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Three dimensional domain-walls

3D
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Three dimensional domain-walls

Topological defects and the spectrum of Dirac operator

Topological defects – regions of space with large absolute value of
topological charge density.

To uncover topology of gluonic fields one could study low-lying modes
of the Dirac operator

Dψλ(x) = λψλ(x)

Exact zero modes

n+ − n− = Qtop

χ = 〈Q2
top〉/V ∝ m2

η′ f 2
π

Near-zero modes

〈ψ̄ψ〉 = −π lim
λ→0

ρ(λ)
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Three dimensional domain-walls

Inverse Participation Ratio

Iλ = V
∑

x ρ
2
λ(x), ρλ(x) = ψ†λ(x)ψλ(x),

∑
x ρλ(x) = 1 .

IPR characterizes the inverse fraction of sites contributing to the
support of ρλ(x).

For delocalized modes ρλ(x) = 1/V and Iλ = 1.

For extremely localized modes ρλ(x) = δ(x − x0) and Iλ = V .

For mode localized on a fraction f of sites support of ρλ(x)
occupies the volume Vf = f V and Iλ = V/Vf .
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Three dimensional domain-walls

Dependence of IPR on lattice spacing

“Thick” object

Iλ →
a→0

const

“Thin” object

Iλ →
a→0

ad−4

d – dimensionality of object.
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Three dimensional domain-walls

Dependence of IPR on lattice spacing
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Fit of lattice data with Iλ = c0 + c/a4−d gives d = 3.

Low-lying modes are localized on a domain-walls,
not conventional “thick” instantons.
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Three dimensional domain-walls

Short summary on 3D defects

The volume occupied by low-lying modes of Dirac operator being
expressed in physical units tends to zero in the continuum limit of
vanishing lattice spacing (a→ 0).

Low-lying eigenmodes of Dirac operator exhibit fine-tuning:
localization occurs at the UltraViolet scale but at the same time
eigenmodes are responsible for the InfraRed physics.

It seems, the vacuum is made of infinitely thin three-dimensional
domain-walls.
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Two dimensional surfaces (P-vortices)

2D
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Two dimensional surfaces (P-vortices)

Definition of P-vortices

In SU(2) lattice Yang–Mills theory P-vortices are defined in terms of
projected fields which replace original SU(2) fields by Z2 fields:

Use the gauge freedom to fix the maximal center gauge –
maximize the squared trace of link variable:

max
Ω

F [U] =max
Ω

∑
x ,µ

(Tr Ux ,µ)2

Z2 gauge field is defined as:

Zx ,µ = sign Tr Ux ,µ

Vortices are closed surfaces constructed from plaquettes on a dual
lattice dual to negative plaquettes on original lattice.
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Two dimensional surfaces (P-vortices)

They provide nonzero string tension
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Two dimensional surfaces (P-vortices)

Scaling of P-vortices

Are vortices “physical” objects? To check this the scaling of total area
of vortices with lattice spacing were studied.
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Avort = 6ρvortV4,
V4 – lattice volume in
physical units.

ρvort ≈ 4(fm)−2.

Total area scales thus
vortices are physical.
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Two dimensional surfaces (P-vortices)

Divergent non-Abelian action of the vortex

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
a(fm)

−0.1

0.1

0.3

0.5

0.7

s
-

s vac
vo
rt

plaquettesonP−vortices

Excess of non-Abelian action density
on the vortex, svort , is independent on
the lattice spacing:

〈svort〉 ≈ 0.54 (lattice units)

Thus total non-Abelian vortex action:

〈Svort〉 ≈ 0.54Avort
a2 (physical units)

is divergent.

Two scales InfraRed and UltraViolet coexist (fine-tuned):

Svort ∝ (ΛQCDa)−2.

S. M. Morozov (ITEP) Lower dimensional defects Florence, 3rd of June 2008 13 / 36



Two dimensional surfaces (P-vortices)

Infinitely thin “strings”

To probe the internal structure of vortices the average action density
near vortex world-sheet was measured as a function of lattice spacing.
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Vortices appear as
infinitely thin objects which
populate vacuum with no
sign of any internal
structure.

