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Typical shock (or bore) in fluid mechanics:

- eg flow flips from supersonic to subsonic,

- eg abrupt change of depth in a channel.

• Velocity field changes rapidly over a small distance,
• Model by a discontinuity in v(x, t),
• Nevertheless, there are conserved quantities - mass,

momentum, for example.

• Are shocks allowed in integrable QFT?
• If yes, what are their properties?
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Consider the x-axis with a shock located at x0

. . . • . . .

u(x , t) x0 v(x , t)

How to sew the two fields together at x0?

Expect, in a Lagrangian description,

L(u, v) = θ(x0 − x)L(u) + θ(x − x0)L(v) + δ(x − x0)B(u, v),

where B(u, v) could depend on u, v , ut , vt , . . . .



Consider the x-axis with a shock located at x0

. . . • . . .

u(x , t) x0 v(x , t)

How to sew the two fields together at x0?

Expect, in a Lagrangian description,

L(u, v) = θ(x0 − x)L(u) + θ(x − x0)L(v) + δ(x − x0)B(u, v),

where B(u, v) could depend on u, v , ut , vt , . . . .



Consider the x-axis with a shock located at x0

. . . • . . .

u(x , t) x0 v(x , t)

How to sew the two fields together at x0?

Expect, in a Lagrangian description,

L(u, v) = θ(x0 − x)L(u) + θ(x − x0)L(v) + δ(x − x0)B(u, v),

where B(u, v) could depend on u, v , ut , vt , . . . .



Consider the x-axis with a shock located at x0

. . . • . . .

u(x , t) x0 v(x , t)

How to sew the two fields together at x0?

Expect, in a Lagrangian description,

L(u, v) = θ(x0 − x)L(u) + θ(x − x0)L(v) + δ(x − x0)B(u, v),

where B(u, v) could depend on u, v , ut , vt , . . . .



Example: u, v are free Klein-Gordon fields with mass m

B(u, v) = −λ

2
uv +

(ux + vx)

2
(u − v)

leading to

(∂2 + m2)u = 0 x < 0
(∂2 + m2)v = 0 x > 0

u = v x = x0

vx − ux = λu x = x0

This is a basic δ-impurity.

• Typically, a δ-impurity has reflection and transmission;
• For interacting fields, a δ-impurity is not, generally,

integrable (eg Goodman, Holmes and Weinstein, Physica
D161 2002)
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Defects of shock-type

Start with a single selected point on the x-axis, say x = 0, and
as before denote the field to the left of it (x < 0) by u, and to the
right (x > 0) by v , with field equations in their respective
domains:

∂2u = −∂U
∂u

, x < 0

∂2v = −∂V
∂v

, x > 0

• How can the fields be ‘sewn’ together in a manner preserving
integrability?

• First, consider a simple argument and return to the general
question afterwards
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• Potential problem: there is a distinguished point, translation
symmetry is lost and the conservation laws - at least some of
them - (for example, momentum), are violated unless the
impurity has the property of adding by compensating terms.

Consider the field contributions to momentum:

P = −
∫ 0

−∞
dx utux −

∫ 0

−∞
dx vtvx .

Then, using the field equations, 2Ṗ is given by

= −
∫ 0

−∞
dx
[
u2

t + u2
x − 2U(u)

]
x
−
∫ ∞

0
dx
[
v2

t + v2
x − 2V (v)

]
x

= −
[
u2

t + u2
x − 2U(u)

]
x=0

+
[
v2

t + v2
x − 2V (v)

]
x=0

= −2
dPs

dt
(?).
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If there are ‘sewing’ conditions for which the last step is valid
then P + Ps will be conserved, with Ps a function of u, v , and
possibly derivatives, evaluated at x = 0.

(Note: this does not happen for a δ-impurity.)
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Next, consider the energy density and calculate

Ė = [uxut ]0 − [vxvt ]0.

Setting ux = vt + X (u, v), vx = ut + Y (u, v) we find

Ė = utX − vtY .

This is a total time derivative provided for some S

X = −∂S
∂u

, Y =
∂S
∂v

.

Then
Ė = −dS

dt
,

and E + S is conserved, with S a function of the fields
evaluated at the shock.
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This argument strongly suggests that the only chance will be
sewing conditions of the form

ux = vt −
∂S
∂u

, vx = ut +
∂S
∂v

,

where S depends on both fields evaluated at x = 0, leading to

Ṗ = vt
∂S
∂u

+ ut
∂S
∂v

− 1
2

(
∂S
∂u

)2

+
1
2

(
∂S
∂v

)2

+ (U − V ).

