GGI, 23 May 2007

Large N & SUSY: some new ideas and results

Gabriele Veneziano (CERN & CdF)

Part I: Planar Equivalence
* Old and new large-N QCD
* Orientifold planar equivalence

Part II: Planar Quantum Mechanics
* Hamiltonian Planar QM
* An intriguing SUSY matrix model

Part I based on

A. Armoni, M. Shifman, GV, hep-th/0302163, 0307097, 0309013, 0403071, 0412203, 0701229;
 A. Armoni, G.M. Shore, GV, hep-ph/0511143

Part II based on

 J. Wosiek & GV hep-th/0512301, 0603045, 0607198, 0609210 (cond-mat);
 E. Onofri, J.Wosiek & GV math-ph/0603082

Large-N expansions in QCD Planar & quenched limit ('t Hooft, 1974) 1/N_c expansion @ fixed λ = g²N_c and N_f Leading diagrams

Corrections: $O(N_f/N_c)$ from q-loops, $O(1/N_c^2)$ from higher genus diagrams

Properties at leading order

- 1. Resonances have zero width +
- 2. U(1) problem not solved, WV @ NLO -?
- 3. Multiparticle production not allowed -

Theoretically (if not phenomenologically) appealing: should give the **tree-level** of **some** kind of string theory Proven hard to solve, except in D=2.... Planar unquenched limit

 Topological Expansion (GV '74--'76)

 1/N expansion at fixed g²N and N_f /N_c

 Leading diagrams include "empty" q-loops
 Corrections:
 O(1/N²) from non-planar diagrams

Properties

- 1. Widths are O(1)
- 2. U(1) problem solved to leading order, no reason for WV to be good +?
- 3. Multiparticle production allowed
 => Bare Pomeron & Gribov's RFT

Perhaps phenomenologically more appealing than 't Hooft's but even harder to solve...

But there is a third possibility...

Seneralize QCD to N \neq 3 (N = N_c hereafter) in other ways by playing with matter rep. The conventional way, QCD_F, is to keep the quarks in N + N* rep.

Another possibility, called for stringy reasons^{*)} QCD_{OR}, is to assign quarks to the 2-index-antisymm. rep. of SU(N) (+ its c.c.)^{**)}

As in 't Hooft's exp. (and unlike in TE), N_f is kept fixed ($N_f < 6$, or else AF lost at large N)

NB: For N = 3 this is still good old QCD!

 *) see e.g. P.Di Vecchia et al. hep-th/0407038
 **) Pioneered by Corrigan and Ramond (1979) for very different reasons Leading diagrams are planar, include "filled" gloops since there are $O(N^2)$ quarks Widths are zero, U(1) problem solved, no p.pr. Phenomenologically interesting? Don't know. Better manageable? Yes, I claim.

Numerology of QCD_F vs. QCD_{OR}

Th coeff	УМ	QCD _F	QCD _{OR}	Large-N, N _f =1
β ₀	11N/3	(11N-2N _f)/3	(11N-2(N-2)N _f) /3	3N
3β ₁	17N ²	17N²- 3N _f x (13N/6 -1/2N)	17N ² - N _f (N-2) x (5N + 3(N-2)(N+1)/N)	9N²
Ŷο	×	3(N²-1)/2N	3(N-2)(N+1)/N	3N

 QCD_{OR} as an interpolating theory: Coincides with pure YM (AS fermions decouple) @ N=2 Coincides with QCD @ N=3 ... and at large N?

ASV claim of Planar Equivalence

- At large-N a bosonic sector of QCD_{OR} is equivalent to a corresponding sector of QCD_{Adj} i.e. of QCD with N_f Majorana fermions in the adjoint representation If true, important corollary:
- For $N_f = 1$ and m = 0, QCD_{OR} is planar-equivalent to supersymmetric Yang-Mills (SYM) theory
- Some properties of the latter should show up in oneflavour QCD ... if N=3 is large enough
- NB: Expected accuracy 1/N
- ASV gave both perturbative and NP arguments

Sketch of non-perturbative argument (ASV '04, A. Patella, '05)

- Integrate out fermions (after having included masses, bilinear sources)
- Express Trlog(Ø+m+J) in terms of Wilson-loops using world-line formulation
- > Use large-N to write adjoint and AS Wilson loop as products of fundamental and/or antifundamental Wilson loops (e.g. $W_{adj} = W_F \times W_{F^*} + O(1/N^2)$)
- Use symmetry relations between F and F* Wilson loops and their connected correlators

An example: $\langle W^{(1)} W^{(2)} \rangle_{conn}$

Key ingredient is C!

