Landau-Zener (LZ) problem

> two coupled levels subject to weakly time dependent driving
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many particle Landau-Zener problem

> generalization; =— ——s
(@ more structured system)
> previous studies include:
: a higher dimensional system (countless papers)
: low dimensional nonlinear (‘interacting’) systems (Wu & Niu, 00)

. linear many particle systems (Kayali & Synitsin, 03, Prokrovsky et al. 07)

> here: discuss a ‘generic’ (high dimensional/nonlinear) interacting variant
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even at very slow driving:

> adiabatic limit elusive Hilbert space

> particles broadly distributed over Hilbert space
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The model

> consider:
1.) alarge spin S = N/2 > 1 coupled to a time dependent magnetic field of strength — At

2.) a boson state kept at energy +\¢

3.) creation (annihilation) of a boson lowers (increases) spin by one.
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4.) system initially prepared in its ground state:

t — —oco: 5.|0,t) = (N/2)|0,1)
bTb|0,t) = 0

5.) goal: compute np = limy_, o0 (bT0)




applied relevance of the problem

> model system equivalent to

> system of IV two level systems coupled by a bosonic mode
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cf. molecular magnetism, adiabatic quantum information

> system of non-dispersive fermions converting to bosons
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realizable in fermionic condensates

> system of atoms converting to molecules (by tuning through a Feshbach resonance)

H = —Xtdtd + 2 2hele+ \ﬁ(chc—l—dcTcT)

realized in atomic condensates (JILA 05)




heuristics
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question:

What will be the distribution of polar angles at large times?




means to attack the model

quantum regime T 1. solution of Schrodinger eq.
(np = O(1)) (analytical)

linear regime 2 Keldysh diagrammtic

(np/N < 1) perturbation theory

3 semiclassical analysis
(numerical/analytical)

generic regime 4 numerical solution of Schrodinger
equation (for moderate NN)

semiclassical analysis with oscillator
initial conditions (numerical)

adiabatic limit
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moderately fast driving |: linearization

> for N/2 — 5,(t) < N/2: Holstein-Primakoff representation
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This leads to (Kayali & Synitsin 03)

np o~ ™9 /> — 1, (np < N)




moderately fast driving ll: diagramatic perturbation theory

> alternative strategy: apply Keldish diagrammatic perturbation theory to derive kinetic equation fornb(t). Use
largeness of IV to stabilize RPA approximation for self energy diagrams.

stabilized by:

'Qv . N>1
2. N > exp(mg?/)\)

> rate equation

dtnb = 27T925(2)\t) (N?c (1 ar nb) — Ny (1 = ’)’Lf)Z) |

where ny + Nny = N

> result:




moderately fast driving lll: numerics and results

. . x>1
nb/N Holstein-Primakoff: np/N ~ x kinetic equation: mp/N —— 1/2
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slow driving |: semiclassical analysis

> consider the classical Hamiltonian

Holstein-Primakoff regime
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slow driving ll: phase portraits

> phase space portrait in plane (n, ¢), n =ny/N = (1 — cos(f))/2
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> topology of trajectories changes in the driving process

> characteristic of trajectories: action integrals
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slow driving lll: adiabatic invariants
> Landau Lifshitz vol 1, par 48/49:

1. in the adiabatic limit, the action of trajectories is conserved (in spite of the curves themselves changing)
2. changes in the action are given by

action angle variables

reduced action
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frequency of revolutions (vanishes at topological transitions)

> for conventional systems (no topological changes), variation of action exponentially small in driving rate. Here: at
topological transitions, singularities

> prediction: for exp(mwg®/\) > N




slow driving IV: numerics and results

kinetic equation




particle distribution

> so far considered mean number of produced bosons. However, broad distribution P (1)

e—n/nb
> analytical solution in Holstein-Primakoff regime: P(n) =~

T

> interpretation: initial quantum fluctuations get strongly amplified.




summary

> studied driven many particle system

> adiabatic limit only approached for thermodynamically vanishing driving rates

> at generic driving rates broad Hilbert space distributions (large quantum fluctations/heating)




fermi-bose representation |

ok

fermions bosons




fermi-bose representation |l

> simplify system as:

> describe system in terms of the Hamiltonian
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fermi-bose representation lll

> fermionic level 7 hosts two configurations

H (pseudo-) spin up

(pseudo-) spin down
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> introduce spin operators as: S = 5

H =M bh+ S, + ——
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where the initial configuration (all spins up) implies S*|W(0) = ?\\I!(O», i.e. the spin acts in an V-
dimensional representation.