At presently available
lattices the size of vortex is
Rvort ≤ 0.06 fm.
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Two dimensional surfaces (P-vortices)

Chirality and P-vortices

The next question is whether the surfaces carry chirality and explain
topological defects. Are they related to fermionic low-lying modes?

To answer this question the correlator Cλ(P) was studied:

Cλ(P) =

∑
Pi

∑
x∈Pi

(ρλ(x)− 〈ρλ(x)〉)∑
Pi

∑
x∈Pi
〈ρλ(x)〉

,

where ρλ(x) – scalar fermionic density normalized with
∑

x ρλ(x) = 1,
V is a lattice volume. {Pi} is a set of plaquettes on original lattice dual
to a set of vortex plaquettes on the dual lattice {Di}.
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Two dimensional surfaces (P-vortices)

Vortices carry chirality
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There is strong positive
correlation between intensities of
topological modes and density of
vortices nearby.
Value of correlator depends on
the eigenvalue.
Correlation is strong only for
topological fermionic modes.
Data exhibit strong lattice spacing
dependence.
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Two dimensional surfaces (P-vortices)

Short summary on 2D defects

With vortices it is possible to shed some light upon the
confinement problem.

Center vortices are infinitely thin surfaces which carry chirality and
have UltraViolet divergent non-Abelian action.

Their total area is in physical units (ΛQCD) and scales in the
continuum limit.

Thus these defects are fine-tuned: two scales coexist.
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One dimensional (monopoles)

1D
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One dimensional (monopoles)

Definition of monopoles

In SU(2) lattice Yang–Mills theory monopoles are defined in a three
stage process:

Use the gauge freedom to bring the non-Abelian fields as close to
the Abelian ones as possible, i.e. fix maximal Abelian gauge
(MAG):

min
Ω

F [A] =min
Ω

1
V

∫
V

d4x (A1
µ)2 + (A2

µ)2 .

Project the non-Abelian fields into their Abelian part by putting
A1,2
µ ≡ 0.

Monopoles are defined in each lattice cube using Gauss law for
Abelian field. They form closed trajectories.
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One dimensional (monopoles)

They also provide nonzero string tension

Non-Abelian and Abelian static po-
tentials
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QCD vacuum as a dual superconductor (dual Abelian Higgs model).
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One dimensional (monopoles)

Scaling of monopole densities
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There is always a single percolating
cluster:
lperc ∝ V , V →∞.
Density of percolating cluster scales:
ρperc ≡ 〈lperc〉

4L4a3 = 7.70(8)fm−3.
There are a lot of finite clusters:
lfin ∝ O(a)

Their density is divergent:
ρfin ∝ 1/a
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One dimensional (monopoles)

Divergent monopole action

b

Again two scales InfraRed and UltraViolet coexist (fine-tuned):

Smon ∝ lperc · S̄ ∝ (ΛQCDa)−1.
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One dimensional (monopoles)

Interplay between monopoles and vortices

Are monopoles and vortices showing similar mixture of scales
interrelated?
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Data shows that monopoles populate infinitely thin P-vortices.
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One dimensional (monopoles)

Short summary on 1D defects

It is possible to explain confinement in terms of monopoles (dual
superconductor model) and what is why they are worth to study.

Abelian monopoles carry divergent non-Abelian action.

Density of percolating monopoles scales with lattice spacing.

Monopoles are fine-tuned: IR and UV scales coexist.

Monopoles live on infinitely thin 2D surfaces.
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Fine structure of QCD confining string

Fine structure of QCD string

based on arXiv:0704.1203 [hep-lat]
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Fine structure of QCD confining string Setup and theoretical expectations

Geometrical setup

Static quark-antiquark pair separated by the distance R created at time
t = 0 and annihilated at t = T is represented by rectangular T × R

Wilson loop.