Clear from our NP proof that C-invariance is necessary.
 Kovtun, Unsal and Yaffe have argued that it is also sufficient
 U&Y (see also Barbon & Hoyos) have also shown that C is spontaneously broken if the theory is put on R³×S¹ w/ small enough S¹. PE doesn't (was never claimed to) hold in that case
 Numerical calculations (De Grand and Hoffmann) have confirmed this, but also shown that, as expected on some general grounds (see e.g. ASV), C is restored for large radii and in particular on R⁴
 Lucini, Patella & Pica have shown (analyt.lly & numer.lly)

Lucini, Patella & Pica nave snown (analytilly & numerilly) that SB of C is also related to a non-vanishing Lorentzbreaking F#-current generated at small R but disappearing as well as R is increased

Overwhelming evidence for PE on R⁴?

An interesting proposal

Kovtun, Unsal and Yaffe ('07) have also made the claim that QCD_{adj} , unlike QCD_F and QCD_{OR} , suffers no phase transition as a volume-reducing process a la Eguchi-Kawai is performed at large-N

If this is indeed the case, we could get properties of QCD_{adj} at small volume by numerical methods and use them at large volume where the connection to QCD_{OR} can be established (C being OK there)

Finally, one would make semi-quantitative predictions for QCD itself (at different values of N_f) by extrapolating down to N=3

For the moment, we shall try to use instead the connection with a SUSY theory

SUSY relics in one-flavour QCD
Approximate bosonic parity doublets: m_S = m_P = m_F in SYM => m_S~ m_P in QCD^{*}) Looks ~ OK if can we make use of:

i) WV for m_P (m_P ~ √2(180)²/95 MeV ~ 480 MeV),
ii) Experiments for m_S (σ @ 600MeV including quark masses)

Recent lattice work by Keith-Hynes & Thacker also

Recent lattice work by Keith-Hynes & Thacker also support this approximate degeneracy

*) Composite-**fermions NOT related**.

Interesting aspects of baryons in QCD_{OR} have been discussed by S. Bolognesi (hep-th/0605065) and by A. Cherman and T. D. Cohen (hep-th/0607028)

2 Approximate absence of "activity" in certain chiral correlators
In SYM, a well-known WI gives $\langle \lambda\lambda(x)\lambda\lambda(y) \rangle = const., \langle \lambda\lambda(x)\bar{\lambda}\bar{\lambda}(y) \rangle \neq const.$

PE then implies that, in the large-N limit:

 $\langle \bar{\psi}_R \psi_L(x) \bar{\psi}_R \psi_L(y) \rangle = const., \langle \bar{\psi}_R \psi_L(x) \bar{\psi}_L \psi_R(y) \rangle \neq const.$

Of course the constancy of the former is due to an exact cancellation between intermediate scalar and pseudoscalar states.

The quark condensate in N_f=1 QCD
Using
$$\langle \bar{\lambda} \lambda \rangle_{\mu} = -\frac{9}{2\pi^2} \mu^3 \lambda_{\mu}^{-2} exp\left(-\frac{1}{\lambda_{\mu}}\right)$$
 $\lambda_{\mu} = \alpha_s(\mu)N/2\pi$
and vanishing of quark cond. at N=2, we get
 $\langle \bar{\Psi} \Psi \rangle_{\mu} = -\frac{3}{2\pi^2} \mu^3 \lambda_{\mu}^{-1578/961} exp\left(-\frac{27}{31\lambda_{\mu}}\right) k(1/3)$
which can be rewritten as 1±0.3?
 $< (g^2)^{12/31} \bar{\Psi} \Psi > = -1.1k(1/3) \Lambda_{st}^3$
 $\Lambda_{st} = \mu exp\left[-\frac{N}{\beta_0 \lambda_{\mu}}\right] \left(\frac{2N}{\beta_0 \lambda_{\mu}}\right)^{\beta_1/\beta_0^2}$

