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Quantum Impurities out-of-Equilibrium     

• The quantum impurity - theoretically:

NonNon--equilibriumequilibrium

• The quantum impurity - experimentally: Goldhaber-Gordon et al, Conenwett et al, Schmid et al 

Leads = Fermi seas,

• Couple impurity to leads  with  

• Non-equil steady state (NESS) is established:

- current’s flow is time independent (after transients)

• Measure non-equil current  in steady state

- How to compute



Quantum Impurity Hamiltonian (3d    1d)

33--dd 11--d (Rd (R--movers)movers)

Unfold 3d Hamiltonian                  1d field theory:   

Impurity Hamiltonian (3d):Impurity Hamiltonian (3d):

Impurity Hamiltonian (1d): Low-energy universality

Field Theory of chiral electrons (R-movers):

Affleck  Ludwig 95’



Non-equilibrium: Time-dependent Description

For T > 0 :

KeldyshKeldysh

Given      Given      -- how to set up the nonhow to set up the non--equilibrium problem?equilibrium problem?

For T = 0 :

The initial condition at T=0:The initial condition at T=0:

Description of Nonequilibrium requires two elements:      ,      or     ,       ; Equilibrium requires only     . 



The Steady State (open system limit)

● Dissipation mechanism
● Time-reversal sym. breaking
● Steady-state non- eq. currents

Open system limit :

● Leads good thermal baths, infinite volume limit - open system
no IR divergences, (B Doyon, NA, PRB ‘05)

(order by order in P.T.)

II

A steady state ensuesA steady state ensues

Non-equilibrium steady states (NESS): when do they occur?



The Steady State – time independent description

aa well defined state.well defined state.

The The open systemopen system limit                            limit                            ::

Properties: P. Mehta, N.A. PRL 96, ‘06



The Non-equilibrium Steady State

L-S

In steady state - “non-thermal” density operator!

- Non-equilibrium T=0 steady state is described by:

•• For T>0,For T>0,

cf.  Hershfield ‘93

- In equilibrium:

- Non-equilbrium value:

Doyon, N.A.  ‘05(Keldysh Boltzmann)

L-S
● Generally, where

● For  T=0, g.s. of

and:



Steady-states & Scattering States

• The  scattering eigenstate describes all aspects of  
non-equilibrium steady-state physics  (NESS):
- non-equilibrium currents, 
- energy dissipation, 
- entropy production

Q: How can an eigenstate describe 
dissipation, entropy production?

A: Scattering eigenstate describes both
system and environment (open system)

--KeldyshKeldysh approachapproach

--Scattering approachScattering approach

•• TimeTime--dependentdependent ((KeldyshKeldysh) vs. ) vs. timetime--independentindependent approach (approach (Scattering) Scattering) 

- Scattering approach:                 non-perturbative Keldysh



Entropy production and Dissipation
Non-equilibrium currents dissipate heat into environment:

- currents  ~ 1
- leads       ~  L      infty

● Scattering state describes
system + environment

● Dissipation mechanism:
electrons reaching infinity

● Lost high energy electrons 
generate entropy (entanglement?)

Entropy is produced 
quasi-statically:



● “Thermodynamic” approach: (discontinuous system - defined w.r.t.  quasi-equil , L ~ infty)

Entropy production and Dissipation

● “Boltzmannian” approach – (distributions)

scattering       change of distribution:

•• ““Information TheoryInformation Theory”” approachapproach –– (in the infinite volume limit)(in the infinite volume limit) ::

KullbackKullback--LeiblerLeibler divergence:divergence:
-- amount of work obtained  amount of work obtained  
when        relaxes towhen        relaxes to

equilibriumequilibrium
distributionsdistributions

nonequilibriumnonequilibrium
distributionsdistributions

mixing      =mixing      =
relaxation =relaxation =

Mixing + RelaxationMixing + Relaxation

•• Entropy production rate  strictly positive,Entropy production rate  strictly positive,

P. Mehta, N. A. PRL100, ‘08

mixing relaxation

No accumulation

in dot:

mixing relaxation



The Scattering Bethe-Ansatz

.

