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about some recent numerical simulations for random walks saquare

lattice — Brownian curves in the continuous limit (in particular thei
Hausdorff dimensions)

new definition of a Brownian frontier~ new Hausdorff dimension ?



as it is well known: the Hausdorff dimension of the extermahtier of
Brownian curves isly = 4/3 (numerical conjecture bylandelbrot proved
by SLE:Lawler, Schramm, Werner "The dimension of the planar Br@amni
frontier is 4/3” Mathematical Research Letters 8 (2001))

Hausdorff dimensioialy

P = perimeter of the frontier and= typical size

scalingP = r

-for example for a circlé®> =21r = dy =1
-for Brownian curves:

the external frontier is defined "geometrically” as the dgt@nts where
one stops when one meets the curve for the first time arrivomg fnfinity

— N0 excursion inside the curve and problem of orientatiortferfrontier



the question asked:
can we define the frontier in a different way oriented

Some ideas from:

- Site percolation on a square lattice

- recent progress on Brownian winding sectors (SEH)-winding sectors

= excursions inside the curve



site percolation on a square lattice
probability O< p< 1
on each site of a square lattice draw randomly a numbenO< 1.
If a > p— insulator (white) ifa < p — conductor (black)
percolation means:
-current flows if at least one edge in common
-current does not flow if one vertex in common
critical percolation: ap. = 0.593.. (numerical) the percolating cluster scales like the
overall size of the lattice

still there are non percolating sectors inside the cluster:

-fjords = non percolating sectors which can be connectetid¢cekterior (since

the current does not flow)
-lakes = non percolating sectors which cannot be conneotduktexterior (deep

Inside the cluster)



An example:

a) site percolation cluster b) external frontier c) extéenfords frontier



Hausdorff dimension: scaling of the perimekewith the typical size of
the cluster

at critical percolationr ~ size of the lattice

-for the perimeter of the external frontier of the clusty:=4/3

-for the perimeter of the external +fjords frontielj = 7/4

external 4/3 — excursion around the fjords7/4

Can something analogous to fjords and lakes can be defin&rdamian
curves ?



2d Brownian curves:

random walk on a square lattiee probability 1/4 — up, down, left, right
number of stepsdl = continuum limitN — c, a— 0

with Na? = 2t fixedt is the time=- infinite lengthNa — oo

— in the continuum: probability for the Brownian particle gachr at time
t starting fromrg at time O

G(F,t/f0,0) = ﬁe_(f—?o)z/2t

l.e. free 2d quantum propagator
=< (T —Tg)? >= [d?TG(T,t /To,0)(T —Tg)? = 2t
— typical size of a Brownian curve after timer = /2t

regularized lengtha(Na) = 2t = r% = surface filling curvedy = 2 (circle)

perimeter of the external frontieP.= r¥/3 = dy = 4/3



Look inside the curven-winding sectors= connected set of points enclosed
n times by the curve

a) a closed Brownian curve with winding sectors- —2,—1,0,1,2



Comtet, Desbois, S.0. (1990)

random variablé&, = arithmetic area of the-winding sectors inside a
Brownian curve of lengtlh

scaling properties of Brownian curves S, scales like

average< S, > on all closed curves of lengthcan be computed by path
Integral technics



t F(1)

path integral G(F,t/fo,0) = e (T0)%/2 — fr DF’e f§ 5l

closed curve(t) =Ty
probability P(Tp, n,t) to wind n times around the origin after tine
0=2mM—-n= anoedr

— constrain® = [ e2mi(n— g fo 8T) g

1 rte
N, 37 Jo 8T
2

in the path integralP(Fo, n,t) = [y dag2mn fr o °Dre ~ Jo("3 +iaB)dr
in the actionn® = A.F — A vector potentiak= 000 = guantum particle
coupled to an Aharanov-Bohm flux@ at the origin

set of all closed curves of lengthintegrate overyg
— P(n,t) = [dFgP(Fo,n,t) = [5 dag?™"Z(a)

Z:(a) = Aharonov-Bohm partition function (witB — t)

S, = arithmetic area-winding sectors— B field also needeés- the result :



Nn=0:< & >= o since outside O-winding sea necessarily included
(integration over initial pointp)
=< & > Inside the curve not known

1994: W. Werner thesis : "Sur 'ensemble des points autosguaels le
mouvement Brownien plan tourne beaucoup”

whenn — c one has®§, —< NS, >= -+

2005: Garban, Trujillo Ferreras "The expected area of thedfpplanar
Brownian loop isrt/5” SLE — total arithmetic area known
<S>=tg=<SH>+23_ <S>

=< S >=tgg

— pay more attention to the 0-winding sectors which can be ecieal to
the outside (like percolation fjords)



a simple example

a) b)
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a) closed random walk and winding sectors b) same walk witbremted
frontier (the fjord is opened)



a) and b) are two possible time histories of the same randadm pa
= always possible to follow a time history such that one cameei
frontier

- on one side O0-winding sector and on the other stdewinding sector

-different from usual exterior (geometric) non orienteoiftier

-excursions inside the walk around the fjords

— orientedfrontier =external + fjorddrontier



= 0-windings=fjords + lakes: remain inside the curve (as ircpkation)



in red a closed random wa = 1000000

In blue the fjords, in green the lakes: the fjords remain @endbundary of
the walk; the lakes proliferate inside the walk.



numerical simulation for random walks on a square latti¢e 10* — 10)

1e+06 —
%C)
100000 ¢ M | ><’/ b) ;
10000 *x | =
1000 | * . , L
” <r 1000 | |
¢ a)external (geometric) frontier

b)external+fjords (oriented) frontier c)external+fjetdakes(disconnected) :
the slopes are a) and b)=4/3 and ¢).Z~ 7/4



numerics:

-smallN ~ 10000— big statistics needed
— up to 100000 curves

-big N ~ 10000000

— up to 30000 curves

for a givenN:

-for each curve estimate andr

-deduce< P > and<r >

=- a point in the plot



- Hausdorff dimension of the perimeter of the external-«fgoriented
frontier

4
dH:§

same as the external frontier the fjords are subleading in the continuum

take also into account the lakes disconnected frontier:

- Hausdorff dimension of the perimeter of the external-«fgatlakes frontier
i =

= 4/3 — 7/4 due to the lakes proliferation : leading in the continuum



If you take the same point of view in percolation: (numersiahulation
with lattice size up to 3208 3200)

- Hausdorff dimension of the perimeter of the external-egxlakes

disconnected frontier
dy ~ 19— Z—é

Summary
BROWNIAN PERCOLATION
exterior 3 exterior 3
exterior+fjords; exterior+fjords;
exterior+fjords+lakeg exterior+fjords+lakes:

91/48: same dimension as the mass (i.e. area) of the percottisgpr



percolation: mass of the object (i.e. areaperimeter dy = i—é very porous
Brownian: the same thing happeasS>=r1t/5andL=2t — dy =2
percolation and Brownian: analogous and different

with opened questions:

Brownian : oriented frontier (fjords} 4/3 and disconnected frontier 7/4
Percolation : disconnected frontier91/48

— SLE ??