This is a total time derivative provided the first piece is a perfect
differential and the second piece vanishes. Thus,

∂S
∂u

= −∂Ps

∂v
,

∂S
∂v

= −∂Ps

∂u
....
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.... and

∂2S
∂v2 =

∂2S
∂u2 ,

1
2

(
∂S
∂u

)2

− 1
2

(
∂S
∂v

)2

= U(u)− V (v).

• By setting S = f (u + v) + g(u − v) and differentiating the left
hand side of the functional equation with respect to u and v one
finds:

f ′′′g′ = g′′′f ′.

If neither of f or g is constant we also have

f ′′′

f ′
=

g′′′

g′
= γ2,

where γ is constant (possibly zero). Thus....
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....the possibilities for f , g are restricted to:

f ′(u + v) = f1eγ(u+v) + f2e−γ(u+v)

g′(u − v) = g1eγ(u−v) + g2e−γ(u−v),

for γ 6= 0, and quadratic polynomials for γ = 0. Various choices
of the coefficients will provide sine-Gordon, Liouville, massless
free (γ 6= 0); or, massive free (γ = 0).

In the latter case, setting U(u) = m2u2/2, V (v) = m2v2/2, the
shock function S turns out to be

S(u, v) =
mσ

4
(u + v)2 +

m
4σ

(u − v)2,

where σ is a free parameter.
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shock function S turns out to be

S(u, v) =
mσ

4
(u + v)2 +

m
4σ

(u − v)2,

where σ is a free parameter.



• Note: there is a Lagrangian description of this type of ‘shock’:

L = θ(−x)L(u) + δ(x)

(
uvt − utv

2
− S(u, v)

)
+ θ(x)L(v)

The usual E-L equations provide both the field equations for
u, v in their respective domains and the ’sewing’ conditions.

• Note:

In the free case, with a wave incident from the left half-line

u =
(

eikx + Re−ikx
)

e−iωt , v = Teikxe−iωt , ω2 = k2 + m2,

we find:

R = 0, T = − (iω −m sinh η)

(ik + m cosh η)
, σ = e−η.
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sine-Gordon
Choosing u, v to be sine-Gordon fields (and scaling the
coupling and mass parameters to unity), we take:

S(u, v) = 2
(

σ cos
u + v

2
+ σ−1 cos

u − v
2

)
to find

x < x0 : ∂2u = − sin u,

x > x0 : ∂2v = − sin v ,

x = x0 : ux = vt − σ sin
u + v

2
− σ−1 sin

u − v
2

,

x = x0 : vx = ut + σ sin
u + v

2
− σ−1 sin

u − v
2

.

The last two expressions are a Bäcklund transformation frozen
at x = x0.
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• What happens to a soliton when it encounters a shock of this
kind?

Consider a soliton incident from x < 0 (any point will do), then it
will not be possible to satisfy the sewing conditions (in general)
unless a similar soliton emerges into the region x > 0.

eiu/2 =
1 + iE
1− iE

, eiv/2 =
1 + izE
1− izE

, E = eax+bt+c ,

a = cosh θ, b = − sinh θ.

Here z is to be determined. As previously, set σ = e−η.

• We find

z = coth
(

η − θ

2

)
.

This result has some intriguing consequences....
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Suppose θ > 0.

• η < θ implies z < 0; ie the soliton emerges as an anti-soliton.

-The final state will contain a discontinuity of magnitude 4π at
x = 0.

• η = θ implies z = 0 and there is no emerging soliton.

- The energy-momentum of the soliton is captured by the
‘defect’.

- The eventual configuration will have a discontinuity of
magnitude 2π at x = 0.

• η > θ implies z > 0; ie the soliton retains its character.

Thus, the ‘defect’ or ‘shock’ can be seen as a new feature
within the sine-Gordon model.
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Comments and questions....

• The shock is local so there could be several shocks located at
x = x1 < x2 < x3 < · · · < xn; these behave independently each
contributing a factor zi for a total ‘delay’ of z = z1z2 . . . zn.

• When several solitons pass a defect each component is
affected separately

- This means that at most one of them can be ‘filtered out’
(since the components of a multisoliton in the sine-Gordon
model must have different rapidities).

• Can solitons be controlled? (Eg see EC, Zambon, 2004.)

• Since a soliton can be absorbed, can a starting configuration
with u = 0, v = 2π decay into a soliton?