.
Traditional Traditional BetheBethe--AnsatzAnsatz -- inapplicableinapplicable

-- Periodic boundary conditionsPeriodic boundary conditions
-- Closed SystemClosed System: Equilibrium, Thermodynamics: Equilibrium, Thermodynamics

New technologyNew technology Scattering StatesScattering States
-- Asymptotic Boundary conditions on the infinite lineAsymptotic Boundary conditions on the infinite line
-- Open SystemOpen System: Non: Non--equilibrium, scattering problemsequilibrium, scattering problems

Scattering  (Open) Scattering  (Open) BetheBethe--AnsatzAnsatz::

Develop a Bethe Ansatz approach to non-equilibrium:

Nonequilibrium described by open-system eigenstates

1. Non-equil Interacting Resonance Level model (Non-equil FES)
2. Non-equil Anderson model (Quantum Dot – Non-equil Kondo effect)

Recent developments:  Freq dep-RG

TD-DMNRG, TD-DMRG, FRG, Flow-eq



The Interacting Resonance Level  model out-of-equilibrium

●● Non-equil IRL Model:

• The 1-d Field Theory

. 

Diagonalize H  via the  Open Bethe-Ansatz:
- directly on the infinite line (open system)

construct 1-particle eigenstates (with boundary conditions)

construct N-particle eigenstates
out of 1-particle states

Geim et al  93’

Non-equil FES

Thermodynamic BA  Filyov, Wiegman 80’



IRL: The Scattering State
Single-particle
scattering eigenstates -

Reflec.  amp. Trans.  amp.

Phase shift :Level width:

Trans. coeff.

Renormalization prescription Local discontinuity 

Impurity  amp.

constant -
consistent  with
prescription

Boundary condition



IRL: The Scattering State

. 

● eigenstate of      for any choice of Bethe momenta .

● Choose distributions to impose non-eq BC:
- incoming particle arrive from free leads at

• Distributions          must  satisfy  SBA equation.
(Free baths Fermi-Dirac in  Fock basis. Here – free baths in Bethe basis)

Multi-particle scattering state - N1 lead-1, N2 lead-2,

with



The Boundary Conditions IIThe Boundary Conditions II

● For U=0 distributions reduce to Fermi-Dirac distributions

These are OBA eqns for: ,   (in co-tunneling regime)
- otherwise, eqns more complicated – include complex solutions (Non-equil FES)

The boundary conditions become OBA equations for:

Bethe chemical potentials               
determined from              minimizing:



Current and Dot Occupation

• For U=0,  Landauer-Buttiker formulas

• For U>0,  in the Bethe-basis, expressions look “simple”:                                         
- excitations undergo phase shifts only                          
- incorporate interactions and boundary conditions

Hybridization
width

The scattering state                 is  determined in terms of 



Current vs. Voltage IRL
● Compute exactly current as a function of Voltage:                

Non-monotonicity in U  
- FES :  repulsion vs IR Catastrophe     (Borda et al)

- Duality : (Schiller  NA) Fermi Edge Singularity 

out of equilibrium
(Matveev & Larkin, Levitov, Abanin..)

Other approaches:

1. Perturbative RG Borda, Zawadowski 06’ 2. Perturbative expansion Doyon 07’ 3. DMRG Scmitteckert 07’

4. Model at self-dual point (U=2)       BSG :  BA + dressed Landauer: Boulat, Saleur (08’)  cf Fendley, Ludwig, Saleur 95’

(Geim et al ’93)



The Quantum Dot - equilibrium

● Can control number of electrons on dot 
using gate voltage

● For odd number of electrons-
quantum dot acts as quantum impurity
● New collective behaviours,
e.g. Kondo effect

- formation of narrow peak at
the Fermi surface as T      0

van der Wiel et al.
Science 2000

Kondo effect - zero bias (equilibrium):
filling of odd valleys of Coulomb Blockade at low T

T     0

Conductance vs
Gate voltage

U
L R 



van der Wiel et al., 
Science 2000

Conductance vs.  bias voltage
The Quantum Dot - nonquilibrium

- The nonequilibrium Kondo Effect
- Effects of temperature, 
- magnetic field
- DOS  in and out of equilibrium
- Decoherence

● Solve:
Previous attempt  Previous attempt  -- KonikKonik, Ludwig, , Ludwig, SaleurSaleur ‘‘0202 -- valid only close to equilibriumvalid only close to equilibrium
Approach: Approach: LandauerLandauer + + dressed dressed BA,BA, developed by  developed by  FendleyFendley Ludwig Ludwig SaleurSaleur ‘‘9595

-- Based on  Based on  dressed  excitationsdressed  excitations: : holonholon, , spinonspinon.  But voltage in leads acts on .  But voltage in leads acts on bare electronsbare electrons
-- ApproximationApproximation:  :  electron ~ electron ~ spinonspinon + + holonholon.   No spinon-antispinons, no holon-antiholons.
- Approximation invalid in general - except for for V=0,  (cf N.A. ’82)

● Nonequilibrium Anderson model:

