RSOS paths, quasi-particles and fermionic characters

> Pierre Mathieu Université Laval

(collaboration with Patrick Jacob)

Minimal model M(p', p)

Central charge

$$c = 1 - \frac{6(p - p')^2}{pp'}$$

(with p', p coprime and say p > p')

Conformal dimensions:

$$h_{r,s} = \frac{(pr - p's)^2 - (p - p')^2}{4pp'} = h_{p' - r, p - s}$$

$$1 \le r \le p'-1$$
 and $1 \le s \le p-1$

Highest-weight modules are completely degenerate

Embedding pattern of singular vectors

 $(r, s) \sim (p' - r, p - s)$

Character of the irreducible modules

Character:

$$\chi_{r,s}^{(p',p)}(q) = \frac{1}{(q)_{\infty}} - \frac{q^{rs}}{(q)_{\infty}} - \frac{q^{(p'-r)(p-s)}}{(q)_{\infty}} + \frac{q^{rs+(p'+r)(p-s)}}{(q)_{\infty}} + \frac{q^{(p'-r)(p-s)+r(2p-s)}}{(q)_{\infty}} - \cdots$$

where (Verma character)

$$\frac{1}{(q)_{\infty}} \equiv \frac{1}{\prod_{n \ge 1} (1 - q^n)} = \sum_{n \ge 0} p(n) q^n$$

- This formula is thus an alternating sign expression ...
- obtained by representation theory...
- but not very physical !

Fermionic character formula

- Every character in minimal models has a representation in terms of a positive multiple-sum
- This is called a fermionic character
- It reflects the filling of the space of states with quasi-particles subject to restrictions and without singular vectors

Fermionic character formula

- Every character in minimal models has a representation in terms of a positive multiple-sum
- This is called a fermionic character
- It reflects the filling of the space of states with quasi-particles subject to restrictions and without singular vectors
- Example: Ising vacuum:

$$\chi_{1,1}^{(3,4)}(q) = \sum_{m=0}^{\infty} \frac{q^{2m^2}}{(q)_{2m}}$$

where

$$(\boldsymbol{q})_m \equiv \prod_{i=1}^m (1-\boldsymbol{q}^i)$$

manifestly positive:

$$\frac{1}{(1-q^j)} = 1 + q^j + q^{2j} + \dots$$

The M(2, 2k+1) model [Feigin-Nakanashi-Ooguri '91]

$$\chi_{1,s}^{(2,2k+1)}(q) = \sum_{m_1,\cdots,m_{k-1}=0}^{\infty} \frac{q^{mBm+Cm}}{(q)_{m_1}\cdots(q)_{m_{k-1}}}$$

where

$$B_{ij} = \min(i, j)$$
 $C_j = \max(j - s + 1)$

The M(2, 2k+1) model [Feigin-Nakanashi-Ooguri '91]

$$\chi_{1,s}^{(2,2k+1)}(q) = \sum_{m_1,\cdots,m_{k-1}=0}^{\infty} \frac{q^{mBm+Cm}}{(q)_{m_1}\cdots(q)_{m_{k-1}}}$$

where

$$B_{ij} = \min(i, j)$$
 $C_j = \max(j - s + 1)$

Basis of states:

$$L_{-n_1}\cdots L_{-n_N}|h_{1,s}\rangle \qquad (n_i>0)$$

with

$$n_i \ge n_{i+k-1} + 2$$
 and $n_{p-s+1} \ge 2$

(sort of generalized exclusion principle plus a boundary condition that selects the module)

Origin in CFT: These constraints come from the non-trivial vacuum singular vector

The M(2, 2k+1) model [Feigin-Nakanashi-Ooguri '91]

$$\chi_{1,s}^{(2,2k+1)}(q) = \sum_{m_1,\cdots,m_{k-1}=0}^{\infty} \frac{q^{mBm+Cm}}{(q)_{m_1}\cdots(q)_{m_{k-1}}}$$

where

$$B_{ij} = \min(i,j)$$
 $C_j = \max(j-s+1)$

Questions

- What is the CFT interpretation of the m_i?
- If a fermionic form is related to an integrable perturbation: this is the φ_{1,3} one: how does this enters in the structure?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

