \frac{1}{2}(Q_{1+}Q_{2-} - Q_{1-}Q_{2+})]$$

 $\text{STr}(P_{+}P_{+}) = 0$, $\text{STr}(P_{-}P_{-}) = 0$

In terms of current $J = A + P + Q_1 + Q_2$

EOM:
$$\partial_{+}P_{-} + [\mathcal{A}_{+}, P_{-}] + [Q_{2+}, Q_{2-}] = 0$$
,
 $\partial_{-}P_{+} + [\mathcal{A}_{-}, P_{+}] + [Q_{1-}, Q_{1+}] = 0$,
 $[P_{+}, Q_{1-}] = 0$, $[P_{-}, Q_{2+}] = 0$.

Virasoro:
$$STr(P_{+}P_{+}) = 0$$
, $STr(P_{-}P_{-}) = 0$
 MC : $\partial_{-}J_{+} - \partial_{+}J_{-} + [J_{-}, J_{+}] = 0$.

PR procedure: solve first EOM and Virasoro

$$\kappa$$
-gauge condition: $Q_{1-} = 0$, $Q_{2+} = 0$ solves the last (fermionic) pair of EOM

remaining EOM:

$$\partial_{+}P_{-} + [A_{+}, P_{-}] = 0, \qquad \partial_{-}P_{+} + [A_{-}, P_{+}] = 0$$

Maurer-Cartan:

$$\partial_{+} \mathcal{A}_{-} - \partial_{-} \mathcal{A}_{+} + [\mathcal{A}_{+}, \mathcal{A}_{-}] + [P_{+}, P_{-}] + [Q_{1+}, Q_{2-}] = 0,$$

$$\partial_{-} Q_{1+} + [\mathcal{A}_{-}, Q_{1+}] - [P_{+}, Q_{2-}] = 0,$$

$$\partial_{+} Q_{2-} + [\mathcal{A}_{+}, Q_{2-}] - [P_{-}, Q_{1+}] = 0.$$

as in the bosonic F/G case can fix the "reduction gauge"

$$P_{+} = \mu T$$
, $T = \frac{i}{2} \operatorname{diag}(1, 1, -1, -1|1, 1, -1, -1)$

$$P_{-} = \mu g^{-1}Tg$$
, $A_{+} = g^{-1}\partial_{+}g + g^{-1}A_{+}g$, $A_{-} = A_{-}$

T defines \mathfrak{h} by $[\mathfrak{h}, T] = 0$:

$$\mathfrak{h} = su(2) \oplus su(2) \oplus su(2) \oplus su(2)$$

new parametrisation: $G = Sp(2,2) \times Sp(4)$ -valued field g and \mathfrak{h} -valued field A_{\pm}

MC eqs. become:

$$\partial_{-}(g^{-1}\partial_{+}g + g^{-1}A_{+}g) - \partial_{+}A_{-} + [A_{-}, g^{-1}\partial_{+}g + g^{-1}A_{+}g]$$

$$= -\mu^{2}[g^{-1}Tg, T] + [Q_{1+}, Q_{2-}],$$

$$\partial_{-}Q_{1+} + [A_{-}, Q_{1+}] = \mu[T, Q_{2-}],$$

$$\partial_{+}Q_{2-} + [g^{-1}\partial_{+}g + g^{-1}A_{+}g, Q_{2-}] = \mu[g^{-1}Tg, Q_{1+}]$$

 AdS_5 and S^5 sectors now coupled by fermions remains residual κ -symmetry to be fixed use T to generalise decomposition of bosonic part $\mathfrak{f}=T\oplus\mathfrak{n}\oplus\mathfrak{h}\oplus\mathfrak{m}$ to superalgebra psu(2,2|4)

$$\widehat{\mathfrak{f}} = \widehat{\mathfrak{f}}^{\parallel} \oplus \widehat{\mathfrak{f}}^{\perp} , \qquad [T, [T, \widehat{\mathfrak{f}}^{\perp}]] = 0$$

define

$$\Psi_1 = Q_{1+}, \qquad \Psi_2 = gQ_{2-}g^{-1}$$

 $\Psi_1^{\perp}, \Psi_2^{\perp}$ can be set =0 by residual κ -symmetry

remaining fermionic components

$$\Psi_{\scriptscriptstyle R} = rac{1}{\sqrt{\mu}} \Psi_1^\parallel \,, \qquad \qquad \Psi_{\scriptscriptstyle L} = rac{1}{\sqrt{\mu}} \Psi_2^\parallel \,,$$

