Magnetic monopoles in high temperature QCD Nucl. Phys. B 799 (2008), 241

A. D'Alessandro^{1,2}, M. D'Elia¹

¹Università di Genova & INFN ²Speaker at the conference

GGI workshop, Florence

< 同 > < 回 > < 回 >

Outline

Magnetic monopoles in lattice QCD

2 Results

- Monopole-(anti)monopole correlation function
- Monopole density

Open problems

- The gauge dependence problem
- The Gribov ambiguity

A B > A B >

Motivation

Abelian magnetic monopoles are candidates for explaining color confinement within the dual superconducting model of the QCD vacuum (confinement is induced by the breaking of a magnetic U(1) symmetry via monopole condensation).

The magnetic component is supposed to be relevant (Chernodub & Zakharov '06, Liao & Shuryak '06 in explaining the physical properties of the Quark Gluon Plasma phase (above the transition).

It has been identified (Chernodub & Zakharov '06) with abelian magnetic monopoles "evaporating" from the condensate at $T > T_c$.

The Abelian Projection

How can we get abelian monopoles from a non abelian theory such as QCD?

- First we fix a gauge that leaves a U(1) residual symmetry: in the Maximal Abelian Gauge we maximize $F_{\text{MAG}} = \sum_{\mu,x} \text{Re} \operatorname{tr} \left[U_{\mu}(x) \sigma_3 U_{\mu}^{\dagger}(x) \sigma_3 \right]$
- Then we take the diagonal part of the links (Abelian Projection)

Possible dependence of the abelian observables on the gauge fixed prior the projection!!!

The Abelian Projection

How can we get abelian monopoles from a non abelian theory such as QCD?

• First we fix a gauge that leaves a U(1) residual symmetry: in the Maximal Abelian Gauge we maximize $F_{MAG} = \sum_{\mu,x} \operatorname{Retr} \left[U_{\mu}(x)\sigma_{3}U_{\mu}^{\dagger}(x)\sigma_{3} \right]$

• Then we take the diagonal part of the links (Abelian Projection)

Possible dependence of the abelian observables on the gauge fixed prior the projection!!!

The Abelian Projection

How can we get abelian monopoles from a non abelian theory such as QCD?

- First we fix a gauge that leaves a U(1) residual symmetry: in the Maximal Abelian Gauge we maximize $F_{\text{MAG}} = \sum_{\mu,x} \operatorname{Re} \operatorname{tr} \left[U_{\mu}(x) \sigma_{3} U_{\mu}^{\dagger}(x) \sigma_{3} \right]$
- Then we take the diagonal part of the links (Abelian Projection)

Possible dependence of the abelian observables on the gauge fixed prior the projection!!!

< ロ > < 同 > < 回 > < 回 > .

The Abelian Projection

How can we get abelian monopoles from a non abelian theory such as QCD?

- First we fix a gauge that leaves a U(1) residual symmetry: in the Maximal Abelian Gauge we maximize $F_{\text{MAG}} = \sum_{\mu,x} \operatorname{Re} \operatorname{tr} \left[U_{\mu}(x) \sigma_{3} U_{\mu}^{\dagger}(x) \sigma_{3} \right]$
- Then we take the diagonal part of the links (Abelian Projection)

Possible dependence of the abelian observables on the gauge fixed prior the projection!!!

De Grand-Toussaint

De Grand elementary cube (in 3D)

- Quantization of charge
- Closure of monopole currents: $\hat{\partial}_{\mu}m_{\mu} = 0$

On abelian projected configurations monopole currents are defined as $m_{\mu} = \frac{1}{2\pi} \varepsilon_{\mu\nu\rho\sigma} \hat{\partial}_{\nu} \overline{\theta}_{\rho\sigma}$ where $\theta_{\rho\sigma}$ is the compactified part of the abelian plaquette phase (De Grand & Toussaint '80).