The *M*(3,*p*) models [Jacob, M '06; Feigin et al '06]

Extended algebra construction:

$$\phi_{2,1} \times \phi_{2,1} = \phi_{1,1} + \phi_{3,1} = \phi_{1,1}$$

e.g., with

$$\phi \equiv \phi_{2,1} \qquad \text{and} \qquad h \equiv h_{2,1} = \frac{p-2}{4}$$

$$\phi(z)\phi(w) = \frac{1}{(z-w)^{2h}} \left[I + (z-w)^2 \frac{2h}{c} T(w) + \cdots \right] S$$

and $S = (-1)^{\textit{p}\mathscr{F}}$ where \mathscr{F} counts the number of φ modes

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Basis of states

Generalized commutation relations + singular vector of ϕ :

$$egin{aligned} & \varphi_{-s_1}\,\varphi_{-s_2}\cdots\varphi_{-s_{N-1}}\,\varphi_{-s_N}\,|\sigma_\ell
angle\,, \ & s_i \geq s_{i+1}-rac{p}{2}+3\,, \qquad s_i \geq s_{i+2}+1 \end{aligned}$$

with

and the boundary conditions:

$$s_{N-1} \ge -h + \frac{\ell}{2} + 1$$
, $s_N \ge h - \frac{\ell}{2}$

where

$$s_{N-2i} \in \mathbb{Z} + h + rac{\ell}{2}$$
 and $s_{N-2i-1} \in \mathbb{Z} - h + rac{\ell}{2}$

The spectrum is fixed by associativity

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The M(3, p) character formula

$$\chi_{1,s}^{(3,p)}(q) = \sum_{m_1,m_2,\cdots,m_k \ge 0} \frac{q^{mB'm+C'm}}{(q)_{m_1}\cdots(q)_{m_{k-1}}(q)_{2m_k}},$$

where k is defined via

$$p = 3k + 2 - \epsilon$$
 ($\epsilon = 0, 1$)

with $1 \le i,j \le k-1$ $B'_{ij} = \min(i,j)$, $B'_{jk} = B'_{kj} = \frac{j}{2}$, $B'_{kk} = \frac{k+\epsilon}{4}$,

and C' reads

$$C'_{j} = \max(j-s+1,0), \qquad C'_{k} = \frac{k-\epsilon-s+1}{2},$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

The M(3, p) character formula

$$\chi_{1,s}^{(3,p)}(q) = \sum_{m_1,m_2,\cdots m_k \ge 0} rac{q^{mB'm+C'm}}{(q)_{m_1}\cdots (q)_{m_{k-1}}(q)_{2m_k}} ,$$

where k is defined via

$$p = 3k + 2 - \epsilon$$
 ($\epsilon = 0, 1$)

Questions

- What is the CFT interpretation of the m_i?
- If a fermionic form is related to an integrable perturbation: this is the φ_{1,3} one: how does this fit with a formulation in terms of the φ_{2,1} modes ?

On the CFT derivations of fermionic characters in M(p', p) models

- ► The M(2,p) and the M(3,p) models are the only ones for which there is a 'complete' CFT derivation of the fermionic characters
- ► Generalization of the *M*(3,*p*) case to *M*(*p*',*p*):
 - 1- Replace $\phi_{2,1}$ by $\phi_{p'-1,1}$ [M,Ridout '07]
 - 2- Treat $\phi_{2,1}$ with its 2 channels [Feigen-Jimbo-Miwa-Mutkhin-Takayema '04,'06]
 - Monomial bases have been derived/conjectured for all models but the corresponding formula is not written
 - These bases can be reexpressed in terms of RSOS-type configuration sums