transform under $H \times H$ as $\Psi_R \to \bar{h}^{-1} \Psi_R \bar{h}$, $\Psi_L \to h^{-1} \Psi_L h$. equations of motion of reduced theory are thus:

$$\partial_{-}(g^{-1}\partial_{+}g + g^{-1}A_{+}g) - \partial_{+}A_{-} + [A_{-}, g^{-1}\partial_{+}g + g^{-1}A_{+}g]$$

$$= -\mu^{2}[g^{-1}Tg, T] - \mu[g^{-1}\Psi_{L}g, \Psi_{R}],$$

$$[T, D_{-}\Psi_{R}] = -\mu(g^{-1}\Psi_{L}g)^{\parallel}, \quad [T, D_{+}\Psi_{L}] = -\mu(g\Psi_{R}g^{-1})^{\parallel}.$$

Lagrangian of PR theory for $AdS_5 \times S^5$ superstring

(Grigoriev, AT 07; related work: Mikhailov, Schafer-Nameki 07) fermionic generalization of "gWZW+ potential" theory for

$$\frac{G}{H} = \frac{Sp(2,2)}{SU(2) \times SU(2)} \times \frac{Sp(4)}{SU(2) \times SU(2)}$$

$$L = L_{gWZW}(g, A_{+}, A_{-}) + \mu^{2} STr(g^{-1}TgT) + STr(\Psi_{L}[T, D_{+}\Psi_{L}] + \Psi_{R}[T, D_{-}\Psi_{R}]) + \mu STr(g^{-1}\Psi_{L}g\Psi_{R})$$

direct sum of PR theories for AdS_5 and S^5 "glued together" by components of fermions

$$L = \widetilde{L}_{S^5}(g, A_+, A_-) + \widetilde{L}_{AdS_5}(g, A_+, A_-) + \psi_L D_+ \psi_L + \psi_R D_+ \psi_R + \mu \text{ (interaction terms)}$$

all gauge symmetries fixed; standard kin. terms (cf. GS action)

The corresponding Lax pair encoding the equations of motion

$$\mathcal{L}_{-} = \partial_{-} + A_{-} + \ell^{-1} \sqrt{\mu} g^{-1} \Psi_{L} g + \ell^{-2} \mu g^{-1} T g ,$$

$$\mathcal{L}_{+} = \partial_{+} + g^{-1} \partial_{+} g + g^{-1} A_{+} g + \ell \sqrt{\mu} \Psi_{R} + \ell^{2} \mu T .$$

use that $[T, [T, \Psi_{L,R}]] = -\Psi_{L,R}$

Comments:

- gWZW model coupled to the fermions interacting minimally and through the "Yukawa term"
- 8 real bosonic and 16 real fermionic independent variables
- 2d Lorentz invariant with Ψ_R , Ψ_L as 2d Majorana spinors
- 2d supersymmetry? yes, at the linearised level, and yes in $AdS_2 \times S^2$ case: n=2 super sine-Gordon
- μ -dependent interaction terms are equal to original GS Lagrangian; gWZW produces MC eq.: path integral derivation via change from fields to currents?
- quadratic in fermions (like susy version of gWZW); integrating out A_{\pm} gives quartic fermionic terms (reflecting curvature)
- linearisation of EOM in the gauge $A_{\pm}=0$ around g=1 describes 8+8 massive bosonic and fermionic d.o.f. with mass μ : same as in BMN limit
- symmetry of resulting relativistic S-matrix: $H = [SU(2)]^4$ same as bosonic part of magnon S-matrix symmetry $[PSU(2|2)]^2$