The thermal monopole density

At $T < T_c$ magnetic currents are virtual; At $T > T_c$ currents and monopoles become real (magnetic

currents percolate in temporal direction).

$$\rho = \frac{\sum_{\vec{x}} |N_{wrap}(m_0(\vec{x},t))|}{V_s}$$

$$m_0(\vec{x},t) = \text{magnetic trajectory}$$
in time direction

The thermal monopole density

At $T < T_c$ magnetic currents are virtual; At $T > T_c$ currents and monopoles become real (magnetic

currents percolate in temporal direction).

$$\rho = \frac{\sum_{\vec{x}} |N_{wrap}(m_0(\vec{x},t))|}{V_s}$$

$$m_0(\vec{x},t) = \text{magnetic trajectory}$$
in time direction

The thermal monopole density

At $T < T_c$ magnetic currents are virtual;

At $T > T_c$ currents and monopoles become real (magnetic currents percolate in temporal direction).

$$\begin{array}{lll} \rho & = & \frac{\sum_{\vec{x}} \left| N_{wrap}(m_0(\vec{x},t)) \right|}{V_s} \\ m_0(\vec{x},t) & = & \text{magnetic trajectory} \\ & \text{in time direction} \end{array}$$

The thermal monopole density

At $T < T_c$ magnetic currents are virtual;

At $T > T_c$ currents and monopoles become real (magnetic currents percolate in temporal direction).

$$\begin{array}{lll} \rho & = & \frac{\sum_{\vec{x}} \left| N_{wrap}(m_0(\vec{x},t)) \right|}{V_s} \\ m_0(\vec{x},t) & = & \text{magnetic trajectory} \\ & \text{in time direction} \end{array}$$

The monopole-(anti)monopole correlation function

$$g(r) = \frac{\langle \rho(0)\rho(r) \rangle}{\langle \rho \rangle \langle \rho \rangle}$$
 (monopole-monopole)

$$g(r) = \frac{\langle \rho^+(0)\rho^-(r) \rangle}{\langle \rho^+ \rangle \langle \rho^- \rangle}$$
 (monopole-antimonopole)

A. D'Alessandro, M. D'Elia Nucl. Phys. B 799 (2008), 241 (arXiv:0711.1266)

The monopole-(anti)monopole correlation function

$$g(r) = \frac{\langle \rho(0)\rho(r) \rangle}{\langle \rho \rangle \langle \rho \rangle}$$
 (monopole-monopole)

$$g(r) = \frac{\langle \rho^+(0)\rho^-(r) \rangle}{\langle \rho^+ \rangle \langle \rho^- \rangle}$$
 (monopole-antimonopole)

A. D'Alessandro, M. D'Elia Nucl. Phys. B 799 (2008), 241 (arXiv:0711.1266)

The monopole-(anti)monopole correlation function

$$g(r) = \frac{\langle \rho(0)\rho(r) \rangle}{\langle \rho \rangle \langle \rho \rangle}$$
 (monopole-monopole)

$$g(r) = \frac{\langle \rho^+(0)\rho^-(r) \rangle}{\langle \rho^+ \rangle \langle \rho^- \rangle}$$
 (monopole-antimonopole)

A. D'Alessandro, M. D'Elia Nucl. Phys. B 799 (2008), 241 (arXiv:0711.1266)

Monopole-(anti)monopole correlation function Monopole density

Monopole-(anti)monopole correlation function I

- Fit with screened Coulomb $V(r) = \alpha_M e^{-r/\lambda}/r$, $\lambda \sim 0.2$ fm;
- Liquid-like structure!! Stronger α_M coupling at high T (Liao & Shuryak '07);
- Agreement with MD simulation of std. EM plasma (Liao &

Shurvak '07

Monopole-(anti)monopole correlation function Monopole density

Monopole-(anti)monopole correlation function I

- Fit with screened Coulomb $V(r) = \alpha_M e^{-r/\lambda}/r$, $\lambda \sim 0.2$ fm;
- Liquid-like structure!! Stronger α_M coupling at high T (Liao & Shuryak '07);
- Agreement with MD simulation of std. EM plasma (Liao &

Shurvak '07

Monopole-(anti)monopole correlation function Monopole density

Monopole-(anti)monopole correlation function I

- Fit with screened Coulomb $V(r) = \alpha_M e^{-r/\lambda}/r$, $\lambda \sim 0.2$ fm;
- Liquid-like structure!! Stronger α_M coupling at high T (Liao & Shuryak '07);
- Agreement with MD simulation of std. EM plasma (Liao & Shurvak '07)

Monopole-(anti)monopole correlation function Monopole density

Monopole-(anti)monopole correlation function II

Monopole-monopole (triangles) Vs. Monopole-antimonopole (circles) at different β 's

Monopoles repel monopoles and attract antimonopoles; The scaling is good.

Monopole-(anti)monopole correlation function Monopole density

Monopole-(anti)monopole correlation function II

Monopole-monopole (triangles) Vs. Monopole-antimonopole (circles) at different β 's

- Monopoles repel monopoles and attract antimonopoles;
- The scaling is good.

