

Isospin chemical potential in holographic "QCD"

Marija Zamaklar

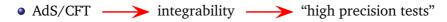
University of Durham

based on work with Ofer Aharony (Weizmann) Cobi Sonnenschein (Tel Aviv) Kasper Peeters (Utrecht)

0709.3948 and in progress

Galileo Galilei Institute, May 6th 2008

Introduction



"purest"

N = 4 a perfectgenerator of a huge # of integrable struct.

• non-AdS/non-CFT \longrightarrow (direct) applications to realistic gauge theories

- zero temperature and chemical potentials ($T = 0, \mu = 0$)
 - glueball spectraCsaki et al.• masses of hadrons (mesons)Karch & Katz...• hadron form factorsPolchinski & Strassler
- finite-temperature and μ = 0 theories (viscosity of quark-gluon plasma)

Son, Starinets, ...

Setup: (I) Pure Glue

• pure QCD — i.e. no matter \longrightarrow do not know geometry

instead, consider 4+1 dim max. susy YM compactify on circle impose anti-periodic bdy. cond. for fermions

dual to near-horizon geometry of non-extremal D4-brane, doubly Wick rotated [Witten, Sakai & Sugimoto, ...]

$$ds^{2} = \left(\frac{u}{R}\right)^{3/2} \left[\eta_{\mu\nu} dX^{\mu} dX^{\nu} + f(u) d\theta^{2}\right] + \left(\frac{R}{u}\right)^{3/2} \left[\frac{du^{2}}{f(u)} + u^{2} d\Omega_{4}\right]$$
world-volume
our 3+1 world
$$f(u) = 1 - \left(\frac{u_{\Lambda}}{u}\right)^{3}$$

$$u: radial directionbounded frombelow $u \ge u_{\Lambda}$

$$U \text{ (energy scale)}$$$$

Several remarks

Solution characterised by two parameters:

- Relation to gauge-theory parameters:
 - size of S^1 on D4 (i.e. $M_{\rm KK}$) set by R

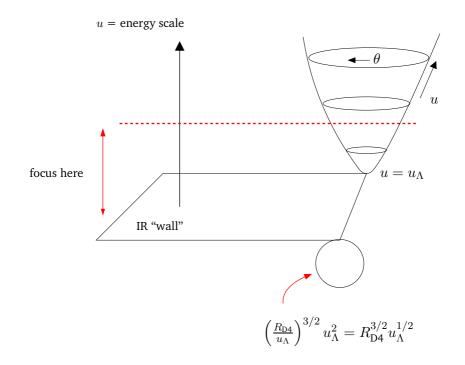
•
$$\lambda \equiv g_{\rm YM}^2 N_c = \frac{R_{D4}^3}{\alpha' R}$$

• Regime of validity:

- sugra OK if $\mathcal{R}^2 \equiv R_{D4}^3/R \gg \alpha' \longrightarrow \lambda \gg 1$ (max curvature at the wall)
- valid as long as $e^{\phi} = g_s (u/R_{D4})^{3/4} < 1$ (min coupling at the wall)
- Problem : $M_{\rm KK} \sim M_{\rm glueball} \sim M_{\rm meson} \sim M_{\Lambda} \sim 1/R \rightarrow$ cannot decouple KK modes !

non-extremality of D-brane: angle θ identified with period R to avoid conical singularity

Overview

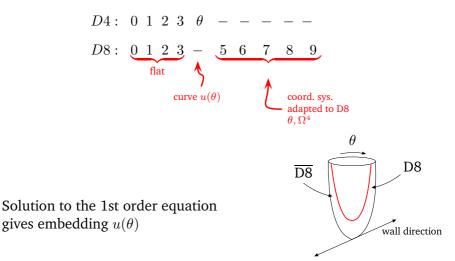


Setup : (II) Introducing matter-Sakai-Sugimoto model

• Add D8 flavour (probe) branes to D4 stack

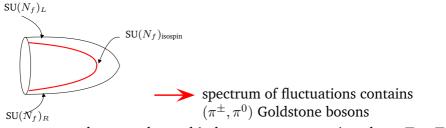
strings between flavour & colour branes in fund. rep. of flavour & colour group