Example: superstring on $AdS_2 \times S^2$

Explicit parametrisation:

$$T = rac{1}{2} \left(egin{array}{cccc} i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i \end{array}
ight) \,.$$

$$g = \begin{pmatrix} \cosh \phi & \sinh \phi & 0 & 0\\ \sinh \phi & \cosh \phi & 0 & 0\\ 0 & 0 & \cos \varphi & i \sin \varphi\\ 0 & 0 & i \sin \varphi & \cos \varphi \end{pmatrix}$$

$$\Psi_{\scriptscriptstyle R} = \left(egin{array}{cccc} 0 & 0 & 0 & i \gamma \ 0 & 0 & -eta & 0 \ 0 & ieta & 0 & 0 \ \gamma & 0 & 0 & 0 \end{array}
ight) \;, \quad \Psi_{\scriptscriptstyle L} = \left(egin{array}{cccc} 0 & 0 & 0 &
ho \ 0 & 0 & -i
u & 0 \ 0 &
u & 0 & 0 \ i
ho & 0 & 0 & 0 \end{array}
ight) \;$$

PR Lagrangian: same as n=2 supersymmetric sine-Gordon!

$$\widetilde{L} = \partial_{+}\varphi\partial_{-}\varphi + \partial_{+}\phi\partial_{-}\phi + \frac{\mu^{2}}{2}(\cos 2\varphi - \cosh 2\phi)$$

$$+ \beta\partial_{-}\beta + \gamma\partial_{-}\gamma + \nu\partial_{+}\nu + \rho\partial_{+}\rho$$

$$- 2\mu \left[\cosh\phi \cos\varphi \left(\beta\nu + \gamma\rho\right) + \sinh\phi \sin\varphi \left(\beta\rho - \gamma\nu\right)\right].$$

indeed, equivalent to

$$\widetilde{L} = \partial_{+}\Phi\partial_{-}\Phi^{*} - |W'(\Phi)|^{2}$$

$$+\psi_{L}^{*}\partial_{+}\psi_{L} + \psi_{R}^{*}\partial_{-}\psi_{R} + \left[W''(\Phi)\psi_{L}\psi_{R} + W^{*}''(\Phi^{*})\psi_{L}^{*}\psi_{R}^{*}\right].$$

bosonic part is of $AdS_2 \times S^2$ bosonic reduced model if

$$W(\Phi) = \mu \cos \Phi , \qquad |W'(\Phi)|^2 = \frac{\mu^2}{2} (\cosh 2\phi - \cos 2\varphi) .$$

$$\psi_L = \nu + i\rho , \qquad \psi_R = -\beta + i\gamma ,$$

Example: superstring on $AdS_3 \times S^3$

Green-Schwarz superstring on $AdS_3 \times S^3$ supported by RR 3-form flux: coset model

$$\frac{PSU(1,1|2) \times PSU(1,1|2)}{SU(2) \times SU(1,1)}$$

superalgebra psu(1,1|2) admits a Z_4 -grading complexified algebra $\widehat{\mathfrak{f}}^{\mathbb{C}}=psl(2|2)\oplus psl(2|2)$

$$\left(egin{array}{cccc} a & lpha & 0 & 0 \ eta & b & 0 & 0 \ 0 & 0 & c & \gamma \ 0 & 0 & \delta & d \end{array}
ight)$$

a,c,b,d are 2×2 bosonic matrices from $sl(2);\alpha,\beta,\gamma,\delta$ are complex fermionic matrices.

The antiautomorphism determining the Z_4 structure

$$M^{\Omega} = -\mathbf{K}^{-1}M^T\mathbf{K}$$
, $\mathbf{K} = \begin{pmatrix} 0 & K \\ K & 0 \end{pmatrix}$, $K = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & \mathbf{1} \end{pmatrix}$,

$$\begin{pmatrix} a & \alpha & 0 & 0 \\ \beta & b & 0 & 0 \\ 0 & 0 & c & \gamma \\ 0 & 0 & \delta & d \end{pmatrix}^{\Omega} = -\begin{pmatrix} c^t & -\delta^t & 0 & 0 \\ \gamma^t & d^t & 0 & 0 \\ 0 & 0 & a^t & -\beta^t \\ 0 & 0 & \alpha^t & b^t \end{pmatrix}$$

 Z_4 components $\widehat{\mathfrak{f}}_l^{\mathbb{C}}$ are eigenspaces of Ω :

$$M^{\Omega} = i^k M$$
, $M \in \widehat{\mathfrak{f}}_k^{\mathbb{C}}$, $\widehat{\mathfrak{f}}^{\mathbb{C}} = \widehat{\mathfrak{f}}_0^{\mathbb{C}} \oplus \widehat{\mathfrak{f}}_1^{\mathbb{C}} \oplus \widehat{\mathfrak{f}}_2^{\mathbb{C}} \oplus \widehat{\mathfrak{f}}_3^{\mathbb{C}}$

