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Introduction

Massless maximal supergravities all arise from dimensional
reduction of 11-dimensional and IIB supergravities.

In any dimension, the theory is unique, and has a global
symmetry G.

The scalars parametrise the manifold G/H, where H is the
maximal compact subgroup of G.
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Introduction

D G

10A R
+

10B SL(2, R)

9 SL(2, R) × R
+

8 SL(3, R) × SL(2, R)

7 SL(5, R)

6 SO(5, 5)

5 E6(+6)

4 E7(+7)

3 E8(+8)
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Introduction
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Introduction

Gauging: some of the vectors group to form the adjoint of a
subgroup of G

Correspondingly, a potential for the scalars arises, which
contains mass parameters

→ Massive theories

Although some of these theories can be seen as
Scherk-Schwarz compactifications, or as reductions with
fluxes turned on, in general a complete understanding of
such theories in terms of higher dimensional ones is lacking
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Introduction

Simplest example: Romans’ massive IIA (not actually a
gauged theory)

This theory describes the bulk of IIA in the presence of
D8-branes

This theory does not arise from 11-dimensional
supergravity

E11 provides an 11-dimensional origin of all maximal
supergravities (and much more...)

The E11 origin ofgauged maximal supergravities – p. 5/39



Plan

More about supergravities

The E11 origin ofgauged maximal supergravities – p. 6/39



Plan

More about supergravities

An introduction to E11

The E11 origin ofgauged maximal supergravities – p. 6/39



Plan

More about supergravities

An introduction to E11

The fields of E11

The E11 origin ofgauged maximal supergravities – p. 6/39



Plan

More about supergravities

An introduction to E11

The fields of E11

E11 and dimensional reduction

The E11 origin ofgauged maximal supergravities – p. 6/39



Plan

More about supergravities

An introduction to E11

The fields of E11

E11 and dimensional reduction

Some dynamics

The E11 origin ofgauged maximal supergravities – p. 6/39



Plan

More about supergravities
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The fields of E11

E11 and dimensional reduction

Some dynamics
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More about supergravities

In a series of papers, all the gauged maximal supergravities
in D = 7, 6, . . . , 3 have been classified
de Wit, Samtleben and Trigiante, hep-th/0212239, hep-th/0412173, hep-th/0507289

Samtleben and Weidner, hep-th/0506237 Nicolai and Samtleben, hep-th/0010076
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Gauging:
Dµ = ∂µ − AM

µ ΘM
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The embedding tensor Θ belongs to a reducible
representation of G
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More about supergravities

In a series of papers, all the gauged maximal supergravities
in D = 7, 6, . . . , 3 have been classified
de Wit, Samtleben and Trigiante, hep-th/0212239, hep-th/0412173, hep-th/0507289

Samtleben and Weidner, hep-th/0506237 Nicolai and Samtleben, hep-th/0010076

Gauging:
Dµ = ∂µ − AM

µ ΘM
αtα

The embedding tensor Θ belongs to a reducible
representation of G

The fact that the gauge symmetry is a Lie group, as well as
supersymmetry, pose constraints on Θ
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More about supergravities

Example: D = 5

Aµ,M belongs to the 27 of E6

The embedding tensor belongs to

27 ⊗ 78 = 27 ⊕ 351 ⊕ 1728

The Jacobi identities and the constraints from
supersymmetry restrict the embedding tensor to be in the
351
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More about supergravities

Field strength:

∂µAν,M −
1

2
Aµ,NΘN

α(tα)M
P Aν,P − 2ZMNAµνa

N

where
ZMN = Z[MN ] ZMNΘN

α = 0
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More about supergravities

Field strength:

∂µAν,M −
1

2
Aµ,NΘN

α(tα)M
P Aν,P − 2ZMNAµνa

N

where
ZMN = Z[MN ] ZMNΘN

α = 0

Gauge invariance:

δAa,M = 4ZMNΛa
N

The vectors that do not belong to the adjoint of the gauge
group are gauged away, i.e. dualised to 2-forms. The
2-forms are massive and satisfy massive self-duality
conditions
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More about supergravities

This result is more general: some dualisations are needed
in order to determine the most general embedding tensor.
Simple examples: D = 4 and D = 3
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More about supergravities

This result is more general: some dualisations are needed
in order to determine the most general embedding tensor.
Simple examples: D = 4 and D = 3