N_f=1 condensate "measured"? DeGrand, Hoffmann , Schaefer & Liu, hep-th/0605147 (using dynamical overlap fermions and distribution of low-lying eigenmodes)

Extension to N_f >1 (Armoni, G. Shore and GV, '05)

- \succ Take OR theory and add to it n_f flavours in N+N* .
- > At N=2 it's n_f -QCD, @ N=3 it's N_f (= n_f +1)-QCD.
- At large N cannot be distinguished from OR (fits SYM β-functions even better at n_f =2: e.g. same β₀)
- > Vacuum manifold, NG bosons etc. are different!
- Some correlators should still coincide in large-N limit. In above paper it was argued how to do it for the quark condensate

Conclusions part I

The orientifold large-N expansion is arguably the first example of large-N considerations leading to quantitative analytic predictions in D=4, strongly coupled, non-supersymmetric gauge theories
 Since its proposal, progress has been made on

Tightening the NP proof of PE
 Providing numerical checks (more is coming!)

but more work is still needed for:

Estimating the size of 1/N corrections
 Extending the equivalence in other directions

II. Planar quantum mechanics: an intriguing SUSY matrix model

- Original motivation: check planar equivalence and compute its accuracy at finite N in a simple QM case: not done yet!
- On the way, J. Wosiek and I stumbled on an amusing model with unexpected properties and possible implications for HE and CM physics as well as for Maths.
- New motivation: following KUY's suggestion, such QM excercises, once suitably extended, may become relevant for QCD itself!

- > Consider the large-N limit of a U(N) matrix theory
- With some qualifications relevant singlet states are given by single-trace operators
- In SUSY-QM with a single bosonic matrix a and a single fermionic matrix f planar Hilbert space spanned by

$$|\{n_i,m_j\}\rangle \propto Tr[a^{n_1}f^{m_1}\dots a^{n_k}f^{m_k}]^{\dagger}|0\rangle$$

where |0> is the usual empty Fock vacuum

Hamiltonians are taken to be single-trace normal-ord. operators, a trace with n factors being multiplied by g^{n-2} . With some qualifications, the Hamiltonian acting on a single-trace state gives, to leading order, a combination of single-trace states w/coefficients that depend only on 't Hooft's $\lambda = g^2 N$

Take the SUSY charges to be simply:

$$Q = Tr\left(f(a^{\dagger} + ga^{\dagger 2})\right), Q^2 = 0$$

$$H = \{Q^{\dagger}, Q\}, C = [Q^{\dagger}, Q], C^2 = H^2, F = Tr(f^{\dagger}f)$$

$$H = H_B + H_F \qquad H_B = Tr[a^{\dagger}a + ga^{\dagger}(a + a^{\dagger})a) + g^2 a^{2\dagger}a^2]$$

 $H_F = Tr[f^{\dagger}f + g(f^{\dagger}f(a + a^{\dagger}) + f^{\dagger}(a + a^{\dagger})f) + g^2(f^{\dagger}afa^{\dagger} + f^{\dagger}aa^{\dagger}f + f^{\dagger}fa^{\dagger}a + f^{\dagger}a^{\dagger}fa)]$

Trivial E=0 vacuum: |0> => SUSY is unbroken E > 0 states must be organized in SUSY doublets w/ same C_F = (-1)^FC

•Dependence on λ highly non-trivial

 $H = H_B + H_F \qquad H_B = Tr[a^{\dagger}a + ga^{\dagger}(a + a^{\dagger})a) + g^2 a^{2\dagger}a^2]$ $H_F = Tr[f^{\dagger}f + g(f^{\dagger}f(a+a^{\dagger}) + f^{\dagger}(a+a^{\dagger})f) + g^2(f^{\dagger}afa^{\dagger} + f^{\dagger}aa^{\dagger}f + f^{\dagger}fa^{\dagger}a + f^{\dagger}a^{\dagger}fa)]$ Two extreme limits **1** $\lambda \rightarrow 0$: the theory becomes free $Q = Tr(f(a^{\dagger} + ga^{\dagger 2})) \rightarrow Tr(fa^{\dagger}) \qquad H \rightarrow Tr(a^{\dagger}a + f^{\dagger}f)$ ⊗ λ → ∞ : H (better: H/λ) simplifies again $Q = \rightarrow g Tr(fa^{\dagger 2})$ $H_B \rightarrow g^2 Tr[a^{\dagger 2}a^2]$ $H_F \rightarrow g^2 Tr[(f^{\dagger}afa^{\dagger} + f^{\dagger}a^{\dagger}fa) + Nf^{\dagger}f]$ H conserves B & F separately => block-diagonal

Qs: How does SUSY act in the two limits? How is it implemented? And what happens at generic λ ?