• Solve for the shape of the D8

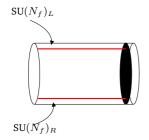


Symmetry encoded in geometry

- Asymptotically exhibits full chiral symmetry $SU(N_f)_L \times SU(N_f)_R$
- Bending of the brane encodes spontaneous symmetry breaking in gauge theory in a geometrical way



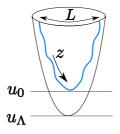
 \blacksquare Brane geometry also reproduces chiral symmetry restoration above $T>T_c$



Low spin mesons

Spectrum is known only in the limits:

Low-spin mesons: fluctuations on and of the flavour brane



• Fluctuations governed by Dirac-Born-Infeld action of the flavour brane

$$S = V_{S^4} \int d^5 x \, e^{-\phi} \sqrt{-\det\left(g_{\mu\nu} + 2\pi\alpha' F_{\mu\nu}\right)} + S_{\text{Wess-Zumino}}$$
$$= V_{S^4} \int d^4 x \, dz \, \sqrt{-g} \, F_{\mu\nu} F_{\rho\lambda} \, g^{\mu\rho} g^{\nu\lambda} + \dots$$

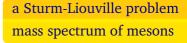
• Expand world-volume fields in modes \longrightarrow meson spectrum & action

• Decompose the gauge fields

$$F_{\mu\nu} = \sum_{n} G^{(n)}_{\mu\nu}(x) \,\psi_{(n)}(u) \,,$$
$$F_{u\mu} = \sum_{n} B^{(n)}_{\mu}(x) \,\partial_{u}\psi_{(n)}(u) \,,$$

• Fourier transform & factor out polarisation vectors,

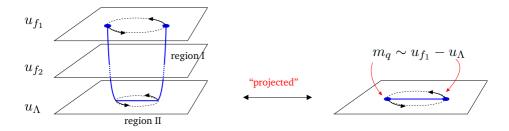
$$\int d^4k \, \tilde{B}^{(m)}_{\mu} \tilde{B}^{(n)}_{\mu} \underbrace{\left[u^{-1/2} \gamma^{1/2} (\omega^2 - \vec{k}^2) \psi_{(n)} - \partial_u \left(u^{5/2} \gamma^{-1/2} \partial_u \psi_{(n)} \right) \right]}_{= 0.$$



High spin mesons

Spectrum is known only in the limit:

 $q\bar{q}$ meson:



N.B. High spin mass $M_{\rm high} \sim \sqrt{\lambda} M_{\Lambda}$ vs. low spin mass $M_{\rm low} \sim M_{\Lambda} \sim M_{KK}$

Part II:

Turning on an *isospin* chemical potential Chiral Langrangian

Isospin vs Baryon chemical potential

- Why isospin chemical potential is easier in holographic models than baryon chemical potential:
 - large $N_c \longrightarrow$ baryons much heavier than at finite N_c mesons closer to the real-world
 - baryons complicated solitons, mesons elementary fields
 - so far only singular solitons known
 - potentially comparable with the lattice (no sign problem)

Bad feature: Artificial, no pure isospin systems exist in nature (weak decays) neutron stars

Chiral Lagrangian

• At small μ_I \longrightarrow chiral Lagrangian (with $m_q = 0$) to get a feeling what happens

$$\mathcal{L}_{\text{chiral}} = \frac{f_{\pi}^2}{4} \operatorname{Tr}(D_{\nu}UD^{\nu}U^{\dagger}), \qquad U \in \operatorname{U}(N_f).$$

$$U \equiv e^{\frac{i}{f_{\pi}}\pi_a(x)T^a}$$
 $T_a - -U(N_f)$ generators

Invariant under separate

$$U \to g_L^{-1}U, \quad U \to Ug_R$$

• The vacuum U = I preserves the vector-like $U(N_f)$ symmetry, $U \rightarrow g_L U g_R^{-1} \longrightarrow g_L = g_R.$

In U = I want to turn on a vector chemical potential $\mu_L = \mu_R$.