 Ω induces the Z_4 decomposition of $\widehat{\mathfrak{f}} = psu(1,1|2) \oplus psu(1,1|2)$

$$\widehat{\mathfrak{f}} = \widehat{\mathfrak{f}}_0 \oplus \widehat{\mathfrak{f}}_1 \oplus \widehat{\mathfrak{f}}_2 \oplus \widehat{\mathfrak{f}}_3 , \qquad [\widehat{\mathfrak{f}}_i, \widehat{\mathfrak{f}}_j] \subset \widehat{\mathfrak{f}}_{i+j \bmod 4} .$$

GS Lagrangian: in terms of Z_4 -components of $J_{\pm} = \widehat{f}^{-1} \partial_{\pm} \widehat{f}$

$$J_{\pm} = \mathcal{A}_{\pm} + P_{\pm} + Q_{1\pm} + Q_{2\pm} \,,$$

$$\mathcal{A} \in \widehat{\mathfrak{f}}_0, \quad Q_1 \in \widehat{\mathfrak{f}}_1, \quad P \in \widehat{\mathfrak{f}}_2, \quad Q_2 \in \widehat{\mathfrak{f}}_3$$

$$L_{\text{GS}} = \text{STr}[P_{+}P_{-} + \frac{1}{2}(Q_{1+}Q_{2-} - Q_{1-}Q_{2+})],$$

conformal gauge constraints: $STr(P_+P_+) = 0$ and $STr(P_-P_-) = 0$ κ -symmetry partially fixed by the gauge condition

$$Q_{1-} = 0 \,, \qquad Q_{2+} = 0$$

explicit choice of $T \in \widehat{\mathfrak{f}}_0$

$$T = diag(t, t^T), \qquad t = \frac{i}{2} diag(1, -1, 1, -1).$$

choice of T induces decomposition

$$\widehat{\mathfrak{f}}=\widehat{\mathfrak{f}}^\perp\oplus \widehat{\mathfrak{f}}^\parallel \text{ in each } psu(1,1|2) \colon \widehat{\mathfrak{f}}=\widehat{\mathfrak{f}}^\parallel\oplus \widehat{\mathfrak{f}}^\perp, P^\parallel=-[T,[T,\cdot\,]]$$

Reduced theory is a fermionic generalization of 2 copies of

$$G/H = [SU(1,1) \times SU(2)]/[U(1) \times U(1)]$$

Reduced theory Lagrangian

$$L_{tot} = L_{gWZW}(g, A) + \mu^{2} STr(g^{-1}TgT) + \frac{1}{2} STr(\Psi_{1}[T, D_{+}\Psi_{1}] + \Psi_{2}[T, D_{-}\Psi_{2}]) + \mu STr(g^{-1}\Psi_{1}g\Psi_{2}),$$

 $g \in SU(1,1) \times SU(2), A_{\pm} \in u(1) \oplus u(1), \Psi_1, \Psi_2$ related to $()^{\parallel}$ parts of fermionic currents Q_{1+}, Q_{2-}

$$g = \begin{pmatrix} g_A & 0 \\ 0 & g_S \end{pmatrix}, \qquad \Psi_{1,2} = \begin{pmatrix} 0 & \psi_{1,2} \\ i\psi_{1,2}^{\dagger}\sigma_3 & 0 \end{pmatrix}.$$

$$g_{A} = \begin{pmatrix} e^{i\chi} \cosh \phi & \sinh \phi \\ \sinh \phi & e^{-i\chi} \cosh \phi \end{pmatrix}, \qquad g_{S} = \begin{pmatrix} e^{i\theta} \cos \varphi & \sin \varphi \\ -\sin \varphi & e^{-i\theta} \cos \varphi \end{pmatrix}$$

$$\psi_{1} = \begin{pmatrix} 0 & \lambda + i\nu \\ \rho + i\sigma & 0 \end{pmatrix}, \qquad \psi_{2} = \begin{pmatrix} 0 & \alpha + i\beta \\ \gamma + i\delta & 0 \end{pmatrix},$$