In D = 9 all the gauged supergravities have been classified
via a case-by-case analysis
Bergshoeff, de Wit, Gran, Linares, Roest, hep-th/0209205
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More about supergravities

D G Masses

9 SL(2, R) × R
+

2 ⊕ 3

8 SL(3, R) × SL(2, R) ?

7 SL(5, R) 15 ⊕ 40

6 SO(5, 5) 144

5 E6(+6) 351

4 E7(+7) 912

3 E8(+8) 1 ⊕ 3875
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More about supergravities

Supersymmetry algebra of IIB: democratic formulation. All
the fields appear together with their magnetic duals
Bergshoeff, de Roo, Kerstan, F.R., hep-th/0506013

The E11 origin ofgauged maximal supergravities – p. 12/39
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Supersymmetry algebra of IIB: democratic formulation. All
the fields appear together with their magnetic duals
Bergshoeff, de Roo, Kerstan, F.R., hep-th/0506013

The forms one gets are

Aα
2 A4 Aα

6 A
(αβ)
8 A

(αβγ)
10 Aα

10
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More about supergravities

Supersymmetry algebra of IIB: democratic formulation. All
the fields appear together with their magnetic duals
Bergshoeff, de Roo, Kerstan, F.R., hep-th/0506013

The forms one gets are

Aα
2 A4 Aα

6 A
(αβ)
8 A

(αβγ)
10 Aα

10

The 9-branes belong to a non-linear doublet out of the
quadruplet
Bergshoeff, de Roo, Kerstan, Ortin, F.R., hep-th/0601128

This leads to an SL(2, R)-invariant formulation of brane
effective actions
Bergshoeff, de Roo, Kerstan, Ortin, F.R., hep-th/0611036
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More about supergravities

Same analysis for IIA
Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen, hep-th/0103233

Bergshoeff, de Roo, Kerstan, Ortin, F.R., hep-th/0602280
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strength dual to Romans cosmological constant) and two
10-forms

The algebra describes both massless and massive IIA

If m 6= 0 the algebra does not arise from 11-dimensions
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More about supergravities

Same analysis for IIA
Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen, hep-th/0103233

Bergshoeff, de Roo, Kerstan, Ortin, F.R., hep-th/0602280

The algebra closes among the rest on a 9-form (field
strength dual to Romans cosmological constant) and two
10-forms

The algebra describes both massless and massive IIA

If m 6= 0 the algebra does not arise from 11-dimensions

The D8-branes are electrically charged with respect to the
9-form
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An introduction to E11

Starting point: gravity as a non-linear realisation
Borisov, Ogievetsky, 1974

g = exp(xaPa) exp(ha
bKa

b)

with

[Ka
b,K

c
d] = δc

bK
a
d − δa

dKc
b [Ka

b, Pc] = δa
c Pb

Gravity is formulated as the non-linear realisation of the
closure of this group with the conformal group
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Starting point: gravity as a non-linear realisation
Borisov, Ogievetsky, 1974

g = exp(xaPa) exp(ha
bKa

b)

with

[Ka
b,K

c
d] = δc

bK
a
d − δa

dKc
b [Ka

b, Pc] = δa
c Pb

Gravity is formulated as the non-linear realisation of the
closure of this group with the conformal group

The theory is invariant under

g → g0gh−1
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An introduction to E11

Maurer-Cartan form:

V = g−1dg − ω

ω: spin connection. It transforms as

ω → hωh−1 + hdh−1

As a result, V transforms as

V → hVh−1
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An introduction to E11

Maurer-Cartan form:

V = g−1dg − ω

ω: spin connection. It transforms as

ω → hωh−1 + hdh−1

As a result, V transforms as

V → hVh−1

One gets
V = dxµ(eµ

aPa + Ωµa
bKa

b)
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An introduction to E11

Similar analysis for the bosonic sector of 11-dimensional
supergravity:

[Rabc, Rdef ] = Rabcdef

group element:

g = exp(xaPa) exp(ha
bKa

b) exp(AabcR
abc + AabcdefRabcdef )
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group element:

g = exp(xaPa) exp(ha
bKa

b) exp(AabcR
abc + AabcdefRabcdef )

Field equations: duality relations
West, hep-th/0005270
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An introduction to E11

Similar analysis for the bosonic sector of 11-dimensional
supergravity:

[Rabc, Rdef ] = Rabcdef

group element:

g = exp(xaPa) exp(ha
bKa

b) exp(AabcR
abc + AabcdefRabcdef )

