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Minimal model M (p’,p)

» Central charge

~ 6(p—p’)?
pp’

(with p’,p coprime and say p > p’)

c=1

» Conformal dimensions:

(pr—p’s)>—(p—p’)?
4pp’

hrs= = hp’*f,pfs

1<r<p’—1 and 1<s<p-1

» Highest-weight modules are completely degenerate



Embedding pattern of singular vectors

(r,s)~(p'—r,p—s)




Character of the irreducible modules

» Character:

(p.p) 1 B q's _q(p’fr)(pfS)
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where (Verma character)

1
Hn>1 l qn Zp

n>0

» This formula is thus an alternating sign expression ...
» obtained by representation theory...
» but not very physical !



Fermionic character formula

» Every character in minimal models has a representation in terms
of a positive multiple-sum

» This is called a fermionic character

» It reflects the filling of the space of states with quasi-particles
subject to restrictions and without singular vectors



Fermionic character formula

» Every character in minimal models has a representation in terms
of a positive multiple-sum

» This is called a fermionic character

» It reflects the filling of the space of states with quasi-particles
subject to restrictions and without singular vectors

» Example: Ising vacuum:
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The M(2,2k + 1) model [Feigin-Nakanashi-Ooguri '91]
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where
Bjj = min(i,j) Cj =max(j —s+1)



The M(2,2k + 1) model [Feigin-Nakanashi-Ooguri '91]

(2.2k+1) - 00 qum+Cm
g @= ) g

My, ,My_1=0

where
Bjj = min(i,j) Cj=max(j—s+1)

Basis of states:
Lfnl“‘Lan|hl,s> (nl > O)
with
Ni>nNix1+2 and Ny g.1>2

(sort of generalized exclusion principle plus a boundary condition that
selects the module)

Origin in CFT: These constraints come from the non-trivial vacuum
singular vector



The M(2,2k + 1) model [Feigin-Nakanashi-Ooguri '91]

[o¢]
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qum+Cm
(Q)ml U (Q)mk,l

where
Bjj = min(i,j) Cj=max(j—s+1)

Questions

» What is the CFT interpretation of the m;?

» If a fermionic form is related to an integrable perturbation:
this is the ¢4 3 one:
how does this enters in the structure?



The M(3,p) models [Jacob, M '06; Feigin et al '06]

Extended algebra construction:

Go1XPr1=P11+P31 =11

e.g., with
-2
b= (I)z‘]_ and h= h2,1 = pT

1 2h
d(z)p(w) = m [+ (z —W)Z?T(W) +...|S

and S = (—1)P7 where .Z counts the number of ¢ modes



Basis of states

Generalized commutation relations + singular vector of ¢:

d)*Sl d)*Sz e d)*stl d)*SN |0-@> )
with
Si25i+1*g+3, Si > Sij2+1

and the boundary conditions:
S >—h+ ¢ +1 sy > h— ¢
N—-1 2 ) N 2

where

{ {
SN72i€Z+h+§ and SN,2i71€Z—h+§

The spectrum is fixed by associativity



The M(3,p) character formula

mB’m+C’m
q
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where k is defined via
p=3k+2—¢ (e=0,1)

with 1 <ij<k—1

o ] k+e€
Bj = min(i,j), BJ—L:BQJ:E, BQK:T,
and C’ reads
k—e—s+1

C/=max (j—s+1,0), C, =



The M(3,p) character formula

mB’'m+C’'m
q

(@Wmy - (Dmy_; (A)2m,
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where Kk is defined via

p=3k+2—e¢ (e=0,1)

Questions

» What is the CFT interpretation of the m;?

» If a fermionic form is related to an integrable perturbation:
this is the ¢, 3 one:

how does this fit with a formulation in terms of the ¢, 1 modes ?