- At λ << 1 it is trivial to solve for the spectrum: yet, this has non-trivial implications on the combinatorics of binary necklaces
- As λ => ∞ mathematical results on the combinatorics of binary necklaces have implications on the spectrum of the model and on how SUSY is realized

Emerging picture

- At $\lambda \ll 1$ there is perfect matching of bosonic and fermionic states with the single exception of the bosonic Fock vacuum: W($\lambda \ll 1$) = 1
- As $\lambda \Rightarrow \infty$ many other bosonic states can't find a fermionic partner => they must all have E=0!
- Necessarily, W must jump between $\lambda = 0$ and $\lambda = \infty$! Since unpaired states occur at any even F, we can look for this jump numerically in low-F sectors (this is actually how we found the phenomenon in the first place!)
- Cutoff (in n), needed for numerical studies, breaks SUSY, but SUSY is recovered fast (at generic λ) as cutoff is increased

Results in F = 0, 1, 2, 3 sectors

- There is a phase transition at $\lambda = 1$: the weakcoupling energy gap disappears at $\lambda = 1$ for all F
- The spectrum becomes discrete again for $\lambda > 1$; In the F=0,1 sectors the eigenvalues at λ are related to those at $1/\lambda$ by a strong-weak duality formula:

$$E(1/\lambda) + 1 = \lambda^{-2} \left(E(\lambda) + 1 \right)$$

• For F=0,1 the spectrum can be computed analytically in terms of the zeroes of an $_1F_2$ function. Duality and phase transition can be studied analytically

- At $\lambda > 1$ a second F=0, E=0 bosonic state pops up making Witten's index jump by one unit (within the F=0, 1 sectors).
- First found numerically. The analytic form of the 2^{nd} ground state can be formally given at all λ but is only normalizable for $\lambda > 1$
- In the F=2 sector two more E=0 states pop up at $\lambda > 1$: Witten index jumps by two more units
- For finite cutoff (=> SUSY expl.ly broken) supermultiplets rearrange around λ = 1 by a sort of "partner swapping" mechanism. At infinite cutoff, these new "couples" emerge already "remarried" from an infinitely degenerate state

F=0

3.5

3 2.5

2

1.5

1 0.5

0

0.6

ууу

ttt

F=2,3

0.8

1.2

1.4

Connection with Binary Necklaces (BNL) (E.Onofri, J.Wosiek & GV,math-ph/0603082)

- Having constructed, counted, and paired the states in SUSY doublets, we searched for something similar known in maths.
- Naturally, we looked for a possible connection with binary necklaces, necklaces with two kinds of beads, zeros and ones (or bosons and fermions)
- Their number (see the on-line encyclopedia of integer sequences):
- > A000031(n) = Number of n-bead necklaces with 2 colours when turning over is not allowed (cyclic and anticyclic are distinct) is given by Mac Mahon's formula (see below).

But there was a problem:

- The number of binary necklaces w/ even and odd # of fermions is, in general, different! Example (n=2) (aa), (ff), (af) = (fa) => 2 bosons, 1 fermion, .. and indeed the numbers did not match..
- > Q: How can supersymmetry work if $n_B \neq n_F$?
- A: Pauli's exclusion principle kills some BNL giving back the balance between bosons and fermions N(n) = N_{PAN}(n) (PAN = Pauli-allowed necklaces)

Binary Necklaces, Pauli Necklaces n= B+F

 $\phi(d)$ is Euler's "totient" function counting the number of prime numbers (s d) relative to d

If B and F are not both even we have a more detailed counting:

$$N_{BNL}(B,F) = N_{PAN}(B,F) = \sum_{d/F,B} \frac{\phi(d)}{(B+F)} \binom{(B+F)/d}{B/d}$$

giving back the previous formula for B+F odd if one sums over B at fixed n=B+F.