Origins of Fermionic forms

- Bases in affine Lie algebras (parafermions) [Lepowski-Primc '85]
- ▶ Bases for the *M*(2,*p*) models [Feigin-Ooguri-Nakanishi '91]
- Dilogarithmic identities [Nahm et al '92; Kuniba-Nakanishi-Suzuki (generalized parafermions)]
- Many conjectured expressions for the minimal models [Kedem-Klassen-McCoy-Melzer '93]
- Counting of states in XXZ: truncation and q-deformation [Berkovich-McCoy-Schilling: '94-'95]
- Spinon bases for su(2)_k [Bernard et al, Bouwknegt et al '94]
- Mathematical transformations of identities (Bayley and Burge transforms) [Foda-Quano, Berkovich-McCoy,...]

Origins of Fermionic forms: The RSOS side

RSOS models:

Andrews-Baxter-Forrester (1984) (unitary case)

Forrester-Baxter (1985) (non-unitary case)

Key observation [Date, Jimbo, Kuniba, Miwa, Okado]:

1D configuration sums (obtained by CTM) in regime III (a lattice realization of the $\phi_{1,3}$ perturbation) are the M(p',p) irreducible characters

 Configurations sums leads to fermionic character in a systematic way [Melzer, Warnaar, Foda, Welsh]

Origins of Fermionic forms: The RSOS side

RSOS models:

Andrews-Baxter-Forrester (1984) (unitary case)

Forrester-Baxter (1985) (non-unitary case)

Key observation [Date, Jimbo, Kuniba, Miwa, Okado]:

1D configuration sums (obtained by CTM) in regime III (a lattice realization of the $\phi_{1,3}$ perturbation) are the M(p',p) irreducible characters

 Configurations sums leads to fermionic character in a systematic way [Melzer, Warnaar, Foda, Welsh]

...but the derivation is not constructive and the underlying quasi-particle structure remains unclear (except in the unitary case)

RSOS(p', p) paths (regime-III)

States in the finitized M(p',p) minimal models (with p > p') are described by RSOS(p',p) configurations

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Configurations

- Configuration = sequence of values of the height variables ℓ_i ∈ {1,2,...,p−1} (0 ≤ i ≤ L)
- ► with the admissibility condition: |ℓ_i ℓ_{i+1}| = 1
- ► and the boundary conditions:
 ℓ₀, ℓ_{L-1} and ℓ_L fixed

RSOS(p', p) paths (regime-III)

States in the finitized M(p',p) minimal models (with p > p') are described by RSOS(p',p) configurations

Configurations

- Configuration = sequence of values of the height variables ℓ_i ∈ {1,2,...,p−1} (0 ≤ i ≤ L)
- ► with the admissibility condition: |ℓ_i ℓ_{i+1}| = 1
- ► and the boundary conditions:
 ℓ₀, ℓ_{L-1} and ℓ_L fixed

Paths

- A path is the contour of a configuration.
- ▶ Path = sequence of NE or SE edges joining the adjacent vertices (i, l_i) and $(i + 1, l_{i+1})$ of the configuration within the rectangle $1 \le y \le p - 1$ and $0 \le x \le L$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- with ℓ_0 and ℓ_L fixed
- and fixed last edge: SE

A typical configuration for the M(p',7) model: $\ell_0 = 1$, $\ell_{19} = 4$, $\ell_{20} = 3$

A typical configuration for the M(p',7) model: $\ell_0 = 1$, $\ell_{19} = 4$, $\ell_{20} = 3$

and the corresponding path (with $\ell_{20} = 3$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 ● のへの

A typical path for the M(p',7) model: $\ell_0 = 1$ and $\ell_{20} = 3$ and final SE

A typical path for the M(p',7) model: $\ell_0 = 1$ and $\ell_{20} = 3$ and final SE

But this corresponds to a state for which model ? (value of p'?)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- …and to which module (r,s)?
- ...and what is its conformal dimension?