On the CFT derivations of fermionic characters in
M(p’,p) models

» The M(2,p) and the M (3,p) models are the only ones for which
there is a ‘complete’ CFT derivation of the fermionic characters

» Generalization of the M(3,p) case to M (p’,p):
1- Replace ¢ 1 by ¢pr—11 [M,Ridout '07]

2- Treat ¢, 1 with its 2 channels
[Feigen-Jimbo-Miwa-Mutkhin-Takayema '04,06]

» Monomial bases have been derived/conjectured for all models but
the corresponding formula is not written

» These bases can be reexpressed in terms of RSOS-type
configuration sums



Origins of Fermionic forms

» Bases in affine Lie algebras (parafermions) [Lepowski-Primc '85]
» Bases for the M(2,p) models [Feigin-Ooguri-Nakanishi '91]

» Dilogarithmic identities [Nahm et al '92; Kuniba-Nakanishi-Suzuki
(generalized parafermions)]

» Many conjectured expressions for the minimal models
[Kedem-Klassen-McCoy-Melzer 93]

» Counting of states in XXZ: truncation and g-deformation
[Berkovich-McCoy-Schilling: '94-'95]

» Spinon bases for Su(2), [Bernard et al, Bouwknegt et al '94]

» Mathematical transformations of identities (Bayley and Burge
transforms) [Foda-Quano, Berkovich-McCoy,...]



Origins of Fermionic forms: The RSOS side

» RSOS models:
Andrews-Baxter-Forrester (1984) (unitary case)

Forrester-Baxter (1985) (non-unitary case)

» Key observation [Date, Jimbo, Kuniba, Miwa, Okado]:

1D configuration sums (obtained by CTM) in regime Il
(a lattice realization of the ¢4 3 perturbation)
are the M(p’,p) irreducible characters

» Configurations sums leads to fermionic character in a systematic
way [Melzer, Warnaar, Foda, Welsh]



Origins of Fermionic forms: The RSOS side

» RSOS models:
Andrews-Baxter-Forrester (1984) (unitary case)

Forrester-Baxter (1985) (non-unitary case)

» Key observation [Date, Jimbo, Kuniba, Miwa, Okado]:

1D configuration sums (obtained by CTM) in regime Il
(a lattice realization of the ¢4 3 perturbation)
are the M(p’,p) irreducible characters

» Configurations sums leads to fermionic character in a systematic
way [Melzer, Warnaar, Foda, Welsh]

...but the derivation is not constructive and the underlying
quasi-particle structure remains unclear (except in the unitary
case)



RSOS(p’,p) paths (regime-IIl)

States in the finitized M (p’,p) minimal models (with p > p’) are
described by RSOS(p’,p) configurations

Configurations

» Configuration = sequence of
values of the height variables
G e{1,2,--- ,p—1}
(0<i<L

» with the admissibility
condition: [{; — ¢4/ =1

» and the boundary conditions:
Lo, €1 and I fixed



RSOS(p’,p) paths (regime-IIl)

States in the finitized M (p’,p) minimal models (with p > p’) are
described by RSOS(p’,p) configurations

Configurations Paths

» Configuration = sequence of > Apath is the contour of a
values of the height variables configuration.
Gie{l,2,-,p—1 » Path = sequence of NE or SE
(0<i<lL) edges joining the adjacent

» with the admissibility vertices (i,¢) and (i+1,6,4)
condition: [¢; — ¢ 4| =1 of the configuration within the

- rectangle 1 <y <p—1and
» and the boundary conditions: 0<x<L

Lo, €1 and I fixed
» with £o and ¢, fixed

» and fixed last edge: SE
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A typical configuration for the M (p’,7) model: £y
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=3

1, 619 =4,120

A typical configuration for the M(p’,7) model: ¢
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and the corresponding path (with {,g = 3)




A typical path for the M(p’,7) model: £y =1 and £y,g = 3 and final SE
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A typical path for the M(p’,7) model: {5 =1 and £yg = 3 and final SE
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» But this corresponds to a state for which model ? (value of p’?)

...and to which module (r,s)?

>

...and what is its conformal dimension?