When B & F are even we have proven a simple formula for PFN $N_{PFN}(B,F) = N_{BNL}(B/2^k, F/2^k) = N_{PAN}(B/2^k, F/2^k)$ (see table) where k is the unique +ve integer (if it exists) for which $F/2^{k}$ is odd and $B/2^{k}$ is integer (otherwise n_{PFN} is zero). $N_{PAN}(B,F) = N_{BNL}(B,F) - N_{BNL}(B/2^k,F/2^k)$ $N_{BNL}(B,F) = N_{PAN}(B,F) + N_{PAN}(B/2^k,F/2^k)$

N_{PFN} fluctuates a lot!

[F	\rightarrow
Ì	$B\downarrow$	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
ſ	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
[2	0	1	0	1	0	1	0	1	- 0	1	- 0	1	- 0	1	0	1	- 0	1	0	1	0
[4	0	1	1	2	0	- 3	1	4	- 0	5	1	6	- 0	7	1	8	- 0	9	1	10	0
[6	0	1	0	4	0	7	- 0	12	- 0	19	- 0	26	- 0	35	0	46	- 0	57	- 0	70	- 0
[8	0	1	1	5	1	14	2	- 30	- 0	55	- 3	91	1	140	4	204	0	285	5	385	1
- [10	0	1	0	- 7	0	26	- 0	66	- 0	143	- 0	273	- 0	476	0	776	- 0	1197	0	1771	- 0
[12	0	1	1	10	0	42	4	132	- 0	335	7	728	- 0	1428	12	2586	- 0	4389	19	7084	- 0
[14	0	1	0	12	0	66	- 0	246	- 0	715	- 0	1768	- 0	3876	- 0	7752	- 0	14421	0	25300	- 0
- [16	0	1	1	15	1	- 99	5	429	1	1430	14	3978	2	9690	- 30	21318	0	43263	55	82225	- 3
[18	0	1	0	19	0	143	- 0	715	- 0	2704	- 0	8398	- 0	22610	0	54484	0	120175	- 0	246675	- 0
. [20	0	1	1	22	0	201	7	1144	- 0	4862	26	16796	- 0	49742	66	130752	- 0	312455	143	690690	- 0
- [22	0	1	0	26	0	273	0	1768	- 0	8398	0	32066	- 0	104006	0	297160	0	766935	0	1820910	0
	24	0	1	1	31	1	364	10	2652	- 0	14000	42	58786	4	208012	132	643856	0	1789515	335	4552275	7
	26	0	1	0	35	0	476	- 0	3876	- 0	22610	- 0	104006	- 0	400024	0	1337220	- 0	3991995	- 0	10855425	0
	28	0	1	1	40	0	612	12	5538	- 0	35530	66	178296	- 0	-742900	246	2674440	0	8554275	715	24812400	0
	30	0	1	0	46	0	776	- 0	7752	- 0	54484	- 0	297160	- 0	1337220	0	5170604	0	17678835	0	54587280	0
	32	0	1	1	51	1	969	15	10659	1	81719	99	482885	5	2340135	429	9694845	1	35357670	1430	115997970	14
	34	0	1	0	57	0	1197	0	14421	- 0	120175	0	766935	- 0	3991995	0	17678835	0	68635478	0	238819350	0
[36	0	1	1	64	0	1463	19	19228	- 0	173593	143	1193010	- 0	6653325	715	31429068	- 0	129644790	2704	477638700	- 0
	38	0	1	0	70	0	1771	0	25300	- 0	246675	- 0	1820910	- 0	10855425	0	54587280	0	238819350	0	930138522	0
	40	0	1	1	77	1	2126	22	32890	- 0	345345	201	2731365	- 7	17368680	1144	92798380	0	429874830	4862	1767263190	26

TABLE 1. N_{PFN} , the number of Pauli forbidden necklaces (entries with odd F and/or odd B vanish identically) .