Solving for gauge fields A_{\pm}

$$L_{tot} = L_1 + L_2 + L_3 = L_B + \text{fermionic terms}$$

bosonic terms: direct sum of the CSG action and its "hyperbolic" counterpart – reduced bosonic string in $AdS_3 \times S^3$:

$$L_B = \partial_+ \varphi \partial_- \varphi + \cot^2 \varphi \, \partial_+ \theta \partial_- \theta$$
$$+ \partial_+ \phi \partial_- \phi + \coth^2 \phi \, \partial_+ \chi \partial_- \chi + \frac{\mu^2}{2} (\cos 2\varphi - \cosh 2\phi)$$

$$L_{1} = \partial_{+}\varphi\partial_{-}\varphi + \frac{1}{2}(1 + \cos 2\varphi) \,\partial_{+}\theta\partial_{-}\theta$$
$$+\partial_{+}\varphi\partial_{-}\varphi - \frac{1}{2}(1 + \cosh 2\varphi) \,\partial_{+}\chi\partial_{-}\chi + \frac{\mu^{2}}{2}(\cos 2\varphi - \cosh 2\varphi) .$$

$$L_{2} = \alpha \partial_{-} \alpha + \beta \partial_{-} \beta + \gamma \partial_{-} \gamma + \delta \partial_{-} \delta + \lambda \partial_{+} \lambda + \nu \partial_{+} \nu + \rho \partial_{+} \rho + \sigma \partial_{+} \sigma$$

$$-2\mu \Big(\sinh \phi \sin \varphi (\lambda \beta - \nu \alpha + \rho \delta - \sigma \gamma) + \cosh \phi \cos \varphi \Big[\cos (\chi + \theta) (\sigma \alpha - \rho \beta + \lambda \delta - \nu \gamma) + \sin (\chi + \theta) (\rho \alpha + \sigma \beta - \lambda \gamma - \nu \delta) \Big] \Big)$$

$$L_{3} = \frac{\left[\partial_{+}\chi\left(1 + \cosh 2\phi\right) - 2(\alpha\beta - \gamma\delta)\right]\left[\partial_{-}\chi\left(1 + \cosh 2\phi\right) + 2(\lambda\nu - \rho\sigma)\right]}{2(\cosh 2\phi - 1)} + \frac{\left[\partial_{+}\theta\left(1 + \cos 2\varphi\right) + 2(\alpha\beta - \gamma\delta)\right]\left[\partial_{-}\theta\left(1 + \cos 2\varphi\right) - 2(\lambda\nu - \rho\sigma)\right]}{2(1 - \cos 2\varphi)}.$$

identify the fermions $\alpha, \beta, \gamma, \delta$ and $\lambda, \nu, \rho, \sigma$ with 2d MW spinors – 2d supersymmetry ?

Yes for consistent truncation $\chi = \theta = 0$, $\beta = \delta = \lambda = \rho = 0 \rightarrow$ reduced Lagrangian for the $AdS_2 \times S^2$ superstring

$$\begin{split} L &= \partial_+ \varphi \partial_- \varphi + \partial_+ \phi \partial_- \phi + \frac{\mu^2}{2} (\cos 2\varphi - \cosh 2\phi) + \alpha \partial_- \alpha + \gamma \partial_- \gamma \\ &+ \nu \partial_+ \nu + \sigma \partial_+ \sigma - 2\mu \big[\cosh \phi \cos \varphi (\gamma \nu - \alpha \sigma) + \sinh \phi \sin \varphi (\gamma \sigma + \alpha \nu) \big] \end{split}$$
 equivalent to $N=2$ super SG:

$$L = \partial_{+} \Phi \partial_{-} \Phi^{*} - |W'(\Phi)|^{2} + \psi_{L}^{*} \partial_{+} \psi_{L} + \psi_{R}^{*} \partial_{-} \psi_{R}$$
$$+ \left[W''(\Phi) \psi_{L} \psi_{R} + W^{*}''(\Phi^{*}) \psi_{L}^{*} \psi_{R}^{*} \right],$$

$$\Phi = \varphi + i\phi, \ \psi_L = \nu + i\sigma, \ \psi_R = -\gamma - i\alpha, \ W = \mu \cos \Phi.$$
 CSG model and its "hyperbolic" analog each admit $N=2$ supersymmetric extensions: interpret $\xi \equiv \ln \cos \varphi + i\theta$ and $\eta \equiv \ln \cosh \phi + i\chi$ as complex scalar components of chiral superfields using that $d\varphi^2 + \cot^2 \varphi \ d\theta^2 = \frac{\partial^2 K}{\partial \xi \partial \bar{\xi}} d\xi d\bar{\xi},$
$$d\phi^2 + \coth^2 \phi \ d\chi^2 = \frac{\partial^2 K'}{\partial n \partial \bar{n}} d\eta d\bar{\eta}:$$