• Other global transformations move us around on the moduli space of vacua,

$$\mathcal{M} = \frac{U(N_f) \times U(N_f)}{U(N_f)}$$

Chiral Lagrangian and $\mu \neq 0$

As usual, chemical potentials via

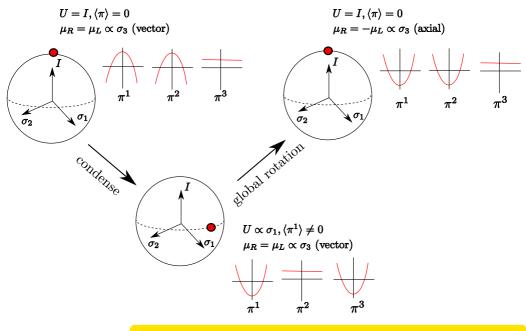
$$D_{\nu}U = \partial_{\nu}U - \frac{1}{2}\delta_{\nu,0}(\mu_{L}U - U\mu_{R}) = \partial_{\nu}U - \frac{1}{2}\delta_{\nu,0}([\mu_{V}, U] - \{\mu_{A}, U\})$$
$$(\mu_{L} = \mu_{V} - \mu_{A}, \mu_{R} = \mu_{V} + \mu_{A}).$$

$$V_{\chi} = rac{f_{\pi}^2}{4} \operatorname{Tr} \left(([\mu_V, U] - \{\mu_A, U\})([\mu_V, U^{\dagger}] + \{\mu_A, U^{\dagger}\})
ight)$$

• From V_{χ} minima: (1) $\mu_V = 0$, μ_A -any V_{χ} -const. $\rho_A \sim f_{\pi}^2 \mu_A$ (2) $\mu_A = 0$, $\mu_V = \mu_I \sigma_3/2$ $U_{\text{max}} = e^{i\alpha} (\cos(\beta)I + i\sin(\beta)\sigma_3)$ and $U_{\text{min}} = e^{i\alpha} (\cos(\beta)\sigma_1 + \sin(\beta)\sigma_2)$ in the U_{min} : $\rho_V \sim f_{\pi}^2 \mu_I$ $\rho_{A,I} = 0$.

(3)
$$\mu_V = \mu_I \sigma_3/2$$
, $\mu_A = \mu_{A,I} \sigma_3/2$:
 $\begin{cases} \mu_{A,I}^2 < \mu_V^2 & \longrightarrow & U_{\min} & \text{as in (2)} \\ \mu_{A,I}^2 > \mu_V^2 & \longrightarrow & U_{\min} & \text{opposite} \end{cases}$

Vectorial isospin potential

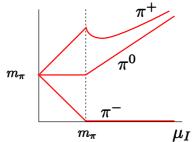


Effects of μ_V in $U = U_{\min} \Leftrightarrow$ effects of μ_A in U = I vacuum

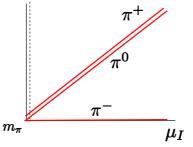
Aside: non-zero pion mass

• The chiral Lagrangian gives us the behaviour of the pions for small μ_I ,

Son, Splittorf, Stephanov



• However, Sakai-Sugimoto has $m_{\pi} = 0$, so we will at small μ_I see



Beyond Chiral Langrangian

• Chiral Langrangian, valid up to the first massive vector meson,

 $\mu_I \ll m_{
ho}$

Other operators are relevant, e.g. Skyrme term

$$\mathcal{L}_{\text{Skyrme}} = \frac{1}{32e^2} \operatorname{Tr} \left(\left[U^{-1} \partial_{\mu} U, U^{-1} \partial_{\nu} U \right]^2 \right)$$

This leads to a dispersion relation for pions

$$-\omega^2 + k^2 + \mu_I^2 - \frac{k^2 \mu_I^2}{e^2 f_\pi^2} = 0 \,.$$

This suggests massive pions eventually become unstable. But, does not explain what the ρ does.

