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about some recent numerical simulations for random walks ona square

lattice→ Brownian curves in the continuous limit (in particular their

Hausdorff dimensions)

new definition of a Brownian frontier→ new Hausdorff dimension ?



as it is well known: the Hausdorff dimension of the external frontier of

Brownian curves isdH = 4/3 (numerical conjecture byMandelbrot, proved

by SLE:Lawler, Schramm, Werner ”The dimension of the planar Brownian

frontier is 4/3” Mathematical Research Letters 8 (2001))

Hausdorff dimensiondH

P = perimeter of the frontier andr = typical size

scalingP = rdH

-for example for a circleP = 2πr ⇒ dH = 1

-for Brownian curves:

the external frontier is defined ”geometrically” as the set of points where

one stops when one meets the curve for the first time arriving from infinity

→ no excursion inside the curve and problem of orientation forthe frontier



the question asked:

can we define the frontier in a different way→ oriented

Some ideas from:

- site percolation on a square lattice

- recent progress on Brownian winding sectors (SLE)→ 0-winding sectors

⇒ excursions inside the curve



site percolation on a square lattice:
probability 0< p < 1
on each site of a square lattice draw randomly a number 0< α < 1:
if α > p → insulator (white) ifα < p → conductor (black)
percolation means:
-current flows if at least one edge in common
-current does not flow if one vertex in common
critical percolation: atpc = 0.593... (numerical) the percolating cluster scales like the
overall size of the lattice

still there are non percolating sectors inside the cluster:

-fjords = non percolating sectors which can be connected to the exterior (since
the current does not flow)

-lakes = non percolating sectors which cannot be connected to the exterior (deep
inside the cluster)



An example:

a)

b)

c)

a) site percolation cluster b) external frontier c) external + fjords frontier



Hausdorff dimension: scaling of the perimeterP with the typical sizer of

the cluster

at critical percolationr ≃ size of the lattice

-for the perimeter of the external frontier of the cluster:dH = 4/3

-for the perimeter of the external +fjords frontier:dH = 7/4

external 4/3→ excursion around the fjords7/4

Can something analogous to fjords and lakes can be defined forBrownian

curves ?



2d Brownian curves:

random walk on a square latticea: probability 1/4→ up, down, left, right
number of stepsN ⇒ continuum limitN → ∞, a → 0
with Na2 = 2t fixed t is the time⇒ infinite lengthNa → ∞
→ in the continuum: probability for the Brownian particle to reach~r at time
t starting from~r0 at time 0

G(~r, t/~r0,0) = 1
2πt e−(~r−~r0)

2/2t

i.e. free 2d quantum propagator

⇒< (~r−~r0)
2 >=

∫
d2~rG(~r, t/~r0,0)(~r−~r0)

2 = 2t

→ typical size of a Brownian curve after timet : r =
√

2t

regularized length :a(Na) = 2t = r2 ⇒ surface filling curvedH = 2 (circle)

perimeter of the external frontier :P = r4/3 ⇒ dH = 4/3



Look inside the curve:n-winding sectors= connected set of points enclosed
n times by the curve

b)a)

c)
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a) a closed Brownian curve with winding sectorsn = −2,−1,0,1,2



Comtet, Desbois, S.O. (1990)

random variableSn = arithmetic area of then-winding sectors inside a

Brownian curve of lengtht

scaling properties of Brownian curves→ Sn scales liket

average< Sn > on all closed curves of lengtht can be computed by path

integral technics



path integral:G(~r, t/~r0,0) = 1
2πt e−(~r−~r0)

2/2t =
∫~r(t)=~r
~r(0)=~r0

D~re−
∫ t
0

~̇r2(τ)
2 dτ

closed curve~r(t) =~r0

probabilityP(~r0,n, t) to wind n times around the origin after timet:
θ = 2πn → n = 1