Field equations: duality relations
West, hep-th/0005270

E11 is the smallest Kac-Moody group that contains this
group
West, hep-th/0104081
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An introduction to E11

i i i i i i i i i i

i

1 2 3 4 5 6 7 8 9 10

11
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i
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Cartan matrix with Minkowskian signature → The algebra is
infinite-dimensional

A complete list of the generators is lacking, not to mention
other representations...
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An introduction to E11

i i i i i i i i i i

i

1 2 3 4 5 6 7 8 9 10

11

Cartan matrix with Minkowskian signature → The algebra is
infinite-dimensional

A complete list of the generators is lacking, not to mention
other representations...

Idea: write each positive root in terms of the simple roots of
A10 and the simple root α11

α =
10∑

i=1

niαi + lα11 l = level
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An introduction to E11

A necessary condition for the occurrence of a
representation of A10 with highest weight

∑
j pjλj is that this

weight arises in a root of E11. One then gets

α2 = −
2

11
l2 +

∑

i,j

pi(Aij)
−1pj
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An introduction to E11

A necessary condition for the occurrence of a
representation of A10 with highest weight

∑
j pjλj is that this

weight arises in a root of E11. One then gets

α2 = −
2

11
l2 +

∑

i,j

pi(Aij)
−1pj

The fact that E11 is a Kac-Moody algebra with symmetric
Cartan matrix imposes the constraint

α2 = 2, 0,−2,−4 . . .
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An introduction to E11

A necessary condition for the occurrence of a
representation of A10 with highest weight

∑
j pjλj is that this

weight arises in a root of E11. One then gets

α2 = −
2

11
l2 +

∑

i,j

pi(Aij)
−1pj

The fact that E11 is a Kac-Moody algebra with symmetric
Cartan matrix imposes the constraint

α2 = 2, 0,−2,−4 . . .

We can solve this level by level
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An introduction to E11

Solutions, using qj = p11−j:

Ka
b l = 0

Rabc l = 1, q3 = 1

Ra1...a6 , l = 2, q6 = 1

Ra1...a8,b, l = 3, q1 = 1, q8 = 1
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An introduction to E11

Solutions, using qj = p11−j:

Ka
b l = 0

Rabc l = 1, q3 = 1

Ra1...a6 , l = 2, q6 = 1

Ra1...a8,b, l = 3, q1 = 1, q8 = 1

The (8,1) generator is associated to the dual graviton

All the generators arise from multiple commutators of Rabc

The level is the number of times Rabc occurs
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An introduction to E11

Non-linear realisation: To each positive level generator we
associate a gauge field
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The field equations are first order duality relations

At level 4 one gets the solution q10 = 1, q1 = 2 corresponding
to the gauge field

A10,1,1

Dimensional reduction → A9, that is Romans theory!
Schnakenburg and West, hep-th/0204207
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An introduction to E11

Non-linear realisation: To each positive level generator we
associate a gauge field

The field equations are first order duality relations

At level 4 one gets the solution q10 = 1, q1 = 2 corresponding
to the gauge field

A10,1,1

Dimensional reduction → A9, that is Romans theory!
Schnakenburg and West, hep-th/0204207

The theory is unique, gravity emerges from the choice of
the background
compare with: Julia, hep-th/9805083
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D = 10B

i i i i i i i i i

i

i
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D = 9

i i i i i i i i

i
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D = 8
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D = 6
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D = 4
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D = 3

i i

i

i

i

i

i

i

i

i

i
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The fields ofE11

A partial classification of the generators of E11 has recently
been performed
F.R. and West, hep-th/0612001
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Basic idea: the sum of the indices of each field has to be
equal to 3l:
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The fields ofE11

A partial classification of the generators of E11 has recently
been performed
F.R. and West, hep-th/0612001

Basic idea: the sum of the indices of each field has to be
equal to 3l:

11n +
∑

j

jqj = 3l

Propagating fields have n = q10 = 0. One gets

A9,9,...,9,3 A9,9,...,9,6 A9,9,...,9,8,1

That is we get infinitely many dual descriptions of the same
fields
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The fields ofE11

We want to determine all the forms that arise from
dimensional reduction.