K and K' are then Kahler potentials and μe^{ξ} and μe^{η} as superpotentials But resulting N=2 supersymmetric Lagrangian is direct sum of two decoupled N=2 theories – not equivalent to L_{tot} (e.g., does not admit the N=2 SG truncation) 2d susy of L_{tot} remains open question...

Open questions

- Quantum equivalence of reduced theory and GS theory? Check of UV finiteness? Yes in $AdS_2 \times S^2$. In $AdS_3 \times S^3$?
- Path integral argument of equivalence?

Potential term is original action

$$\operatorname{Tr}(P_+P_-) = \mu^2 \operatorname{Tr}(Tg^{-1}Tg)$$

while gWZW should come from change of variables.

Rough idea: string in $R_t \times F/G$ coset

$$L = -(\partial t)^2 + \text{Tr}(f^{-1}df + B)^2, \quad f \in F, \ B \in \mathfrak{g}$$

string path integral in conformal+ $t = \mu \tau$ gauge:

$$\int Df DB \, \delta(T_{++} - \mu^2) \, \delta(T_{--} - \mu^2) \, e^{iI(f,B)}$$

then replace $f^{-1}df$ by C

$$\int DCDBDv \, \delta(T_{++} - \mu^2) \delta(T_{--} - \mu^2) \exp[i \int (C + B)^2 + v(dC + C \wedge C)]$$

set $(C+B)_+ = \mu T$, $(C+B)_- = \mu g^{-1}Tg$; change from C, B, v to $g \in G, A \in \mathfrak{h}$: $[\mathfrak{h}, T] = 0$

Transformation may work only in genuine quantum-conformal $(AdS_n \times S^n)$ case.

- Indication of equivalence: semiclassical expansion near analog of (S, J) rigid string in $AdS_5 \times S^5$ leads to the same characteristic frequencies same 1-loop partition function (Roiban, AT 08, to appear)
- Tree-level S-matrix for elementary excitations? Manifest $SU(2) \times SU(2) \times SU(2) \times SU(2)$ symmetry? Hidden bigger symmetry? Relation to magnon S-matrix in BA?
- better understanding the relationship between the original and the reduced system: symmetries, vacua, values of conserved charges, etc.; which observables can be related?

Conclusion

Pohlmeyer reduction seems most promising approach towards solution of $AdS_5 \times S^5$ GS superstring Uncovers remarkable connection to a fermionic (2d supersymmetric? UV finite?) integrable deformation of a gWZW model solvable by Bethe Ansatz? same BA as on gauge theory side? appears to be very likely...

Some additional remarks

Lax pair for a coset model:

found from the zero curvature condition $d\omega + \omega \wedge \omega = 0$ for Lax connection

$$\omega = d\sigma^{+}(A_{+} + \ell P_{+}) + d\sigma^{-}(A_{-} + \ell^{-1}P_{-}),$$
$$[\partial_{+} + A_{+} + \ell P_{+}, \partial_{-} + A_{-} + \ell^{-1}P_{-}] = 0,$$

 ℓ is a spectral parameter. The equations of motion follow as the coefficients of order ℓ^{-1} and ℓ terms. The coefficient of the order ℓ^0 term is the \mathfrak{g} -component of the zero curvature condition for the connection $J=\mathcal{A}+P$.

$$M(\ell) = P \exp \int_{(-\infty,t)}^{(\infty,t)} \omega(\ell)$$

conserved charges – coefficients of expansion in ℓ

Matrix superalgebras

The algebra $Mat(n|l;\Lambda)$ is that of $(n+l)\times (n+l)$ matrices over Λ whose diagonal block entries are even elements of Grassmann algebra Λ while off-diagonal block entries are odd. The supertransposition st is defined as follows:

$$\begin{pmatrix} A & X \\ Y & B \end{pmatrix}^{st} = \begin{pmatrix} A^t & -Y^t \\ X^t & B^t \end{pmatrix}, \qquad (MN)^{st} = N^{st}M^{st}.$$
$$(M^{st})^{st} = WMW, \qquad W = \operatorname{diag}(1, \dots, 1, -1, \dots, -1)$$

A real form of a complex matrix Lie (super)algebra: antilinear antiautomorphism *

$$(MN)^* = M^*N^*, \qquad (M^*)^* = M, \qquad (aM)^* = \bar{a}M^*, \ a \in \mathbb{C}$$

The real subspace of elements satisfying $M^* = -M$ is then a real Lie superalgebra.