A formula for the PAN generating function (OVW(DZ) see also Bianchi, Morales & Samtleben)

$$\Phi_{PAN}(x,y;n) \equiv \sum_{F} N_{PAN}(n-F,F) \, x^{n-F} y^{F} = \frac{1}{n} \sum_{d/n} \phi(d) \left(x^{d} - (-y)^{d} \right)^{n/d}$$

leads immediately to formulae for Witten-like indices

$$W(n;m) \equiv \sum_{\substack{B+F=n\\F \le m}} (-1)^{F-m} N_{PAN}(B,F) \ge 0 , \ W(n;n) = 0$$

$$\tilde{W}(n;n) = \sum_{F} (-1)^{F} N_{PAN}(n-2F,F) = \delta_{n=1(mod6)} + \delta_{n=-1(mod6)}$$

			e	ig	e	ns	ta	te	in	an	d o	nly	in e	each	ι (B	,F)	bloc	k w	ith	B-	F =	: 1		
			$B \downarrow$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		-	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
F=0			1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1 -0			2	X	1		2		3	3	4	5	5	5	6	7	7	7	8	9	9	9	10	11
		/	*	1	1	2	- 4	5	7	10	12	15	19	22	26	31	35	-40	46	51	57	64	70	77
	r_ź	5-	4	1	1	2	5	9	14	20	30	43	55	70	91	115	140	168	204	245	285	330	385	445
	r=4	2	5	1	1	3	7	14	26	42	66	99	143	201	273	36-4	476	612	776	969	1197	1463	1771	2126
			6	1	1	3	10	22	42	7.0	132	217	335	497	728	1038	1428	1932	2586	3399	4389	5601	7084	8866
			7	1	1	4	12	- 30	66	132	246	429	715	1144	1768	2652	3876	5538	7752	10659	14421	19228	25300	
			8	1	1	4	15	42	99	212	429	809	1430	2424	3978	6308	9690	14520	21318	30667	43263	60060		
			9	1	1	5	19	55	143	335	715	1430	2704	4862	8398	14000	22610	35530	54484	81719	120175			
			10	1	1	5	22	73	201	497	1144	2438	4862	0.0.00	16796		49742	81686	130752	204347				
			11	1	1	6	26	91	273	728	1768	3978	8398	16796	32066	5878	104006	178296	297160					
			12	1	1	6	31	115	364	1028	2652	6310	14000	29372	58786	202012	208012			-74	2900			
		-	13	1	1	7	35	140	476	14:28	38/6	14550	22610	49742	178:206	208012	406024				->00			
			15	1	1		40	204	776	1952	7759	91218	535530	12075.2	207160	371.00								
			16	1	1	8	51	204	969	3384	10659	30666	81719	204248	231100		10	$\overline{}$						
			17	1	1	9	57	285	1197	4389	14421	43263	120175	201210		2080	12							
			18	1	1	9	64	335	1463	5601	19228	60115												
			19	1	1	10	70	385	1771	7084	25,300													
			20	1	1	10	77	1,	136	2355	, 14,	42,	132	42 9	, 14	30, 4	862,	167	96, 5	5878	6,			
			21	1	1	11	85	506	2530	// /		. ,		ĺ	"	/					1			
			22	1	1	11	92	578								<u> </u>		1.						
			23	1	1	12	100					DIO	CK	size	S =	Cat	alar	is r	um	pers	S)			
			24	1	1	12																		
			25	1	1																			
			26	1																				
				-																				

Conjecture: as $\lambda \rightarrow \infty$ there is one and only one E=0 bosonic eigenstate in and only in each (B,F) block with |B-F| = 1

TABLE 1. $N_{\text{PAN}}(B, F)$ as generated with the sieve method.

Connections with statistical mechanics (J.Wosiek & GV hep-th/0609210)

1. XXZ spin chain
$$H_{XXZ}^{(\Delta)} = -\frac{1}{2} \sum_{i=1}^{n} \left(\sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \Delta \sigma_{i}^{z} \sigma_{i+1}^{z} \right)$$

With a cyclic symmetry: n+1 coincides with 1

We have proven the following equivalence between the XXZ chain at asymmetry parameter Δ and our (rescaled) SUSY QM at $\lambda = \infty$ (H_{SC}) If F is odd: $H_{SC} \Leftrightarrow -H_{XXZ}^{(+1/2)} + \frac{3}{4}n$ n = B + FIf F is even and B is odd (includes magic stairway): $H_{SC} \Leftrightarrow H_{XXZ}^{(-1/2)} + \frac{3}{4}n$ NB: SC SUSY connects these two cases for odd B

Non-trivial consequences of SUSY for XXZ

> We reinterpret the ground state of XXZ model at $\Delta = -1/2$ as the E=O state of a SUSY theory: will this help proving (some of) the RS conjectures?