Weighting the path

The dependence of the path upon the parameter p' is via the weight function:

$$\tilde{w} = \sum_{i=1}^{L-1} \tilde{w}_i$$

The expressions of \tilde{w}_i/i for the extrema

	p' = 2		p'=3		p'=6	
h	max	min	max	min	max	min
6	-3		-2	_	0	—
5	-2	4	-2	3	0	0
4	-2	3	-1	2	0	0
3	-1	2	-1	2	0	0
2	0	2	0	1	0	0
1	_	1	_	1	—	0

The simplicity of unitary models

The weight function is not positive

Exception: the unitary models:
$$p' = p - 1$$

 $\left[h \frac{(p - p')}{p} \right] = \left[\frac{h}{p} \right] = 0$ since $h < p$

Weight vs conformal dimension

- Classes of paths are specified by lo and lL
- Ground-state path = unique path with minimal weight with ℓ_0, ℓ_L given
- This path represents a highest-weight state
- Let its weight be W_{gs}
- The relative weight ∆w̃ = w̃ − w̃_{gs} is the (relative) conformal dimension

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Generating functions for paths

The GF is the q-enumeration of the paths

$$X^{(p',p)}_{\ell_0,\ell_L}(q) = \sum_{ ext{pot} b \in \mathcal{W}} q^{\Delta ilde{ extsf{w}}}$$

paths with ℓ_0 and ℓ_L fixed

Generating functions for paths

The GF is the q-enumeration of the paths

$$X^{(p',p)}_{\ell_0,\ell_L}(q) = \sum_{\substack{ ext{paths with} \ \ell_0 ext{ and } \ell_L ext{ fixed}}} q^{\Delta ilde w}$$

When $L \rightarrow \infty$: this is a character of M(p', p):

The GF is the q-enumeration of the paths

$$X^{(p',p)}_{\ell_0,\ell_L}(q) = \sum_{\substack{ ext{paths with} \\ \ell_0 ext{ and } \ell_l ext{ fixed}}} q^{\Delta ilde w}$$

When $L \rightarrow \infty$: this is a character of M(p', p):

But for which module?

Need to relate (r, s) to ℓ_0 and ℓ_L

A new weight function for the paths (FLPW)

- Make the defining rectangle looks p'-dependent
- Color the p'-1 strips between the heights *h* and *h*+1 for which:

$$\left\lfloor \frac{hp'}{p} \right\rfloor = \left\lfloor \frac{(h+1)p'}{p} \right\rfloor - 1.$$

Solutions:

$$h = h_r \equiv \left\lfloor \frac{rp}{p'} \right\rfloor$$
 for $1 \le r \le p' - 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Our path for any M(p',7) model

Our path for any M(p',7) model

The same path for the M(2,7) model.

◆ロト★御と★臣と★臣と 臣 のなぐ

The same path for the M(3,7) model.

The same path for the M(3,7) model.

The same path for the M(4,7) model.

◆ロ▶◆舂▶◆き▶◆き▶ き のなぐ

The same path for the M(5,7) model.

The same path for the M(5,7) model.

The same path for the M(6,7) model.

◆ロ▶◆母▶◆ヨ▶◆ヨ▶ ヨーの♀⊙

Observations:

- The band structure is symmetric with respect to up-down reflection
- For unitary models, p = p' + 1, all the bands are colored
- For the M(2,p) models, there is a single colored band

• Colored bands are isolated when $p \ge 2p' - 1$

New weight function for the paths: w (FLPW)

This is a positive definite weighting

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Our M(2,7) path with the "scoring vertices"

$$\circ \leftrightarrow U_i \quad \bullet \leftrightarrow V_i$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

The ground-state path for the case $\ell_0 = 1$ and $\ell_L = 3$

A single scoring vertex:

$$u_i = \frac{1}{2}(i - \ell_i - \ell_0) \qquad \Rightarrow \qquad u_2 = \frac{1}{2}(2 - 3 - 1) = 0$$

