
Landau-Zener (LZ) problem

 two coupled levels subject to weakly time dependent driving

E

g formalize by

instantaneous levels

P = 1− e−πg2/λ

Landau/Zener/Stückelberg 1932



many particle Landau-Zener problem

 generalization:

(a more structured system)

 here: discuss a ‘generic’ (high dimensional/nonlinear) interacting variant  

 adiabatic limit elusive

 particles broadly distributed over Hilbert space 

even at very slow driving:

Hilbert space

P

 previous studies include:

: a higher dimensional system (countless papers)

: low dimensional nonlinear (‘interacting’) systems (Wu & Niu, 00)

: linear many particle systems (Kayali & Synitsin, 03, Prokrovsky et al. 07)
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The model

 consider:
1.) a large spin                        coupled to a time dependent magnetic field of strength S = N/2! 1 −λt

2.) a boson state kept at energy +λt

Ĥ = −λt b̂†b̂ + λtŜz +
g

2
√

N

(
b̂† Ŝ− + b̂Ŝ+

)

3.) creation (annihilation) of a boson lowers (increases) spin by one.

4.) system initially prepared in its ground state: 

t→ −∞ : Ŝz|0, t〉 = (N/2)|0, t〉

b†b|0, t〉 = 0 S

b

5.) goal: compute nb ≡ limt→∞〈b†b〉



applied relevance of the problem

 model system equivalent to

 system of N two level systems coupled by a bosonic mode

Ĥ = −λt b̂†b̂ +
λt

2

N∑

i=1

σz
i +

g√
N

N∑

i=1

(
b̂† σ−i + b̂ σ+

i

)
,

cf. molecular magnetism, adiabatic quantum information

 system of atoms converting to molecules (by tuning through a Feshbach resonance)

Ĥ = −λtd†d + λt
2 c†c + g√

N
(d†cc + dc†c†)

realized in atomic condensates (JILA 05)

 system of non-dispersive fermions converting to bosons

Ĥ = −λtb†b +
λt

2

N∑

i=1

(
a†i↑ai↑ + a†i↓ai↓

)
+

+
g√
N

N∑

i=1

(
b†ai↓ai↑ + ba†i↑a

†
i↓

)

realizable in fermionic condensates



heuristics

question:

What will be the distribution of polar angles at large times?

Ĥ = −λt b̂†b̂ + λtŜz +
g

2
√

N

(
b̂† Ŝ− + b̂Ŝ+

)



means to attack the model

quantum regime
(nb = O(1))

linear regime
(nb/N ! 1)

generic regime

adiabatic limit

Kayali & Synitsin 03  
 

1. solution of Schrödinger eq. 
(analytical)

1

2 Keldysh diagrammtic 
perturbation theory

2

3 semiclassical analysis 
(numerical/analytical)

3

4 numerical solution of Schrödinger 
equation (for moderate N) 

semiclassical analysis with oscillator 
initial conditions (numerical)

4



moderately fast driving I: linearization

This leads to (Kayali & Synitsin 03)  
 

 for                                  : Holstein-Primakoff representation



stabilized by: 

1. 
2.

moderately fast driving II: diagramatic perturbation theory

 alternative strategy: apply Keldish diagrammatic perturbation theory to derive kinetic equation for          . Use 
largeness of N to stabilize RPA approximation for self energy diagrams. 

a) b)

 rate equation

where

 result: 

N



moderately fast driving III: numerics and results

/N Holstein-Primakoff:
Kayali Synitsin 03 

nb/N ∼ x kinetic equation: nb/N
x!1−→ 1/2

exp(πg2/λ) ! N



slow driving I: semiclassical analysis

 consider the classical Hamiltonian 

Holstein-Primakoff regime



slow driving II: phase portraits

 phase space portrait in plane 

 characteristic of trajectories: action integrals

 topology of trajectories changes in the driving process



slow driving III: adiabatic invariants

 Landau Lifshitz vol 1, par 48/49:

1. in the adiabatic limit, the action of trajectories is conserved (in spite of the curves themselves changing)
2. changes in the action are given by

frequency of revolutions (vanishes at topological transitions)

action angle variables

reduced action

 for conventional systems (no topological changes), variation of action exponentially small in driving rate. Here: at 
topological transitions, singularities

 prediction: for exp(πg2/λ)! N

N
N

N−nb ∼ eπg2/λ λ ∼ πg2

lnN

(
1− n

N

)



slow driving IV: numerics and results

N = 103

N = 104

N = 106

N = 108

λ

kinetic equation 

(
1− nb

N

) πg2

lnN



particle distribution

 so far considered mean number of produced bosons. However, broad distribution P (n)

 analytical solution in Holstein-Primakoff regime: P (n) ! e−n/nb

nb

 interpretation: initial quantum fluctuations get strongly amplified. 



summary

 studied driven many particle system 

 adiabatic limit only approached for thermodynamically vanishing driving rates

 at generic driving rates broad Hilbert space distributions (large quantum fluctations/heating)



fermi-bose representation I

?

E

fermions bosons



fermi-bose representation II

 simplify system as:

 describe system in terms of the Hamiltonian 



fermi-bose representation III

 fermionic level i hosts two configurations

i

(pseudo-) spin up

(pseudo-) spin down

Ĥ = −λt b̂†b̂ +
λt

2

N∑

i=1

σz
i +

g√
N

N∑

i=1

(
b̂† σ−i + b̂ σ+

i

)
,

 introduce spin operators as: Ŝa =
1
2

∑

i

σa
i , (a = 1, 2, 3)

Ĥ = −λt b̂†b̂ + λtŜz +
g

2
√

N

(
b̂† Ŝ− + b̂Ŝ+

)

where the initial configuration (all spins up) implies                                  , i.e. the spin acts in an N-

dimensional representation.

Ŝz|Ψ(0) =
N

2
|Ψ(0)〉


