
Domain Walls in Gapped Graphene

Gordon W. Semenoff

University of British Columbia

Exact results in two dimensional field theory, GGI, September 2008

Exact results in two dimensional field theory, GGI, September 2008



Graphene is a 2-dimensional array of carbon atoms
with a hexagonal lattice structure
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Electron spectrum

Band structure and linear dispersion relation E(~k) = h̄vF |k|
P. R. Wallace, Phys. Rev. 71, 622 (1947)
J. C. Slonczewsi and P. R. Weiss, Phys. Rev. 109, 272 (1958).
Dirac equation
G. W. S., Phys. Rev. Lett. 53, 2449 (1984)
For many years Graphene was a hypothetical material
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Graphene was produced and identified in the
laboratory in 2004
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A carbon atom has four valence electrons. Three of these electrons
form strong covalent σ-bonds with neighboring atoms. The fourth,
π-orbital is un-paired.
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Tight-binding model

hexagonal lattice = two triangular sub-lattices ~A and ~B connected
by vectors ~s1, ~s2, ~s3.

H =
∑

~A,i

(
t b†~A+~si

a ~A + t∗ a†~Ab ~A+~si

)
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Tight-binding model

H =
∑

~A,i

(
t b†~A+~si

a ~A + t∗ a†~Ab ~A+~si

)

ih̄
da ~A

dt
= t

∑

i

b ~A+~si
, ih̄

db ~B

dt
= t∗

∑

i

a ~B−~si

a ~A = ei E
h̄ t+i~k· ~Aa0 , b ~B = e−i E

h̄ t+i~k· ~Bb0

E

[
a0

b0

]
=

[
0 t

∑
i e

i~k·~si

t∗
∑

i e
−i~k·~si 0

] [
a0

b0

]

π-bands E(k) = ±|t|
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(1 + 2 cos( 3ky

2 ) cos(
√

3kx

2 ))2 + sin2( 3ky

2 )
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2
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Band structure of graphene
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Linearize spectrum near degeneracy points

E(k) = h̄vF |~k|

vF ∼ 106m/s ∼ c/300, good up to ∼ 1ev

HDirac = h̄vF




0 kx − iky

kx + iky 0
0

0
0 kx + iky

kx − iky 0




Massless electrons seen experimentally
Shubnikov-de-Haas oscillations
K. S. Novoselov et. al. Nature 438, 197 (2005)
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Minimal coupling to magnetic field: B = ~∂ × ~A

~∂ → ~D = ~∂ + i ~A

HDirac =




0 −iDx −Dy

−iDx +Dy 0
0

0
0 −iDx +Dy

−iDx −Dy 0




Atiyah-Singer Index Theorem

Number of zero modes = 2(2)
∣∣ 1
2π

∫
d2xB(x)

∣∣
In the neutral ground state of graphene, half of zero modes are
filled. G. W. S., Phys. Rev. Lett. 53, 2449 (1984)
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HDirac =


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0 −iDx −Dy

−iDx +Dy 0
0

0
0 −iDx +Dy

−iDx −Dy 0




Atiyah-Singer Index Theorem

Number of zero modes = 2(2)
∣∣ 1
2π

∫
d2xB(x)

∣∣
In the neutral ground state of graphene, half of zero modes are
filled. G. W. S., Phys. Rev. Lett. 53, 2449 (1984)

Confirmed by the Quantum Hall Effect in graphene
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K. Novoselov et. al. Nature 438, 197 (2005)
Y. Zhang et. al. Nature 438, 201 (2005)

σxy = 4 e2

h

(
n+ 1

2

)
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Relativistic Quantum Field Theory

• “Zitterwebegung” ↔ minimum conductivity of graphene 4e2

h

• “Klein paradox” ↔ unsuppressed tunneling through barrier

• “Schwinger effect” – tunneling production of e+-e− pairs by
electric field

• Curvature of space ↔ Corrugation of graphene = pseudovector
gauge field

• Dynamical issues – chiral symmetry breaking

• Mass condensates −→ deformations of graphene lattice −→
fractionally charged vortices
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Graphene for electronic devices

• Graphene has a very large carrier mobility 50, 000cm2/V s

• can carry huge current densities 108Amp/cm2 ∼ 100×copper

• Electrons travel ballistically over sales of 1µm.

• Suppressed weak localization (due to corrugations).

• For electronics applications a mass gap is needed (like a
conventional semiconductor)
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Klein Effect
O. Klein, Z. Phys. 33, 157 (1929)
M. Katsnelson, K. S. Novoselov and A. Geim, Nature
Physics 2, 620 (2006)

Unsuppressed tunneling through a potential barrier

(attempts to observe in QED in collisions of large Z nuclei)
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Gapping the spectrum

• Use geometry – graphene quantum dot

• Sublattice symmetry breaking by substrate: deposition on
silicon carbide (Lanzara et.al. Berkeley)

• Multi-layer graphene.