The propagating fields in lower dimensions arise from the
propagating fields in D = 11. We study the dimensional
reduction to D.
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reduction to D.
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consider n = q9 = 0 q10 = 1

Finally, in order to determine the D-forms, we also need to
consider q10 = q9 = 0 n = 1
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The fields ofE11

We want to determine all the forms that arise from
dimensional reduction.

The propagating fields in lower dimensions arise from the
propagating fields in D = 11. We study the dimensional
reduction to D.

In order to determine the D − 1-forms, we also need to
consider n = q9 = 0 q10 = 1

Finally, in order to determine the D-forms, we also need to
consider q10 = q9 = 0 n = 1

Remarkably, there are only a finite number of
11-dimensional fields that give rise to forms in any
dimension above two
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The fields ofE11

D field

10 ĝ1
1

Â3

Â6

Â8,1

8 Â9,3

5 Â9,6

3 Â9,8,1
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The fields ofE11

D field

10 Â10,1,1

7 Â10,4,1

5 Â10,6,2

4 Â10,7,1

Â10,7,4

Â10,7,7

3 Â10,8

Â10,8,2,1

Â10,8,3

Â10,8,5,1

Â10,8,6

Â10,8,7,2

Â10,8,8,1

Â10,8,8,4

Â10,8,8,7
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The fields ofE11

D field µ

10 Â11,1 1

8 Â11,3,1 1

7 Â11,4 1
Â11,4,3 1

6 Â11,5,1,1 1

5 Â11,6,1 2
Â11,6,3,1 1
Â11,6,4 1
Â11,6,6,1 1

4 Â11,7 1
Â11,7,2,1 1
Â11,7,3 2
Â11,7,4,2 1
Â11,7,5,1 1
Â11,7,6 2
Â11,7,6,3 1
Â11,7,7,2 1
Â11,7,7,5 1
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Consider the 7-dimensional example
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E11 and dimensional reduction

Consider the 7-dimensional example

6-forms:
Â6 → 1 Â8,1 → 4 ⊕ 20

Â9,3 → 6 ⊕ 10 Â10,1,1 → 10 Â10,4,1 → 4

of SL(4, R). This is 15 ⊕ 40 of SL(5, R)
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E11 and dimensional reduction

Consider the 7-dimensional example

6-forms:
Â6 → 1 Â8,1 → 4 ⊕ 20

Â9,3 → 6 ⊕ 10 Â10,1,1 → 10 Â10,4,1 → 4

of SL(4, R). This is 15 ⊕ 40 of SL(5, R)

7-forms:
Â8,1 → 6 ⊕ 10 Â9,3 → 4 ⊕ 20

Â10,1,1 → 4 ⊕ 36 Â10,4,1 → 1 ⊕ 15

Â11,1 → 4 Â11,3,1 → 15 Â11,4 → 1 Â11,4,3 → 4

that is 5 ⊕ 45 ⊕ 70 of SL(5, R)
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E11 and dimensional reduction

D G 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms

10A R
+

1 1 1 1 1 1 1 1
1

1

10B SL(2, R) 2 1 2 3
4

2

9 SL(2, R) × R
+

2

2 1 1 2

2 3 3 4

2

1 1 1 2 2

8 SL(3, R) × SL(2, R) (3,2) (3,1) (1,2) (3,1) (3,2)

(15,1)

(8,1) (6,2) (3,3)

(1,3) (3,2) (3,1)

(3,1)

7 SL(5, R) 10 5 5 10 24

40 70

45

15 5

6 SO(5, 5) 16 10 16 45 144

320

126

10

5 E6(+6) 27 27 78 351
1728

27

4 E7(+7) 56 133 912
8645

133

3 E8(+8) 248
3875

?
1
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E11 and dimensional reduction

D G 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms

10A R
+

1 1 1 1 1 1 1 1
1

1

10B SL(2, R) 2 1 2 3
4

2

9 SL(2, R) × R
+

2

2 1 1 2

2 3 3 4

2

1 1 1 2 2

8 SL(3, R) × SL(2, R) (3,2) (3,1) (1,2) (3,1) (3,2)

(15,1)

(8,1) (6,2) (3,3)

(1,3) (3,2) (3,1)

(3,1)

7 SL(5, R) 10 5 5 10 24

40 70

45

15 5

6 SO(5, 5) 16 10 16 45 144

320

126

10

5 E6(+6) 27 27 78 351
1728

27

4 E7(+7) 56 133 912
8645

133

3 E8(+8) 248
3875

?
1

3-forms in 3 dimensions: 248 ⊕ 3875 ⊕ 147250

Bergshoeff, De Baetselier, Nutma, arXiv:0705.1304
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Some dynamics