< □ > < □ > < □ > < □ > < □ > < □ >

э

The weight is absolute: w = 0

Module identification vs boundaries

- Tails in colored bands have weight w = 0
- Such tails are the proper ends for infinite paths
- Characterization of r,s:

$$\ell_0 = s$$
 and $\ell_L = \left\lfloor \frac{rp}{p'} \right\rfloor$

The modules are thus characterized by the boundary conditions

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The path

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

describes the state of lowest dimension in the vacuum module $|h_{1,1}\rangle = |0\rangle$ of M(2,7)

i.e.: it represents a finitized version of the vacuum state

All modules are covered by taking $1 \le s \le p - 1 = 6$ (since $1 \le r \le p' - 1 = 1$) The first few sates in the M(2,7) vacuum module:

These correspond to the first few terms in the character

$$\chi^{2,7}_{1,1}(q) = 1 + q^2 + q^3 + 2q^4 + 2q^5 + 3q^6 + \cdots$$

Characters = GF for infinite paths

GF for paths is

$$X^{(p',p)}_{\ell_0,\ell_L}(q) = \sum_{paths} q^w$$

- Set $\ell_0 = s$ and $\ell_L = \lfloor \frac{rp}{p'} \rfloor$
- GF = finitized version of the Virasoro characters $\chi_{r,s}^{(p',p)}(q)$
- The full Virasoro character is

$$\chi_{r,s}^{(p',p)}(q) = \lim_{L \to \infty} X_{s, \lfloor \frac{rp}{p'} \rfloor}^{(p',p)}(q)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Where are the quasi-particles in a RSOS(2, p) path?

e.g., in the RSOS(2,7) path?

Where are the quasi-particles in a RSOS(2, p) path?

e.g., in the RSOS(2,7) path?

・ロット (雪) (日) (日)

э

Idea: look at the "peaks in their whole"

・ロト ・ 日 ・ ・ ヨ ・ ・

э

 $\tilde{w} = x_5$

Observations:

- full peaks whose top is not above the colored band have w = 0
- full peaks whose top is above the colored band have

w = x-position of the maximum

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

| ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

 $\tilde{w} = 3x_5$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Observations:

- valleys not below the colored band have zero weight
- valleys below the colored band have weight

w = x-position of the minimum

Above path: two peaks above and a valley below the colored band:

$$\tilde{w} = (x_5 - 3) + x_5 + (x_5 + 3) = 3x_5$$

Transformation of the RSOS(2, p) paths

These observations suggest to transform the RSOS(2,7) path

Transformation of the RSOS(2, p) paths

These observations suggest to transform the RSOS(2,7) path

by flattening the colored band

redefine the vertical axis

redefine the vertical axis

and fold the lower part onto the upper one

▲ロト▲聞ト▲国ト▲国ト 国 のQで

redefine the vertical axis

and fold the lower part onto the upper one

the weight is the *x* position of the peaks:

$$w = 2 + 9 + 14 + 17$$

Is this 1-1?

Is this 1-1?

is also related to

◆ロ▶★録▶★度▶★度▶ 度 のQで

Is this 1-1?

is also related to

But this has a final NE edge: enforcing a final SE: 1-1 relation,

These are integer lattice paths

defined in the strip:

$$0 \le x \le \infty$$
, $0 \le y \le k-1$

(with p = 2k + 1)

- composed of NE, SE and Horizontal edges (H iff y = 0)
- weight = x position of the peaks

Bressoud path = sequence of fermi-type charged particles

An example of Bressoud path for k = 5 and initial point (0,0) as a sequence charged peaks (= particles)

$$m_1 = 3, m_2 = 2, m_3 = 1, m_4 = 2$$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

э

The charge content of the path is:

Bressoud paths \approx 1D fermi-gas

Rules for constructing the generating function of all Bressoud paths with fixed boundaries (ex: $y_0 = 0$)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 For a fixed charge content (fixed {m_j}): determine the configuration of minimal weight (mwc)

Bressoud paths \approx 1D fermi-gas

Rules for constructing the generating function of all Bressoud paths with fixed boundaries (ex: $y_0 = 0$)

 For a fixed charge content (fixed {m_j}): determine the configuration of minimal weight (mwc)

Example: $m_1 = 3, m_2 = 2, m_3 = 1$:

・ロト ・ 戸 ・ ・ ヨ ・ ・ 日 ・
Bressoud paths \approx 1D fermi-gas

Rules for constructing the generating function of all Bressoud paths with fixed boundaries (ex: $y_0 = 0$)

 For a fixed charge content (fixed {m_j}): determine the configuration of minimal weight (mwc)

Example: $m_1 = 3, m_2 = 2, m_3 = 1$:

• Evaluate its weight: above $w_{mwc} = 1 + 3 + 5 + 8 + 12 + 17$ In general

$$w_{\text{mwc}} = \sum_{i,j=1}^{k-1} \min(i,j) m_i m_j$$

Move the particles (peaks) in all possible ways and q-count them Example: consider m₁ = 3

► Move the particles (peaks) in all possible ways and *q*-count them Example: consider m₁ = 3

Rule 1: Identical particles are impenetrable (hard-core repulsion): Example: move the rightmost by 9, the next by 6 and the third by 4

(日)

► Move the particles (peaks) in all possible ways and *q*-count them Example: consider m₁ = 3

Rule 1: Identical particles are impenetrable (hard-core repulsion): Example: move the rightmost by 9, the next by 6 and the third by 4

Generating factor for these moves
= the number of partitions with at most three parts:

$$\frac{1}{(1-q)(1-q^2)(1-q^3)} \equiv \frac{1}{(q)_3} \longrightarrow \frac{1}{(q)_{m_1}}$$

Rule 2: Particles of different charges can penetrate Consider the successive displacements of the peak 1 in :

 Every move of 1 unit increases the weight by 1 independently of the presence of higher charged particles

i.e.
$$\frac{1}{(q)_{m_1}}$$
 is generic

The same holds for the other particles:

factor
$$\frac{1}{(q)_{m_j}}$$
 for each type $1 \le j \le k-1$

Generating functions for all paths with fixed charge content

$$G(\{m_j\}) = \frac{q^{w_{\mathsf{mwc}}}}{(q)_{m_1} \dots (q)_{m_{k-1}}}$$

with

$$w_{\mathsf{mwc}} = \sum_{i,j=1}^{k-1} \min(i,j) \, m_i \, m_j$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Full generating function:

$$G = \sum_{m_1, \cdots, m_{k-1}} G(\{m_j\})$$

i.e.

$$\mathbf{G} = \chi_{1,1}^{(2,2k+1)} = \sum_{m_1,\cdots,m_{k-1}=0}^{\infty} \frac{q^{N_1^2 + \cdots + N_{k-1}^2 + N_1 + \cdots + N_{k-1}}}{(q)_{m_1} \cdots (q)_{m_{k-1}}}$$

with N_i defined as

$$N_j = m_j + \cdots + m_{k-1}$$

<□ > < @ > < E > < E > E のQ @

Full generating function:

$$G = \sum_{m_1, \cdots, m_{k-1}} G(\{m_j\})$$

i.e.

$$\mathbf{G} = \chi_{1,1}^{(2,2k+1)} = \sum_{m_1,\dots,m_{k-1}=0}^{\infty} \frac{q^{N_1^2 + \dots + N_{k-1}^2 + N_1 + \dots + N_{k-1}}}{(q)_{m_1} \cdots (q)_{m_{k-1}}}$$

with N_i defined as

$$N_j = m_j + \cdots + m_{k-1}$$

- This is the fermionic character of the M(2,2k+1) vacuum module (FNO)
- derived directly from the RSOS(2,2k+1) paths (using the Fermi-gas method of Warnaar)