- No, there is no way to tell the time at which the decay would
occur (and presumably quantum mechanics would be needed
to provide the probability of decay as a function of time).
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• Checking integrability

Adapt an idea from Bowcock, EC, Dorey, Rietdijk, 1995.

Two regions overlapping the shock location: x > a, x < b with
a < x0 < b.

. . . • . . .
a

b

In each region, write down a Lax pair representation:

â(a)
t = a(a)

t − 1
2
θ(x − a)

(
ux − vt +

∂S
∂u

)
â(a)

x = θ(a− x)a(a)
x

â(b)
t = a(b)

t − 1
2
θ(b − x)

(
vx − ut −

∂S
∂u

)
â(b)

x = θ(x − b)a(b)
x
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â(b)

x = θ(x − b)a(b)
x



• Checking integrability

Adapt an idea from Bowcock, EC, Dorey, Rietdijk, 1995.

Two regions overlapping the shock location: x > a, x < b with
a < x0 < b.

. . . • . . .
a

b

In each region, write down a Lax pair representation:
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â(a)

x = θ(a− x)a(a)
x
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â(a)
t = a(a)

t − 1
2
θ(x − a)

(
ux − vt +

∂S
∂u

)
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Where,

a(a)
t = uxH/2 +

∑
i

eαi u/2
(
λEαi − λ−1Eαi

)
a(a)

x = utH/2 +
∑

i

eαi u/2
(
λEαi + λ−1Eαi

)
,

α0 = −α1 are the two roots of the extended su(2) (ie a(1)
1 )

algebra, and H, Eαi are the usual generators of su(2).

There are similar expressions for a(b)
t , a(b)

x .

Then

∂ta
(a)
x − ∂xa(a)

t +
[
a(a)

t , a(a)
x

]
= 0 ⇔ sine Gordon



The zero curvature condition for the components of the Lax
pairs ât , âx in the two regions imply:

• The field equations for u, v in x < a and x > b,
respectively,

• The shock conditions at a, b,
• For a < x < b the fields are constant,
• For a < x < b there should be a ‘gauge transformation’ κ

so that
∂tκ = κa(b)

t − a(a)
t κ

This setup requires the previous expression for S(u, v) when

κ = e−vH/2 κ̃ euH/2 and κ̃ = |α1|H +
σ

λ
(Eα0 + Eα1) .

That is

S(u, v) = σ

1∑
0

eαi (u+v)/2 + σ−1
1∑
0

eαi (u−v)/2.
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so that
∂tκ = κa(b)

t − a(a)
t κ

This setup requires the previous expression for S(u, v) when

κ = e−vH/2 κ̃ euH/2 and κ̃ = |α1|H +
σ

λ
(Eα0 + Eα1) .

That is

S(u, v) = σ

1∑
0

eαi (u+v)/2 + σ−1
1∑
0

eαi (u−v)/2.
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• Description of a shock defect in sine-Gordon quantum field
theory.

Assume σ > 0 then...

• Expect Pure transmission compatible with the bulk
S-matrix;

• Expect Two different ‘transmission’ matrices (since the
topological charge on a defect can only change by ±2 as a
soliton/anti-soliton passes).

• Expect Transmission matrix with even shock labels ought
to be unitary, the transmission matrix with odd labels might
not be;

• Expect Since time reversal is no longer a symmetry, expect
left to right and right to left transmission to be different
(though related).
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ab (Θ) T fβ

dα(θa)T
eγ
cβ (θb) = T dβ

bα (θb)T cγ
aβ (θa)Sef

cd(Θ)

With Θ = θa − θb and sums over the ‘internal’ indices β, c, d .

• Satisfied separately by evenT and oddT .

• The solution was found by Konik and LeClair, 1999.
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Zamolodchikov’s sine-Gordon S-matrix - reminder

Scd
ab (Θ) = ρ(Θ)


A 0 0 0
0 C B 0
0 B C 0
0 0 0 A


where

A(Θ) =
qx2

x1
− x1

qx2
, B(Θ) =

x1

x2
− x2

x1
, C(Θ) = q − 1

q

and

ρ(Θ) =
Γ(1 + z)Γ(1− γ − z)

2πi

∞∏
1

Rk (Θ)Rk (iπ −Θ)

Rk (Θ) =
Γ(2kγ + z)Γ(1 + 2kγ + z)

Γ((2k + 1)γ + z)Γ(1 + (2k + 1)γ + z)
, z = iγ/π.



The Zamolodchikov S-matrix depends on the rapidity variables
θ and the bulk coupling β via

x = eγθ, q = eiπγ , γ =
8π

β2 − 1,

and it is also useful to define the variable

Q = e4π2i/β2
=
√
−q.