A. V. Razumov & Y. G. Stroganov, cond-mat/0012141 One conjecture: ratio of largest to smallest component of ground-state eigenvector = number of alternating sign matrices. If n=2m+1: For m=8 this number is 10,850,216. Math. gave this to 0.1 acc.(1430² mx)

> SUSY relates in a non-trivial way XXZ spectra at different asymmetry parameter and number of sites: spectrum for $\Delta = +1/2$ contained in that of $\Delta = -1/2$ and vice versa (probably unnoticed so far)

			e	ig	e	ns	ta	te	in	an	do	nly	in e	each	1 (B	,F)	bloc	k w	ith	B-	F =	: 1		
			$B \downarrow$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		-	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
F=0			1	1	Ť,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1 -0			2	X	1		2	- 2	3	3	4	5	5	5	6	7	7	7	8	9	9	9	10	11
		/	*	1	1	2	- 4	5	7	10	12	15	19	22	26	31	35	-40	46	51	57	64	70	77
	E_2	5-	4	1	1	2	5	9	14	20	30	43	55	70	91	115	140	168	204	245	285	330	385	445
	r=2		5	1	1	3	7	14	26	42	66	99	143	201	273	36-4	476	612	776	969	1197	1463	1771	2126
			6	1	1	3	10	22	42	70	132	217	335	497	728	1038	1428	1932	2586	3399	4389	5601	7084	8866
			7	1	1	4	12	- 30	66	132	246	429	715	1144	1768	2652	3876	5538	7752	10659	14421	19228	25300	
			8	1	1	4	15	42	99	212	429	809	1430	2424	3978	6308	9690	14520	21318	30667	43263	60060		
			9	1	1	5	19	55	143	335	715	1430	2704	4862	8398	14000	22610	35530	54484	81719	120175			
			10	1	1	5	22	73	201	497	114	2438	4862	1,0750	16796	20.41.4	49742	81686	130752	204347				
			10	1	1	6	26	91	273	728	1768	3978	8398	16796	32066	5878	104006	178296	297160					
		_	12	1	1	5	31	40	304	1028	2652	0.510	22610	29372	104006	208812	208012			-74	2906			
			14	1	1	7	40	172	612	19.32	5538	14550	35530	81686	178296	205012	400024				_> • • •			
			15	1	1	8	46	204	776	2586	7752	21318	54484	130552	297160	011-00								
			16	1	1	8	51	244	969	3384	10659	30666	81719	204248										
			17	1	1	9	57	285	1197	4389	14421	43263	120175			2080	12							
			18	1	1	9	64	335	1463	5601	19228	60115			\mathbf{i}									
			19	1	1	10	70	385	1771	7084	25300										-			
			20	1	1	10	77	1,	1,962	4, 5,	, 14,	42,	132	,429	, 14	50, 4	862,	167	96, 5	5878	6,			
			21	1	1	11	-85	506	2530															
			22	1	1	11	92	578																
			23	1	1	12	100																	
			24	1	1	12																		
			25	1	1																			
			26	1																				

Conjecture: as $\lambda \rightarrow \infty$ there is one and only one E=0 bosonic eigenstate in and only in each (B,F) block with |B-F| = 1

TABLE 1. $N_{\text{PAN}}(B, F)$ as generated with the sieve method.

Conclusions, Part II

- SUSY has implications about non-trivial combinatorial problems
- Combinatorial methods have non-trivial implications on the dynamics of SUSY models
- Extending the approach to (semi) realistic QFTs w/ or w/out SUSY remains the main physics goal of this (otherwise just amusing mathematical) game. Work in progress in D=2. However:
- > Interesting connections to stat. mech. models have already emerged at infinite λ (Cf. AdS/CFT!)