2π
∫ t

0 θ̇dτ

⇒ constraintδn, 1
2π

∫ t
0 θ̇dτ =

∫ 1
0 ei2πα(n− 1

2π
∫ t
0 θ̇dτ)dα

in the path integralP(~r0,n, t) =
∫ 1

0 dαei2παn ∫~r(t)=~r0
~r(0)=~r0

D~re−
∫ t
0(

~̇r2
(τ)
2 +iαθ̇)dτ

in the actionαθ̇ = ~A.~̇r → ~A vector potential= α~∂θ ⇒ quantum particle
coupled to an Aharanov-Bohm flux 2πα at the origin

set of all closed curves of lengtht: integrate over~r0

→ P(n, t) =
∫

d~r0P(~r0,n, t) =
∫ 1

0 dαei2παnZt(α)

Zt(α) = Aharonov-Bohm partition function (withβ → t)

Sn = arithmetic arean-winding sectors→ B field also needed⇒ the result :



n 6= 0 : < Sn >= t
2πn2

n = 0 : < S0 >= ∞ since outside 0-winding sea necessarily included

(integration over initial point~r0)

⇒< S0 > inside the curve not known

1994: W. Werner thesis : ”Sur l’ensemble des points autour desquels le

mouvement Brownien plan tourne beaucoup”

whenn → ∞ one hasn2Sn →< n2Sn >= t
2π

2005: Garban, Trujillo Ferreras ”The expected area of the filled planar

Brownian loop isπ/5” SLE→ total arithmetic area known

< S >= t π
5 =< S0 > +2∑∞

n=1 < Sn >

⇒< S0 >= t π
30

→ pay more attention to the 0-winding sectors which can be connected to

the outside (like percolation fjords)



a simple example
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a) closed random walk and winding sectors b) same walk with anoriented
frontier (the fjord is opened)



a) and b) are two possible time histories of the same random path

⇒ always possible to follow a time history such that one can define a

frontier

- on one side 0-winding sector and on the other side±1-winding sector

-different from usual exterior (geometric) non oriented frontier

-excursions inside the walk around the fjords

→ orientedfrontier =external + fjordsfrontier



b)a)

c)
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⇒ 0-windings=fjords + lakes: remain inside the curve (as in percolation)



in red a closed random walkN = 1000000

in blue the fjords, in green the lakes: the fjords remain on the boundary of

the walk; the lakes proliferate inside the walk.



numerical simulation for random walks on a square lattice (N : 104 → 107)
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a)

b)

c)

a)external (geometric) frontier

b)external+fjords (oriented) frontier c)external+fjords+lakes(disconnected) :

the slopes are a) and b)= 4/3 and c) = 1.77≈ 7/4



numerics:

-smallN ≃ 10000→ big statistics needed

→ up to 100000 curves

-big N ≃ 10000000

→ up to 30000 curves

for a givenN:

-for each curve estimateP andr

-deduce< P > and< r >

⇒ a point in the plot



- Hausdorff dimension of the perimeter of the external+fjords oriented

frontier

dH = 4
3

same as the external frontier→ the fjords are subleading in the continuum

take also into account the lakes⇒ disconnected frontier:

- Hausdorff dimension of the perimeter of the external+fjords+lakes frontier

dH = 7
4

⇒ 4/3→ 7/4 due to the lakes proliferation : leading in the continuum



if you take the same point of view in percolation: (numericalsimulation

with lattice size up to 3200×3200)

- Hausdorff dimension of the perimeter of the external+fjords+lakes

disconnected frontier

dH ≃ 1.9→ 91
48

Summary

BROWNIAN

exterior 4
3

exterior+fjords4
3

exterior+fjords+lakes74

PERCOLATION

exterior 4
3

exterior+fjords7
4

exterior+fjords+lakes91
48

91/48: same dimension as the mass (i.e. area) of the percolatingcluster



percolation: mass of the object (i.e. area)≃ perimeter :dH = 91
48 very porous

Brownian: the same thing happens< S >= πt/5 andL = 2t → dH = 2

percolation and Brownian: analogous and different

with opened questions:

Brownian : oriented frontier (fjords)= 4/3 and disconnected frontier= 7/4

Percolation : disconnected frontier= 91/48

→ SLE ??


