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The long life of the confining string

1969

1974

1975

1980

1981

Nambu in his reinterpretation of the Dual Resonance Model of
Veneziano: the quarks inside nucleons are tied together by strings
(Nielsen, Susskind, Takabayashi, 1970)

Wilson puts the gauge theories on a lattice. In the strong coupling
expansion the colour flux is concentrated in a confining string.The
v.e.v. of a large Wilson loop ~ can be written as a sum of terms
associated to surfaces encircled by ~

The QCD vacuum as a dual superconductor, the strings are long
dual Abrikosov vortices ('t Hooft, Mandelstam and Parisi)

The quark confinement is seen in lattice simulations (Creutz,
Jacobs and Rebbi)

Roughening transition: The confining string fluctuates as a free

vibrating string (Luscher, Mlnster, Symanzik, Weisz..) .
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The free bosonic string

The free bosonic string
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L
The effective string picture of the Wilson loop

m The vacuum expectation value of large Wilson loops can be
represented by the functional integral over the transverse
displacements h; of the string of minimal length

wi(e) = [ T1 ohex - [azecm)
i=1

m The effective string action S = [ d2¢ £(hy) is largely unknown,
except for its asymptotic form

D-2
S — oA+ %/dzg i;(aahiaahi)

O it brings about effects which are (more than) universal, i.e.
independent of the gauge group *a9) T
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A, = minimal area of ¥ : 0¥ =~
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Universal string effects

[1 Two main consequences

] Quantum broadening of the flux tube: the mean area w? of its
cross-section grows logarithmically with the interquark distance r

w? = Zi log(r A)

ToO

[ Lischer term, in the confining, static interquark potential

T D-2
V(r)y=or —
(=ortpr=og—

[J The Luscher term is simply the Casimir, or zero point energy E, of
a string of length r with fixed ends:
normal modes: =", n=1,2,...

r b
O0E=(D-2)Y, 5 =(D-2)5¢(-1)=—-5%2
[0 the first uncontroversial observations in the 90’s

O
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L
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I
How thick are chromoelectric flux tubes?

M Liischer , G M unster and P Weisz, 1981
00 In gauge theory one may define the density P(x) of the flux tube
in the point x through a plaguette operator Py
(W(C)Px) — (W(C))(Px)
(W(C))

P(x) =

and the mean squared width as

2 _ Jh*P(x)d®x
[P(x)d3x d3x
h= distance between the plaquette and the plane of the Wilson

loop
L INFN
7
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L
flux width in the confining string picture

[1 On the string side

D-2

w?(61,62) = Y ((hi(§) — h")?)gauss

i=1

] yields logarithmic broadening with a universal slope

1
2
we = —1log(r A
5 109(r M)
r=linear size of the loop

A= shape-dependent UV scale
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w? in 3 D Z, gauge theory

M Caselle, FG, U Magnea,S Vinti 1995

2
wo
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0.0

[1 Logarithmic broadening is very
difficult to be observed current
SU(N) simulations,(so far
checked compatibility only in
SU(2) &aii 2004)

[J in 3D Z, case checked over
distance scale ~ 100

[1 Recently observed also in 3D

log (R\/;)

6 Z4 gauge theory

s

Confining strings GGl, 6/5/08 13/40



wA2 sigma

Flux tube width, F vs. FF

L
Flux broadening in3D 2.4, s Lotini, o, P Giudice 2007
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Confining strings

[ In Z4 gauge theory
there are two non-trivial
confining repr.s

{ [I both lead to logarithmic

broadening of long flux
tubes
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[J Notice that the Lischer term is visible at a scale where the width
of the flux tube is larger than its length!

[ Contrarily to earlier belief the chromoelectric flux tube cannot be
identified with the string-like degrees of freedom leading to
universal quantum effects

s
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Where are the string-like degrees of freedom?
the lesson of the gauge duals
of 3D Q-state Potts models

IN:;)
x
\ﬁagu
o 5 = = 4
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Electric-magnetic duality in a 3D lattice

O

Many lattice gauge systems in 3D have a dual description in terms
of suitable 3D spin models

Like in electric-magnetic duality, weakly coupled gauge systems
correspond to strongly coupled spin systems and vice versa

The prototype is the 3D Z, gauge model, which is dual to the Ising
model through the Kramers-Wannier tranformation:

Gauge model on a lattice A < spin system on the dual lattice A
Kgauge — % |Og tanh Kspin
A wide class of models with a dual description in terms of a spin

systems is formed by the gauge duals of the 3D Q-state Potts
models

INFN
e
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Q-state Potts models
= Spin models defined by the Hamiltonian on a cubic lattice A

H:_Zégioj7 (O':].’ZQ)
(ij)

0 Its global symmetry is the permutation group of Q elements S
0 In 3D itis dual to a gauge model with gauge symmetry S

O

The properties of the gauge theory can be read directly in the spin
(or disorder parameter) formulation
0 In these models the implementation of the confining mechanisms
(monopole condensation & center vortices percolation) is
particularly simple
)L INEN
s
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Q-state Potts models admit a remarkable representation in terms of
Fortuin Kasteleyn (FK) random clusters:

Z=>Y e =3 vPeQe

{o} GCA

[0 each link of the lattice can be

active or empty ~ 0 NN

v=efl_1, ,,,,,,,,,,,,,,,,,,,,,,

G = spanning subgraphs of A. |

0 bg = number of links of G
(active bonds -)

[0 cg number of connected
components (FK clusters).