From RSOS(p', p) to generalized Bressoud paths

- Restriction to $p \ge 2p' 1$: isolated colored bands
- Flatten all colored bands and fold the part below the first band
- Result: generalized Bressoud paths defined in

$$0 \le x \le L$$
 $0 \le y \le p - p' - \left\lfloor \frac{p}{p'} \right\rfloor$

...with H edges allowed at height

$$y(r) = \left\lfloor \frac{r\rho}{\rho'} \right\rfloor - \left\lfloor \frac{\rho}{\rho'} \right\rfloor - r + 1$$

(with a condition relating the parity of successive H edges and the change of direction of the path)

► ...and weight = (half) x position of the (half) peaks

Our M(3,7) path

Our M(3,7) path

is transformed into

with H edges allowed at y = 0, 1 but not y = 2

◆□▶◆□▶◆□▶◆□▶ □ のへで

$$w = 2 + 5 + 9 + 19 + \frac{1}{2}(7 + 11 + 13 + 15)$$

▲ロ▶▲圖▶▲圖▶▲圖▶ 圖 のQC

These contributing vertices are not the "scoring vertices"

◆ロ▶★母▶★国▶★国▶ 国 のQで

Similary, our M(4,7) path

is transformed into:

where H edges are allowed at y = 0, 1, 2 and $w = 14 + \frac{1}{2}(4 + 8 + 10 + 16 + 18) - (w_{gs} = 1)$

Fermi-gas analysis of the B(3, p) paths

M(3, 11) (case p = 3k + 2): 3 particles

(日)

▲ロ▶▲圖▶▲圖▶▲圖▶ ▲国 ● の Q @

Direct Fermi-gas analysis:

$$\chi_{1,1}^{(3,p)}(q) = \sum_{m_1,m_2,\cdots m_k \ge 0} \frac{q^{mBm+Cm-\epsilon m_k^2}}{(q)_{m_1}\cdots (q^{1+\epsilon};q^{1+\epsilon})_{m_{k-1}}(q)_{2m_k}},$$

where *k* and $\epsilon = 0, 1$ are defined by

$$p = 3k + 2 - \epsilon$$

and

$$(a)_n \equiv (a;q)_n = \prod_{i=0}^{n-1} (1-aq^i)$$

with

$$B_{ij} = \min(i,j), \qquad C_j = j.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

New expression when $\varepsilon = 1$

Fermi-gas analysis of the B(k+2,2k+3) paths

M(6,11): 4 (= *k*) particles

◆ロ▶★@▶★恵▶★恵▶ 恵 のQで

Character resulting from the direct Fermi-gas analysis

$$\chi_{1,1}^{(k+2,2k+3)}(q) = \sum_{m_1,\cdots,m_k} \frac{q^{mBm+Cm}}{(q)_{p_0}} \prod_{i=1}^{k-1} \begin{bmatrix} m_i + p_i \\ m_j \end{bmatrix},$$

where

$$B_{i,j} = B_{j,i}$$
 $B_{i,j} = (2i-1)j$ if $i \le j$ and $C_j = j$

and

$$\begin{bmatrix} a \\ b \end{bmatrix}_q = \begin{cases} \frac{(q)_a}{(q)_{a-b}(q)_b} & \text{if } 0 \le b \le a, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$p_j = 2m_{j+2} + 4m_{j+2} + \dots + 2(k-j+1)m_k$$

so that

 $p_0 =$ number of half peaks

The transformation of RSOS(p', p) to B(p', p) paths is a key step for a direct fermi-gas analysis; it makes the quasi-particle interpretation transparent

The transformation of RSOS(p',p) to B(p',p) paths is a key step for a direct fermi-gas analysis; it makes the quasi-particle interpretation transparent

Can this be lifted to a CFT interpretation?