Sakai-Sugimoto has pions and fixed couplings to other mesons.

 \rightarrow Study π 's and ρ in this model as function of μ_I .

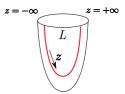
Part III:

Holographic isospin chemical potential

Beyond Chiral Langrangian $\mu_I = 0$

Cigar-shaped subspace with D8's embedded,

$$u = (1+z^2)^{1/3}$$



• No chemical potential \longrightarrow no background field, trivial $A_{\mu} = 0$ vacuum.

Meson massess from linearised DBI action around trivial vacuum.

$$A_{\mu}(x^{\mu}, z) = U^{-1}(x)\partial_{\mu}U(x)\psi_{+}(z) + \sum_{n\geq 1} B_{\mu}^{(n)}(x)\psi_{n}(z),$$

$$A_{z} = 0$$

• Can go beyond χ -perturbation theory: have χ -Langrangian interacting with infinite tower of massive modes.

Beyond Chiral Langrangian $\mu_I = 0$

Effective action we use come from the truncated string effective action

$$S = \tilde{T} \int d^4x \, du \left[u^{-1/2} \gamma^{1/2} \operatorname{Tr}(F_{\mu\nu} F^{\mu\nu}) + u^{5/2} \gamma^{-1/2} \operatorname{Tr}(F_{\mu u} F^{\mu}{}_{u}) \right] + \dots$$

where ignored DBI corrections to the YM, $((l_s^2 F)^n)$ and beyond $\mathcal{O}(l_s^3 \partial F)$

For eg., just for pion this gives

$$\begin{split} F_{z\mu} &= U^{-1}\partial_{\mu}U\,\phi_{(0)}(z) + \text{B-stuff} \\ F_{\mu\nu} &= \left[U^{-1}\partial_{\mu}U, U^{-1}\partial_{\nu}U\right]\psi_{+}(z)\big(\psi_{+}(z)-1\big) + \text{B-stuff}\,. \end{split}$$

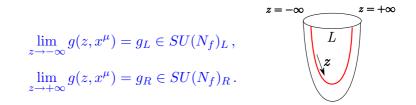
which gives chiral Lagrangian plus Skyrme term,

$$\begin{split} S &= \int \mathrm{d}^4 x \, \operatorname{Tr} \left(\frac{f_\pi^2}{4} \, (U^{-1} \partial_\mu U)^2 + \frac{1}{32e^2} \left[U^{-1} \partial_\mu U, U^{-1} \partial_\nu U \right]^2 \right) + \text{``} \pi \leftrightarrow B'' \\ f_\pi^2 &\sim \lambda N_c M_{KK}^2 \,, \quad e^2 \sim \frac{1}{\lambda N_c} \,, \end{split}$$

Sakai-Sugimoto and chiral symmetry

• In Sakai-Sugimoto, global symmetry is realised as large gauge transformation of bulk field,

$$A_{\mu} \to g A_{\mu} g^{-1} + i g \partial_{\mu} g^{-1}$$



Sakai-Sugimoto and chiral symmetry

And changes holonomy

$$U = P \exp\left(i \int_{-\infty}^{\infty} \mathrm{d}z \, A_z\right) \to g_L g_R^{-1} \,.$$

changes the pion expectation value, since

 $U = \exp\left(i\pi_a(x)\sigma^a/f_\pi\right) \,.$

- So if start with trivial vacuum $A_{\mu} = A_z = 0$, the vectorial transformation $g_L = g_R$ preserves vacuum, does not change U
- If $g_L \neq g_R$, does not preseve vacuum i.e. changes holonomy $\longrightarrow \chi$ -symmetry breaking

Turning on $\mu_I \neq 0$

• For SS model, bulk field $A_{\mu}(x, u)$

$$A_{\nu}(x,u) \to \mathbf{B}_{\nu}(x) \left(1 + \mathcal{O}(\frac{1}{u})\right) + \rho_{\nu}(x)u^{-3/2} \left(1 + \mathcal{O}(\frac{1}{u})\right).$$

here

B_μ(x) ↔ source term for gauge theory current J^ν(x) (∫ d⁴xB_μJ^ν(x))
 ρ_ν(x) ↔ vev of J^μ