[J the FK random cluster
representation allow to extend
the model to any continuous Q

Confining strings GGl, 6/5/08 19/40
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All these models have a phase transition corresponding to the
spontaneous breaking of the So symmetry (magnetic monopole
condensation) associated to the appearance of an infinite FK
cluster

much studied Q = 2 (Ising model) and Q = 1 (random percolation)

[The partition function of the random percolation is trivial:
Zo-1 = (1+v)N =(1—p)N N=total number of links; p=
probability of an active link ]

The dual gauge theory is non-trivial for any Q > 0

Any gauge-invariant quantity can be mapped exactly into a
suitable observable of the Q-state Potts model

" INFN
is?
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L
Example: Wilson loops

0 The Wilson operators W, are associated to arbitrary loops ~ of

the dual lattice A and their values on a graph G of active bonds
are set by the following rule

0 W,(G) = 1if no cluster of G is

topologically linked to ~; O (W,) =

0 W,(G) = 0 otherwise — WA‘éG)\,bGQcG

0 linking of W depends only on closed
paths = J
[0 The area law falloff of (W.,) requires e i ;

an infinite cluster

\ B
hence the formation of an infinite,
. : )
percolating FK cluster= magnetic L INFN

monopole condensate
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W, (G) acts as a projector on the configuration G: W,(G) =1
selects only those configurations where there is at least one

simply connected surface ¥ c A such that

[ it does not intersect any active link of G
O its boundary 0% = ~

Denoting with p the occupancy probability of an active link, the
total weight of ¥ is oc (1 — p)Area b

the most favoured G ’s with W.,(G) = 1 are associated to a ¥ C A
of minimal area with v = 0%

JJINFN
e (-
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A two-dimensional example

A single configuration withwW =1
- JJQTE

mp

Confining strings
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L
Universal shape effects in Wilson loops

[1 The IR Gaussian action gives rise to a universal multiplicative
COI‘reCtion Ambjorn, Olesen & Peterson 1984

D-2
_ —ort—pu(r+t) \ﬁ ‘
e )
. ,
n(r)=aq# [[1-a"), q=e*"
n>0
n = Dedekind eta function
- D-2
. 71— B
V(r) = = Jim log((W (r,t))) = o+ — 57— +...

[J on a lattice, much easier to see universal shape effects rather than/j

the Lischer term INFN
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L
Universal shape effects in Polyakov loop correlation
function
at flnlte T (Olesen,1985)

- { ,,,,,,,,, { ,,,,,,,,,,,,,,,, (P¢(0)P
4 L
£(0)
L=1/T
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Two different approaches to study shape effects
Use zero-momentum projection of the Polyakov loop correlators

[ POPiGx1)) =3 e

evaluate numerically the transition matrix elements v, and the
energy levels E, of the first excited string states and compare
them to the expectations of the confining string a atenodorou, B Bringottz, M

Teper 2007)

Try to fit directly the predicted shape dependence to the numerical
data in order to find the range of validity (orino group)

L INFN
S
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universal shape effects

[ A suitable quantity which is sensible to the universal shape effects
is the function

R(n, L) = exp(—n?o) Wt

[J asymptotically (large L and L — n) (Gaussian limit) R becomes
only a function f(t) of the ratio t = {!

R(,L) — f(t) = {”(')“]
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R(L,n) in 3D Z, gauge theory

M Caselle,R Fiore,FG, M Hasenbusch, P Provero (1997)

R(L,n)

N

1.15

no adjustable parameters

—F—

0.4 0.6
t=n/L

o = = = =

Confining strings GGil, 6/5/08 28/40



L
R(L,n) in 3D gauge dual to random percolation (Q=1)

FG, S Lottini, M Panero, A Rago (2005)

1.25 T T
P p=.258
1.2 L+ p=.260 _
R p=.265
1.15 1

RLMy 4 L

1.05
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Short distance behaviour of the confining string (3D)

M Caselle, M Hasenbusch & M Panero 2004
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Beyond the free string limit

Beyond the free string limit
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L
An effective action for the confining string