Monopole-(anti)monopole correlation function Monopole density

Monopole density

 ρ ≠ ζ(3)/π² T³ (free particles) ⇒ interactions are important!!! Nice fit with ρ ~ T³/(log(T/Λ_{eff}))^α with α ~ 2 - 3
 Good scaling (all data lay on the same physical curve).

Monopole-(anti)monopole correlation function Monopole density

Monopole density

 ρ ≠ ζ(3)/π² T³ (free particles) ⇒ interactions are important!!! Nice fit with ρ ~ T³/(log(T/Λ_{eff}))^α with α ~ 2 - 3
 Good scaling (all data lay on the same physical curve).

Monopole-(anti)monopole correlation function Monopole density

Monopole density

- $\rho \neq \frac{\zeta(3)}{\pi^2} T^3$ (free particles) \Rightarrow interactions are important!!! Nice fit with $\rho \sim T^3/(\log(T/\Lambda_{eff}))^{\alpha}$ with $\alpha \sim 2-3$
- Good scaling (all data lay on the same physical curve).

The gauge dependence problem The Gribov ambiguity

The gauge dependence problem

 In the Landau gauge, defined by maximizing
 *F*_L = Σ_{μ,x} Re tr U_μ(x) before the Abelian projection, the
 monopole density is compatible with zero.

Summary

The gauge dependence problem The Gribov ambiguity

The Gribov ambiguity

Within the same MAG gauge we start the gauge fixing iterative algorithm from a Landau gauged configuration: the density is now different and the scaling is lost. We are on a different local maximum of $F_{\rm MAG}$.

A similar behavior was observed for vortices in center dominance studies (Bornyakov et al. '96, Kovacs & Tomboulis '99, Greensite et al. '01)

Summary

- We measured the density of thermal monopoles in the deconfined phase. An interacting behavior is observed, as ρ ≈ T³ (precisely ρ ~ T³/(log(T/Λ_{eff}))^α with α ~ 2, even 3 at high T)
- We observed the monopole-(anti)monopole correlation function. A liquid-like behavior is observed.
- A very good physical scaling is observed for monopoles obtained with the standard Maximal Abelian Gauge;
- Physical properties, like contribution to QGP yet to be studied (see Chernodub et al. PosLAT07).

Summary

- We measured the density of thermal monopoles in the deconfined phase. An interacting behavior is observed, as ρ ≈ T³ (precisely ρ ~ T³/(log(T/Λ_{eff}))^α with α ~ 2, even 3 at high T)
- We observed the monopole-(anti)monopole correlation function. A liquid-like behavior is observed.
- A very good physical scaling is observed for monopoles obtained with the standard Maximal Abelian Gauge;
- Physical properties, like contribution to QGP yet to be studied (see Chernodub et al. PosLAT07).

Summary

- We measured the density of thermal monopoles in the deconfined phase. An interacting behavior is observed, as ρ ≈ T³ (precisely ρ ~ T³/(log(T/Λ_{eff}))^α with α ~ 2, even 3 at high T)
- We observed the monopole-(anti)monopole correlation function. A liquid-like behavior is observed.
- A very good physical scaling is observed for monopoles obtained with the standard Maximal Abelian Gauge;
- Physical properties, like contribution to QGP yet to be studied (see Chernodub et al. PosLAT07).

Summary

- We measured the density of thermal monopoles in the deconfined phase. An interacting behavior is observed, as ρ ≈ T³ (precisely ρ ~ T³/(log(T/Λ_{eff}))^α with α ~ 2, even 3 at high T)
- We observed the monopole-(anti)monopole correlation function. A liquid-like behavior is observed.
- A very good physical scaling is observed for monopoles obtained with the standard Maximal Abelian Gauge;
- Physical properties, like contribution to QGP yet to be studied (see Chernodub et al. PosLAT07).

・ 同 ト ・ ヨ ト ・ ヨ ト

Open problems

• A strong dependence on the gauge choice is observed.

• Even within the same gauge Gribov effects are important.

A. D'Alessandro, M. D'Elia Nucl. Phys. B 799 (2008), 241 (arXiv:0711.1266)

・ 戸 ト ・ ヨ ト ・ ヨ ト

Open problems

- A strong dependence on the gauge choice is observed.
- Even within the same gauge Gribov effects are important.

A 10