To add vectorial/axial chemical potential, solve for the even/odd bulk field with b.c. :

$$A_{\mu}(x, z \to -\infty) = \mu_L \delta_{\mu,0}$$
$$A_{\mu}(x, z \to +\infty) = \mu_R \delta_{\mu,0}$$

Isotropic & homogenious solution

• First ansatz, assume that condensate is x-independent $\longrightarrow A_0(z), A_i = 0$ Isospin chemical potential background satisfies 5d YM equation (in $A_u = 0$ gauge),

$$\partial_{z} \left[(1+z^{2})\partial_{z}A_{0}^{(3)} \right] = 0 \qquad \longrightarrow \qquad \begin{cases} \mathsf{V}: \quad A_{0}^{(3)} = \mu_{V} ,\\ \mathsf{A}: \quad A_{0}^{(3)} = \mu_{A} \arctan z . \end{cases}$$

N.B Soln to YM action, neglect DBI corrections, i.e. valid for

 $\mu_I \ll \lambda/L$

Spectrum around vectorial soln (V) tachyonic

 i.e. free energy is unaffected, but fluctuations are affected!

 roll down to ⟨π⁽¹⁾⟩ ≠ 0, then rotate back to trivial vacuum

 Effectively work with axial solution (A)

 Properties of new vacuum:

 f_π unmodified, two massive and one massless pion

Instability of isotropic solution

• Soln found is unique **isotropic** soln: pions condensed.

What about ρ et al? Are there any other ground states which dominate for higher μ_l ?

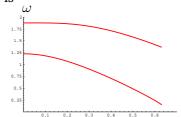
Analyse general stability of soln

• For $\mu_I \ll \lambda_5/L^2$ can still use just nonabelian YM \longrightarrow expand YM around axial solution \bar{A}_0 in U = I vacuum

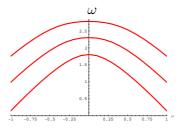
$$\begin{aligned} A_0 &= \bar{A}_0(u) + \delta A_0^{(a)}(\omega, \vec{k}, u) \,\sigma_a \, e^{i\omega t + i\vec{k}\cdot\vec{x}} \\ A_i &= \delta A_i^{(a)}(\omega, \vec{k}, u) \,\sigma_a \, e^{i\omega t + i\vec{k}\cdot\vec{x}} \,, \\ A_u &= 0 \end{aligned}$$

Transverse vectors and scalars

• The transverse vectors ($\delta A_0 = 0, \partial_i \delta A^i = 0$) develop an instability: at $\vec{k} = 0$ the dispersion relation is



 The scalars (fluations transverse to the brane) are unstable too, but only for much larger μ,



• The main question: what about the pions & longitudinal vectors ?

Pions and longitudinal vectors

- Both pions and longitudinal vectors are governed by $A_i \equiv ik_i A_T$ and A_0 .
- Equations diagonal for

$$\delta A_i^{(1)} = \pm i \delta A_i^{(2)}, \qquad \delta A_0^{(1)} = \pm i \delta A_0^{(2)}.$$

The difference is the boundary conditions

• The pion is "pure large gauge", so impose $F_{0i} = 0$,

$$A_T(z \to +\infty) = \frac{\pi}{2} + \frac{c_3}{z} + \dots$$
$$A_0(z \to +\infty) = (\omega + \pi\mu)\frac{\pi}{2} + \left(\frac{c_3 k^2}{\omega + \pi\mu} - \pi\mu\right)\frac{1}{z} + \dots$$

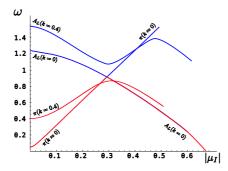
• Vectors asymptote to zero at $z \to \pm \infty$,

$$A_T(z \to +\infty) = \frac{1}{z} + \dots$$
$$A_0(z \to +\infty) = \frac{k^2}{\omega + \pi\mu} \frac{1}{z} + \dots$$

N.B $\mu_I = 0$ recover Lorentz inv. rels. ($\delta A_0 = \omega \delta A_T$ pion and $\delta A_0 = k^2 / \omega A_T$, long. vec.)