Equilibrium BA:  Wiegmann & Tsvelik, Kawakami & Okiji ‘80-’83

• Questions:



Anderson Model of the single-level  Quantum DotAnderson Model of the single-level  Quantum Dot
Anderson model out equilibrium: Open Bethe Ansatz

• Bethe momenta - complex strings
• Similar construction of scattering eigenstates

described by distributions

• Satisfying

• Four types of  momentum-strings: 11, 12, 21, 22

• Distributions determined by SBA-eqn : free leads in Bethe basis

• Bethe chemical potentials:           determined by physical potentials , minimizing

(H=0 T=0)



Conductance in and out of equilibrium

• Conductance                 vs.  bias voltage (preliminary)

• Conductance                  vs. gate voltage
- Direct calculation from current.  
- Verifies Friedel SR 
- TBA vs SBA

• The Kondo effect forms as       is decreased, destroyed as the bias voltage is increased

Von Delft, notes

Full descrption:



Entropy Production: Effects of Correlations

How does the Kondo effect manifest itself?

● The RLM  describes the Kondo model at Strong coupling
● Stronger correlations  suppress entropy production 
● To measure: perform spectroscopy of emerging electrons



Traditional vs Scattering BA  Traditional vs Scattering BA  
The  construction of             is an example of the SBA approach:

More applications:
● Scattering S-matrix of electrons off magnetic impurities 

- elastic and inelastic cross sections
● Calculation single particle Green’s functions, spectral functions

- finite temperature resistivity (resistance minimum)



Conclusions 
• Showed:
Scattering eigenstates with non-eq BC – Steady States 

• Computed:
Steady state current, entropy production rate

• Many Generalizations and applications:

Non-equilibrium Impurity 

- Non-equilibrium in other impurity models
Multichannel versions

- Non-equilibrium at                               , thermal currents

- More leads: non-equilibrium DOS (Lebanon&Schiller)

Non-equilibrium Wire 

- The Luttinger liquid (e.g. nanotubes)

- AB Interferometers (with/without impurities) 

Scattering 

- Inclusive, exclusive scattering amplitudes

- Elastic, inelastic scattering amplitudes 

Quantum full counting statistics, Entropy fluctuations, noise, Onsager relations



Bethe basis vs. Fock basis

• Choose momenta so  incoming state consists of two free Fermi seas
in the   Bethe - basis

•• To the left of the impurity               is To the left of the impurity               is eigenstateeigenstate ofof
in thein the Bethe Bethe -- basisbasis

Bethe Basis

• How to determine , i.e. what is the ground  state of                               
in the Bethe basis?
• Not a scattering problem! Solve on the ring         Bethe Anzatz equations.

S≠1

Fock Basis

Fermi – Dirac       
distributions

Bethe 
distributions

Basis

Fermi-sea
momenta

S-Matrix S=1



The  Boundary Conditions IIIThe  Boundary Conditions III

● The BA eqns describe the  free leads on a ring (in the Bethe basis)
● For the ground state choose:

How to choose the momenta so as to have the ground state?
Auxiliary problem: in find the  ground state in Bethe basis on a 
ring of length L:

Or:



The Boundary Conditions I

. 

F

Fermi-Dirac distributions describe free leads in the Fock basis, 
- plane waves                                                  eigenstates of  leads

The wave functions on the left of the impurity  (using                             )

- also eigestates of                           written in the Bethe Basis

Why not choose Fermi-Dirac distribution for the momenta?

Why different bases?



Quantum Impurities: 
strong correlations out-of-equilibrium

● Many of our standard physical ideas and concepts       
are not applicable (Scaling? RG? Universality?)

- No unifying theory such as Boltzmann's statistical  mechanics

● Non-equilibrium systems are all different- it is unclear 
what if anything they all have in common.

● Strong correlations - poorly understood
Perturbative approaches fail
- New degrees of freedom emerge at low energy
- New collective behavior e.g. Kondo effect in and out of equilibrium

•• New inherently nonNew inherently non--equilibrium phenomena:equilibrium phenomena:
-- e.g. e.g. entropy production, dissipation entropy production, dissipation 

● Nonequilibrium - poorly understood

Experimentally well studied :Experimentally well studied : GoldhaberGoldhaber--Gordon et al,  Gordon et al,  CronenwettCronenwett et al,  et al,  SchmidSchmid et alet al

Theoretically Theoretically -- example of  interplay of example of  interplay of strong correlationstrong correlation and and nonequilibriumnonequilibrium

CanCan fully discuss  issues fully discuss  issues –– in quantum impurity contextin quantum impurity context
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