0 (P(0)Pf(R)) = [ Dhe~Sh
[0 The simplest choice: Nambu-Goto action:
S[h] = o Area = o [ d2¢+\/1 + 9,hi0>hi , however
» The rotational invariance is spoiled by light-cone quantisation, or
» Covariant quantisation leads to additional longitudinal oscillators
outside the critical dimension of 26
» the only degrees of freedom required by the low energy theory are
the D-2 transverse oscillators
[ A possible way-out (Polchinski & Strominger 1991). apply the
guantisation a la Polyakov, using however the induced metric
Jap = 0(1 hia’{hi
[J The resulting non-polynomial action is rather complicated, but the
first three terms in the expansion in the parameter 1/(oRL)
coincide with the ones of Nambu-Goto: orummond 2004, Hari Dass & Matlock 2006 N

0 S[h] =0 [RL+ 30,hid*h' — §(duhid*h')? + ... ] a9 F
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[J The confining string representation of the Polyakov loop
correlation function

(P(0) P?(R»T:l/L = / DheSh

is only expected to be valid to any finite order of the perturbation
expansion in the parameter 1/(cRL)

(1 Decays of highly excited states through glueball radiation are not
included in the string description

[ The Polyakov loop correlator and the corresponding string
partition function differ by non-perturbative corrections of the order
e~ ML (m= mass of the lightest glueball)

" INFN
Sas” (L
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L
Open-closed string duality
[0 The Polyakov loops can be considered as sources of closed
strings wrapping around a compact direction x; and transverse
position x; = (X2,...,Xp_2)

[0 The zero-momentum projection of the Polyakov loop correlation
function is expected do have the following spectral representation

JERGOLTE S

[J Luscher and Weisz (2004) showed that this implies

POPI00) =Y Wl2R (5 ) Kopa(EnR)
n=0

which severely constrains the functional form of the Polyakov loop
correlator [K;(x) = Bessel f] INFN
o (-
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Two-loop approximation

[J A systematic analysis of the most general effective string action
up to O[(ﬁ)s] yields Liischer & Weisz 2002
Slh] = oRL+ § [d2£0,hi0°h" + S1 + S,

0 Sy = -5 [d&[(01h)Z o + (91h)2 _g], excluded by open-closed
string duality Lischer & weisz, 2004

O S; = £ [ d2¢ [c2(9.hi0%h')2 + c3(9.hi0°n') (0%hjoshl)]

[J open-closed string duality implies Loscher & weisz, 2004
(D—2)c,+c3 =54 D=3 =S, = —;(0,h9"h")? = N-G term!

,  A2LE(r) 2-D
| <P(O) PT(R)>T 1YL= e—HnL—0olLR ( }( )e e R3 (1/R5)>
~ e—#L-o(T)LR+O(1/R?)

O 7=L/2R, E = 2E, — EZ, En(7) = Eisenstein series
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The T dependence of the string tension turns out to be

o(T) =0 — (D —2)ET2 — (D — 2)25-T* + O(T5) which agrees
with LGT inthe range T < 3T

These are the first terms of the exact N-G result oesen 1985
o(T)=04/1- (%)2 which however disagrees with LGT data
near T,

In gauge dual of random percolation one can reach very high
precision in numerical calculations

Try to evaluate the first non vanishing correction

) INFN

(o e
L
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.
o(T) in the gauge dual of random percolation

T=1/L)=0c— — L T oL
= oM =1Ly =0~ g5 ~ 75,14 Tcoas T O/L)
0.01650EEEROBRREERO S Baioad
iE
{igzd > C7o
o (EEETECEEEEEECECEEEED) ﬁgﬁggﬁ 00 C should not depend
0.014 11— on the lattice cut-off,
"""""""""" 26 29380 i.e. on the occupancy
R,,=50 probability p nor on the
4, NO kind of lattice used

oI INFN
.
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[0 check it for few different values of p and different lattices
p1 = 0.272380 (correspondingto T, = 1/6) [1 C =296 +5
p2 = 0.268459 (correspondingto T, = 1/7) [1 C =302 +4

0 another check: The adimensional ratio f(t) = "g) {t=I3e

should not depend on p nor on the kind of lattice:

0.40f . ]
T /sart(0)=1.476
0.30f . b

2
c

o(T)T
o
S
@

o L=6bond SC b)

o L=7bond SC ‘f’"mm\"
o L =8bond SC
0.10f |, L=7stesC B i
< L=3 bond BCC

000 ey 105104103 102010
(F-TT,
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Conclusions

Conclusions
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There are universal shape effects in Wilson loops and Polyakov
correlators that are well understood and accurately explained in
terms of an underlying confining bosonic string

The chromoelectric flux tube joining a quark pair cannot identified
with the confining string

In gauge duals of Q-state Potts models it is possible to recognise
stringlike degrees of freedom

U INFN
s
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