Pions and longitudinal vectors cont.

• Similarly, imposing appropriate b.c. at $z = -\infty$ fixes $\omega(\mu, k)$. So the spectrum is

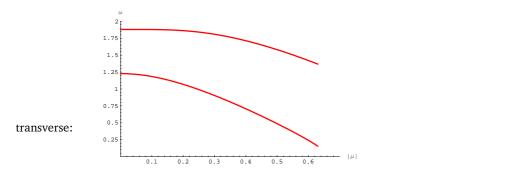


- π 's, for small μ_I mass up (as from χL)
- modes change "nature"
- no-crossing for $k \neq 0$
- k = 0 special \longrightarrow crossing of ρ and $\pi \longrightarrow \rho$ condenses

Vector instability

• The value of μ_{crit} the same as for *transverse* ρ

all components of ρ vector for k = 0 condense at $\mu_{crit} \approx 1.7 m_{\rho}$



Finding a new ground state

• What is the new ground state?

• Ansatz (inspired by linear analysis):

$$\begin{split} A_3^{(1)}(z) &= \pm i A_3^{(2)}(z) \,, \quad A_i^{(1)}(z) = A_i^{(2)}(z) = 0 \quad (i = 1, 2) \,, \\ A_\mu^{(3)} &= \delta_{\mu,0} A_0^{(3)}(z) \quad A_u = 0 \,, \end{split}$$

with b.c.

$$A_0^{(3)}(z=\pm\infty)=\pm\mu_I/2\,,\quad A_3^{(1)}(z=\pm\infty)=0$$

Solution of the nonlinear equations

$$\partial_u \left[u^{5/2} \gamma^{-1/2} \partial_u A_0^{(3)} \right] = 4 (A_3^{(1)})^2 A_0^{(3)} u^{-1/2} \gamma^{1/2} ,$$

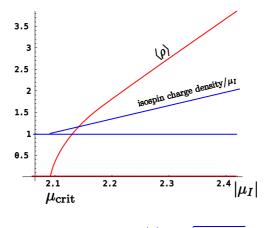
$$\partial_u \left[u^{5/2} \gamma^{-1/2} \partial_u A_3^{(1)} \right] = -4 (A_0^{(3)})^2 A_3^{(1)} u^{-1/2} \gamma^{1/2} .$$

Have two solutions

$$\begin{cases} \mu < \mu_{\text{crit}} : \quad A_3^{(1)} = 0 \quad A_0^{(3)} = \frac{\mu_I}{\pi} \arctan\left(\frac{z}{u_\Lambda}\right) \\ \mu > \mu_{\text{crit}} : \quad A_3^{(1)} \neq 0 \quad A_0^{(3)} \neq 0 \,. \end{cases}$$

The new ground state

A numerical solution yields:



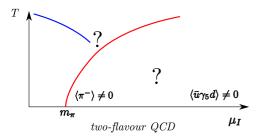
 $\mu_{\rm crit} \approx 1.7 \, m_{
ho} \,, \qquad \langle \rho \rangle \propto \sqrt{\mu - \mu_{\rm crit}} \,.$

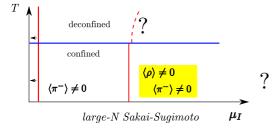
• ρ -meson condensate forms:

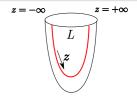
breaking rotational SO(3) → SO(2)
breaking the residual flavour U(1)

(in addition, the pion condensate remains present)

Summary and todo







- Can we include the pion mass (using tachyon) ?
- How does this depend on L (constituent quark masses)?
- Are there further instabilities at even higher μ ?
 - Corrections due to DBI and Chern-Simons ?
- Behaviour in deconfined phase, as function of temperature ?