• K-L solutions have the form

T bβ
aα (θ) = f (q, x)

(
Qα δβ

α q−1/2eγ(θ−η) δβ−2
α

q−1/2 eγ(θ−η) δβ+2
α Q−α δβ

α

)

where f (q, x) is not uniquely determined but, for a unitary
transmission matrix should satisfy....
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....namely

f̄ (q, x) = f (q, qx)

f (q, x)f (q, qx) =
(

1 + e2γ(θ−η)
)−1

A slightly alternative discussion of these points is given in
Bowcock, EC, Zambon, 1995, where most of the properties
noted below are also described.

• A ‘minimal’ solution has the following form

f (q, x) =
eiπ(1+γ)/4

1 + ieγ(θ−η)

r(x)

r̄(x)
,

where it is convenient to put z = iγ(θ − η)/2π and

r(x) =
∞∏

k=0

Γ(kγ + 1/4− z)Γ((k + 1)γ + 3/4− z)

Γ((k + 1/2)γ + 1/4− z)Γ((k + 1/2)γ + 3/4− z)
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Remarks (θ > 0): it is tempting to suppose η (possibly
renormalized) is the same parameter as in the classical model.

• η < 0 - the off-diagonal entries dominate;
• θ > η > 0 - the off-diagonal entries dominate;
• η > θ > 0 - the diagonal entries dominate;

• These are the same features we saw in the classical
soliton-shock scattering.

• θ = η is not special but there is a simple pole nearby at

θ = η − iπ
2γ

→ η, β → 0
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• This pole is like a resonance, with complex energy,

E = ms cosh θ = ms(cosh η cos(π/2γ)− i sinh η sin(π/2γ))

and a ‘width’ proportional to sin(π/2γ).

Using this pole and a bootstrap to define oddT leads to a
non-unitary transmission matrix - interpret as the instability
corresponding to the classical feature noted at θ = η.

• The Zamolodchikov S-matrix has ‘breather’ poles
corresponding to soliton-anti-soliton bound states at

Θ = iπ(1− n/γ), n = 1, 2, ..., nmax;

use the bootstrap to define the transmission factors for
breathers and find for the lightest breather:

T (θ) = −i
sinh

(
θ−η

2 − iπ
4

)
sinh

(
θ−η

2 + iπ
4

)
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....This is simple and coincides with the expression we
calculated previously in the linearised model.

• This is also amenable to perturbative calculation and it works
out (with a renormalised η) - See Bajnok and Simon, 2007.

• The diagonal terms in the soliton transmission matrix are
strange because they treat solitons (a factor Qα) and
anti-solitons (a factor Q−α) differently

- this feature is directly attributable to the Lagrangian term

δ(x)(uvt − vut)
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Consider the x-axis with a shock located at x0 and asymptotic
values of the fields

. . . • . . .

u = 2aπ/β x0 v = 2bπ/β

Compare (0, 0) and (a, b) in functional integral representations:

u → u − 2aπ/β, v → v − 2bπ/β, A → A + δA

with
δA =

π

β

∫ ∞

−∞
dt(avt − but) =

π

β
(aδv − bδu)x0

Soliton: (a, b) → (a− 1, b − 1), so δu = δv = −2π/β

Anti-soliton: (a, b) → (a + 1, b + 1), so δu = δv = 2π/β
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....leads to relative changes of phase

e±2iπ2(a−b)/β2
,

or
Q±α/2.

Note: the labelling of states by the integers representing the
‘vacuum’ states at x = ±∞ leads to a slightly different
representation of the transmission matrix than that shown
before. However they are related by a change of basis
Bowcock, EC, Zambon, 2005.
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Further questions....

• Moving shocks can be constructed in sine-Gordon theory but
their quantum scattering is not yet completely analysed, though
there is a candidate S-matrix compatible with the soliton
transmission matrix. (see Bowcock, EC, Zambon, 2005)

• Other field theories - shocks can be constructed within the
a(1)

r affine Toda field theories (Bowcock, EC, Zambon, 2004)
and there are several types of transmission matrices, though
only partially analysed (EC, Zambon, 2007).

- NLS, KdV, mKdV (EC, Zambon, 2006; Caudrelier 2006)

- Fermions and SUSY field theories (Gomes, Ymai, Zimerman)

• Bäcklund transformations are mysterious but appear to be
essential for these types of integrable defect.

- can they be realised in any physical system?

- might they be technologically useful? To control solitons?
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