• “Graphane”

• Boron-Nitride has same lattice and valence electron dansity but
a staggered chemical potential µ ∼ 4.5ev – compare with
t ∼ 2.7ev.

• Graphene layer on top of Boron Nitride. Gap ∼ 50mev.
Lattice constants differ by 1.5 percent.
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Gapping the Dirac spectrum in graphene

• parity preserving masses from staggered chemical potential
G. W. S. Phys. Rev. Lett. 53, 2449 (1984)

H =
∑

A,i

(
tb†A+bi

aA + t∗a†AbbA+i

)
+ µ

∑

A

a†AaA − µ
∑

B

b†BbB

masses of fermion at K and K ′ points have different signs

• Other parity preserving mass terms ∼ mψ̄γ5ψ from Kekule
lattice distortion
C. Chamon et. al. arXiv:0707:0293[cond-mat]

• Parity violating mass term with external field – masses of K
and K ′ points have same sign – “Hall effect without external
field”
F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1987)
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Mass term from staggered chemical potential:

H =
∑

A,i

(
tb†

A+~bi
aA + t∗a†AbA+~bi

)
+ µ

∑

A

a†AaA − µ
∑

B

b†BbB
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The resulting Hamiltonian is

h =
[

µ t
∑

i e
i~k·~ai

t∗
∑

i e
−i~k·~ai −µ

]

Two non-intersecting energy-bands separated by a gap:

E(k) = ±
√
µ2 + t2(1 + 2 cos(

3ky

2
) cos(

√
3kx

2
))2 + t2 sin2(

3ky

2
)

Linearize near Dirac points → E = ±
√
µ2 + v2

F k
2

Dirac Hamiltonian for a massive fermion

HDirac =




m kx − iky

kx + iky −m 0

0
−m kx − iky

kx + iky m




Two species of massive relativistic fermions that transform into
each other under P and T
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Domain Walls

Consider the electronic properties of omain walls

G.W.S. et. al. Phys.Rev.Lett. 101, 087204 (2008)
Virtual Journal of Nanoscale Science & Technology
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Phase A
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Phase B
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Zig-zag Domain Wall Phase A → Phase B
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Armchair Domain Wall Phase A → Phase B
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Domain Wall in the continuum Hamiltonian

In the continuum Hamiltonian the domain wall is described by a
position- dependent mass term:

HDirac =




m(x) −i∂x + ∂y

−i∂x − ∂y −m(x)
0

0
m(x) −i∂x − ∂y

−i∂x + ∂y −m(x)




where m(x) has a soliton profile

m(x→∞) = m , m(x→ −∞) = −m
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Consider the spinor

ψL = e−iky




1
i

0
0


 e

−
∫ x

0
dx′m(x′)

, ψR = e−iky




0
0
1
−i


 e

−
∫ x

0
dx′m(x′)

HDirac ψL(x, y) = vF k ψL(x, y) , HDirac ψR(x, y) = −vF k ψR(x, y)

These are left-movers and right-movers bound to the domain wall.

Effective field theory
Massless 1+1-dimensional fermions propagating along the domain
wall:

H = h̄vF

∫
dy

(
iψ†L∂yψL − iψ†R∂yψR

)

add interactions = Luttinger liquid or Peierls Instability?
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Back to the lattice:

BA
(a)

(b)

(c)
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0

2

4
(b)

zigzag armchair

E(k) = t−
√

µ2 + 4t2 cos2
√

3a

2
kx , E(k) = −t−

√
µ2 + 4t2 cos2

√
3a

2
kx

Armchair gap ∼ µ2/t << µ if µ << t
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Kekule distortion

The Kekulé distortion is a modulation of the nearest-neighbor
hopping amplitude that is indicated by representing
nearest-neighbor bonds of the honeycomb lattice in black (grey) if
the hopping amplitude is large (small).
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Fractional Charge

The Dirac equation coupled to a mass condensate

HDirac = i~α · ~∇+ β m(x)eiγ5χ(x)

Can have mid-gap states with unpaired helicity.

Charge= e
2 per spin degree of freedom.

C. Chamon, C.-Y. Hou, R. Jackiw, C. Mudry, S.Y. Pi and
G. W. S., “Electron fractionalization for two-dimensional
Dirac fermions”,arXiv:0712.2439 [hep-th]
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Conclusions

• Graphene provides a fascinating laboratory where some
otherwise untestable field theory phenomena can be tested.

• Some of these, such as the index theorem, related to the
anomalous Hall effect, have already been seen

• Graphene is a promising material for electonic technology.

• Proposals for gapping graphene

• Defects in gapping can have interesting behavior.

• Electric circuits using graphene domain walls?
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