∆s = 〈s〉0 − 〈s〉W =

= 〈s〉0 − lim
T→∞

〈s(h, r)W (R,T )〉0
〈W (R,T )〉0

〈s〉0 – action density s = Tr F 2
µν vacuum ex-

pectation value
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Fine structure of QCD confining string Setup and theoretical expectations

IR/UV “mixing” in vacuum action density

Conventional prediction (OPE): s = Tr F 2
µν

〈s〉0 =
α0

a4 + γ0 Λ4
QCD [up to logarithms]

However, it had long been discussed that this pattern is more involved

〈s〉0 =
α0

a4 +
β0 Λ2

QCD

a2 + γ0 Λ4
QCD

and includes explicit IR/UV “mixing” term. As for the difference ∆s:

∆s =
β Λ2

QCD

a2 + γ Λ4
QCD .

Note, leading divergence vanishes, as expected.
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Fine structure of QCD confining string Setup and theoretical expectations

Theoretical expectations: string width

Regardless of how small the “mixing” term is, it has rather dramatic
consequences. Rigorous action sum rules∫

d3 x ∆s = V (R) (up to logarithms)

for R � Λ−1
QCD allow to estimate squared string width δ2

δ2 ∝ σ ·∆s ≈ σ · [β Λ2
QCD/a

2 + γ Λ4
QCD]−1 a→0−→ 0 [!]

Compare with effective string theory prediction:
Gaussian profile

∆s(h = 0) = C(R) exp{−r2/δ2(R)}
Infinitely long QCD string does not exist

δ2(R) =
1
πσ

ln[R/R0]
R→∞−→ ∞
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Fine structure of QCD confining string Transverse string profile

Transverse profile at h = 0
Transverse profile is Gaussian for R & 0.3fm, width increases with R.
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Fine structure of QCD confining string Transverse string profile

String width at h = 0
Squared string width δ2(R) vs. R at various spacings.
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String widening with R →∞
(probably logarithmic) is
observed.
Systematic drop of δ2 for
a . acr = 0.07 fm is
observed.
Thus flux tube rapidly shrinks
with a→ 0.
If this is caused by quadratic
divergence βΛ2
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2, which

could be estimated:

βΛ2
QCD ≈ a2

cr · γΛ4
QCD ≈ (50 MeV)2
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Fine structure of QCD confining string Direct approach

On-axis (r = 0) action density difference

Return now to large R limit of (rigorous) action sum rules

δ2 ∆s ≈ σ = const [R � Λ−1
QCD]

Measuring ∆s at the string geometrical center

(h = r = 0)

allows to confirm string shrinkage independently.
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Fine structure of QCD confining string Direct approach

Action density at the string center, R →∞
Plot of the product a2 ·∆s versus a2.
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Action density at the string geometrical center diverges quadratically in
the continuum limit. Fit gives:

βΛ2
QCD = (25(2) MeV)2
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Fine structure of QCD confining string Direct approach

Short summary on fine structure of QCD string

String widening is seen at finite UV cutoff and is compatible with
logarithmic law, however, this is a subleading effect.

Width of the confining string shrinks almost linearly and its action
density quadratically diverges in the limit a→ 0, so that the
observable heavy quark potential remains physical:

δ ∼ a
∆s ∼ a−2

}
→ δ2 ·∆s ≈ σ = const .
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Fine structure of QCD confining string Direct approach

Heavy quark potential
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There is no sign whatsoever of UV cutoff dependence.
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Conclusions

Conclusions

Topological fermionic modes live on three dimensional
domain-walls and the volume occupied by them shrinks to zero in
the continuum limit.

It seems, QCD vacuum is populated with infinitely thin 2D surfaces
(strings) with point-like particles (monopoles) living on them.

All these defects exhibit power-like dependences on the lattice
spacing and fine-tuning.
QCD confining string connecting static quarks shrinks to infinitely
thin line (δ ∝ a).

There are only pieces of theory. Could AdS/QCD help?
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Conclusions

Thanks for your attention.
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