Consider the 5-dimensional example. G = E6

[Ra,M , Pb] = δa
b ΘM

αRα

[Rab
M , Pc] = ZMN (δa

c Rb,N − δb
cR

a,N )
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Some dynamics

Consider the 5-dimensional example. G = E6

[Ra,M , Pb] = δa
b ΘM

αRα

[Rab
M , Pc] = ZMN (δa

c Rb,N − δb
cR

a,N )

The term in the Cartan form proportional to the 1-form
generator Ra,M is

∂µAa,M −
1

2
Aµ,NΘN

α(Dα)M
P Aa,P − 2ZMNAµa

N

The scalar sector is the Cartan form of the gauged
supergravity coset space
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Some dynamics

Consider the 5-dimensional example. G = E6

[Ra,M , Pb] = δa
b ΘM

αRα

[Rab
M , Pc] = ZMN (δa

c Rb,N − δb
cR

a,N )

The term in the Cartan form proportional to the 1-form
generator Ra,M is

∂µAa,M −
1

2
Aµ,NΘN

α(Dα)M
P Aa,P − 2ZMNAµa

N

The scalar sector is the Cartan form of the gauged
supergravity coset space
The equations are first order duality relations. This
reproduces the supergravity results
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Conclusions

E11 provides a completely unified description of all
supergravities and it encodes all their dynamical
features
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It would be interesting to determine the D-forms in any
dimension D below 10 from supersymmetry
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Conclusions

E11 provides a completely unified description of all
supergravities and it encodes all their dynamical
features

It would be interesting to determine the D-forms in any
dimension D below 10 from supersymmetry

Gauged supergravities in D = 8
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Conclusions

E11 provides a completely unified description of all
supergravities and it encodes all their dynamical
features

It would be interesting to determine the D-forms in any
dimension D below 10 from supersymmetry

Gauged supergravities in D = 8

Many other physical implications: uplifting of D8-branes,
Horava-Witten...

The E11 origin ofgauged maximal supergravities – p. 39/39


	Introduction
	Introduction
	Introduction

	Introduction
	Introduction
	Introduction
	Introduction

	Introduction
	Introduction
	Introduction
	Introduction

	Plan
	Plan
	Plan
	Plan
	Plan
	Plan

	More about supergravities
	More about supergravities
	More about supergravities

	More about supergravities
	More about supergravities
	More about supergravities

	More about supergravities
	More about supergravities
	More about supergravities

	More about supergravities
	More about supergravities

	More about supergravities
	More about supergravities
	More about supergravities
	More about supergravities

	More about supergravities
	More about supergravities
	More about supergravities
	More about supergravities

	An introduction to $E_{11}$
	An introduction to $E_{11}$

	An introduction to $E_{11}$
	An introduction to $E_{11}$

	An introduction to $E_{11}$
	An introduction to $E_{11}$
	An introduction to $E_{11}$

	An introduction to $E_{11}$
	An introduction to $E_{11}$
	An introduction to $E_{11}$
	An introduction to $E_{11}$

	An introduction to $E_{11}$
	An introduction to $E_{11}$
	An introduction to $E_{11}$

	An introduction to $E_{11}$
	An introduction to $E_{11}$
	An introduction to $E_{11}$

	An introduction to $E_{11}$
	An introduction to $E_{11}$
	An introduction to $E_{11}$
	An introduction to $E_{11}$
	An introduction to $E_{11}$

	$D=10A$
	$D=10B$
	$D=9$
	$D=8$
	$D=7$
	$D=6$
	$D=5$
	$D=4$
	$D=3$
	The fields of $E_{11}$
	The fields of $E_{11}$
	The fields of $E_{11}$

	The fields of $E_{11}$
	The fields of $E_{11}$
	The fields of $E_{11}$
	The fields of $E_{11}$

	The fields of $E_{11}$
	The fields of $E_{11}$
	The fields of $E_{11}$
	$E_{11}$ and dimensional reduction
	$E_{11}$ and dimensional reduction
	$E_{11}$ and dimensional reduction

	$E_{11}$ and dimensional reduction
	$E_{11}$ and dimensional reduction
	Some dynamics
	Some dynamics
	Some dynamics

	Conclusions
	Conclusions
	Conclusions
	Conclusions