The case of n=l, i.e. $Mat(n|n,\Lambda)$. define * on arbitrary super-

matrices according to $M^* = \Sigma^{-1} M^{\dagger} \Sigma$

$$oldsymbol{\Sigma} = \left(egin{array}{cc} \Sigma & 0 \ 0 & {f 1} \end{array}
ight) \,, \qquad \left(egin{array}{cc} A & X \ Y & B \end{array}
ight)^\dagger = \left(egin{array}{cc} A^\dagger & -iY^\dagger \ -iX^\dagger & B^\dagger \end{array}
ight) \,.$$

 $\Sigma^2=\mathbf{1}$ and $\Sigma^\dagger=\Sigma$. Note that $(MN)^\dagger=N^\dagger M^\dagger$ and $(M^\dagger)^\dagger=M$. $(M^\dagger)^{st}=W(M^{st})^\dagger W$

To define Z_4 anti-automorphism consider

$$\begin{pmatrix} A & X \\ Y & B \end{pmatrix}^{\Omega} = -\begin{pmatrix} K^{-1}A^tK & -K^{-1}Y^tK \\ K^{-1}X^tK & K^{-1}B^tK \end{pmatrix}$$

where $K^2 = \pm 1$ and $K^t = \pm K^{-1}$.

$$M^{\Omega} = -\mathbf{K}^{-1} M^{st} \mathbf{K} , \qquad \mathbf{K} = \begin{pmatrix} K & 0 \\ 0 & K \end{pmatrix} , \quad (MN)^{\Omega} = -N^{\Omega} M^{\Omega}$$

explicit form in the case of psu(2,2|4)

$$\Sigma = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \qquad K = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

 $\mathfrak{f}^{\mathbb{C}}$ admits Z_4 grading if can be decomposed

$$\mathfrak{f}^{\mathbb{C}}=\mathfrak{f}_0^{\mathbb{C}}\oplus\mathfrak{f}_1^{\mathbb{C}}\oplus\mathfrak{f}_2^{\mathbb{C}}\oplus\mathfrak{f}_3^{\mathbb{C}}$$

where $\mathfrak{f}_m^{\mathbb{C}}$ denotes the eigenspace with eigenvalue i^m

$$M^{\Omega} = i^m M$$
, $([M, N])^{\Omega} = i^{m+n} [M, N]$, $M \in \mathfrak{f}_m^{\mathbb{C}}$, $N \in \mathfrak{f}_n^{\mathbb{C}}$

 Ω is compatible with the reality condition $(M^*)^\Omega=i^mM^*$

Superalgebra psu(2, 2|4)

su(2,2|4) is spanned by 8×8 matrices M: in terms of 4×4 blocks

$$M = \left(\begin{array}{cc} A & X \\ Y & D \end{array}\right)$$

required to have vanishing supertrace str M = tr A - tr D = 0 and to satisfy the following reality condition

$$HM + M^{\dagger}H = 0 \;, \quad H = \left(\begin{array}{cc} \Sigma & 0 \\ 0 & -\mathbb{I} \end{array} \right) \;, \quad \Sigma = \left(\begin{array}{ccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right)$$

A and D span the subalgebras $\mathrm{u}(2,2)$ and $\mathrm{u}(4)$, while $Y=X^\dagger\Sigma$ $\mathrm{su}(2,2|4)$ also contains the $\mathrm{u}(1)$ generator $i\mathbb{I}$ the bosonic subalgebra of $\mathrm{su}(2,2|4)$ is $\mathrm{su}(2,2)\oplus\mathrm{su}(4)\oplus\mathrm{u}(1)$ $\mathrm{psu}(2,2|4)$ is defined as the quotient algebra of $\mathrm{su}(2,2|4)$ over this $\mathrm{u}(1)$ factor

su(2,2|4) has \mathbb{Z}_4 grading

$$M = M^{(0)} \oplus M^{(1)} \oplus M^{(2)} \oplus M^{(3)}$$

defined by the automorphism $M \to \Omega(M)$

$$\Omega(M) = \begin{pmatrix} KA^tK & -KY^tK \\ KX^tK & KD^tK \end{pmatrix},$$

$$K = \left(\begin{array}{cccc} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

 $M^{(0)}$ is the so $(4,1) \times so(5)$ subalgebra

 $M^{(2)}$ is the $AdS_5 \times S^5$ coset

 $M^{(1)}, M^{(3)}$ contain odd fermionic variables

Dirac matrices for SO(4,1) and SO(5) γ_a and Γ_a , $a=1,\ldots,5$

$$K\gamma_a^t K = -\gamma_a \,, \quad K\Gamma_a^t K = -\Gamma_a$$

span the orthogonal complements to so(4,1) and so(5)

Coset Representative (Arutyunov et al 05)

$$g = g(\theta, \eta)g(x, y)$$

g(x,y) describes an embedding of AdS into SU(2,2) × SU(4)

$$g(x,y) = \underbrace{\exp\frac{1}{2}(x_a\gamma_a)}_{g(x)} \underbrace{\exp\frac{i}{2}(y_a\Gamma_a)}_{g(y)}$$

 x_a parametrize the AdS₅ space while $y_a - S^5$ g(x,y) is 8 by 8 block-diagonal matrix: upper 4 by 4 block g(x), and lower block g(y) $g(\theta,\eta)$ incorporates the original 32 fermionic degrees of freedom

$$g(\theta, \eta) = \exp \begin{pmatrix} 0 & 0 & 0 & 0 & \eta^5 & \eta^6 & \eta^7 & \eta^8 \\ 0 & 0 & 0 & 0 & \eta^1 & \eta^2 & \eta^3 & \eta^4 \\ 0 & 0 & 0 & 0 & \theta^1 & \theta^2 & \theta^3 & \theta^4 \\ 0 & 0 & 0 & 0 & \theta^5 & \theta^6 & \theta^7 & \theta^8 \\ \eta_5 & \eta_1 & -\theta_1 & -\theta_5 & 0 & 0 & 0 & 0 \\ \eta_6 & \eta_2 & -\theta_2 & -\theta_6 & 0 & 0 & 0 & 0 \\ \eta_7 & \eta_3 & -\theta_3 & -\theta_7 & 0 & 0 & 0 & 0 \\ \eta_8 & \eta_4 & -\theta_4 & -\theta_8 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Here θ^i and η^i are 8+8 complex fermions: $\theta^{i*}=\theta_i, \eta^{i*}=\eta_i$

alternative: $g = diag(g_a, g_s)$

in terms of 6+6 embedding coordinates of AdS_5 and S^5 in $\mathbb{R}^{4,2}$ and \mathbb{R}^6

$$g_a(v) = \begin{pmatrix} 0 & -iv_5 - v_6 & v_1 - iv_4 & -iv_2 - v_3 \\ iv_5 + v_6 & 0 & -iv_2 + v_3 & v_1 + iv_4 \\ -v_1 + iv_4 & iv_2 - v_3 & 0 & iv_5 - v_6 \\ iv_2 + v_3 & -v_1 - iv_4 & -iv_5 + v_6 & 0 \end{pmatrix}$$

$$g_s(u) = \begin{pmatrix} 0 & -iu_5 - u_6 & -iu_1 - u_4 & -u_2 + iu_3 \\ iu_5 + u_6 & 0 & -u_2 - iu_3 & -iu_1 + u_4 \\ iu_1 + u_4 & u_2 + iu_3 & 0 & iu_5 - u_6 \\ u_2 - iu_3 & iu_1 - u_4 & -iu_5 + u_6 & 0 \end{pmatrix}$$

$$v_1^2 + v_2^2 + v_3^2 + v_4^2 - v_5^2 - v_6^2 = -1$$

$$u_1^2 + u_2^2 + u_3^2 + u_2^2 + u_5^2 + u_6^2 = 1$$

so $g_a(v)$ and $g_s(u)$ belong to SU(2,2) and SU(4) respectively: on (u, v) conformal and SO(6) transformations act linearly