>



Weighting the path

The dependence of the path upon the parameter p’ is via the weight

function:
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The expressions of W; /i for the extrema
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The simplicity of unitary models
The weight function is not positive

Exception: the unitary models: p’ =p—1

{h(p;p’)J = FJ =0 since h<p
p p

Vertex Wi Vertex W,




Weight vs conformal dimension

» Classes of paths are specified by {y and {_

» Ground-state path = unique path with minimal weight with {g, {,
given

» This path represents a highest-weight state
» Let its weight be Wgys

» The relative weight AW =W —Wygs is the (relative) conformal
dimension



Generating functions for paths

The GF is the g-enumeration of the paths

(P'P) () — AW
xeo,@L (a) = Z q
paths with
¢o and ¢, fixed



Generating functions for paths

The GF is the g-enumeration of the paths

(P"P) () AW
XbPay= ) q
paths with
¢o and ¢, fixed

When L — co: this is a character of M (p’,p):



Generating functions for paths

The GF is the g-enumeration of the paths

(P"P) () AW
XbPay= ) q
paths with
¢o and ¢, fixed

When L — co: this is a character of M (p’,p):
But for which module?

Need to relate (r,s) to {g and {



A new weight function for the paths (FLPW)

» Make the defining rectangle looks p’-dependent

» Color the p’ — 1 strips between the heights h and h + 1 for which:

» Solutions:



Our path for any M(p’,7) model
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Our path for any M(p’,7) model
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The same path for the M (2,7) model.
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The same path for the M (3,7) model.
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The same path for the M (3,7) model.
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The same path for the M (4,7) model.
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The same path for the M (5,7) model.
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The same path for the M (5,7) model.
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The same path for the M (6,7) model.
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Observations:

» The band structure is symmetric with respect to up-down
reflection

» For unitary models, p =p’+ 1, all the bands are colored
» For the M(2,p) models, there is a single colored band

» Colored bands are isolated when p > 2p’ —1



New weight function for the paths: w (FLPW)

Vertex Weight Vertex Weight

Vi

Vi

/N KD
/N <D

Ui (i—4+4o), Vi (i+4—12)

I\)II—‘
I\JIH

This is a positive definite weighting



Our M (2,7) path with the “scoring vertices”
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=3

The ground-state path for the case {;g =1 and {_
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A single scoring vertex:

0

(2—-3-1)

— [N

= Up =

i —{o)

i—{

— [N

(

U;

=0

The weight is absolute: w



Module identification vs boundaries

» Tails in colored bands have weight w =0
» Such tails are the proper ends for infinite paths

» Characterization of r,s:

p
lp=s and (= LEJ

The modules are thus characterized by the boundary conditions



The path

13

11

describes the state of lowest dimension in the vacuum module

0 of M(2,7)

Ihy 1)

it represents a finitized version of the vacuum state

i.e.:

=6

All modules are covered by taking 1 <s<p-1

(sincel<r<p’'—1

1)



The first few sates in the M(2,7) vacuum module:

0

These correspond to the first few terms in the character

1+0%+93+29* +29°+3q° +---

l(q)=

)
)

2
1

X



Characters = GF for infinite paths

v

GF for paths is

@o eL Zq

paths

v

Set{y=sand { = L%J

v

GF = finitized version of the Virasoro characters xﬁf’s,‘p) (q)

v

The full Virasoro character is

(p’.p)



Where are the quasi-particles in a RSOS(2,p) path?

e.g., in the RSOS(2,7) path?




Where are the quasi-particles in a RSOS(2,p) path?

e.g., in the RSOS(2,7) path?
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Idea: look at the “peaks in their whole”
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Observations:

=0

» full peaks whose top is not above the colored band have w

» full peaks whose top is above the colored band have

X-position of the maximum

W =
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X5

3Xs

Observations:

» valleys not below the colored band have zero weight

» valleys below the colored band have weight

x-position of the minimum

W =

» Above path: two peaks above and a valley below the colored

band:

3X5

(X5 —3) + X5+ (X5 +3)



Transformation of the RSOS(2,p) paths

These observations suggest to transform the RSOS(2,7) path
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Transformation of the RSOS(2,p) paths

These observations suggest to transform the RSOS(2,7) path
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by flattening the colored band

\\\\\\\\\\\\\\
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redefine the vertical axis
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redefine the vertical axis
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and fold the lower part onto the upper one
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redefine the vertical axis

and fold the lower part onto the upper one

17

14

the weight is the x position of the peaks:

24+9+14417

W =



Is this 1-1?




Is this 1-1?
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is also related to
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Is this 1-1?

2

1
0

17

14

is also related to

13
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But this has a final NE edge: enforcing a final SE: 1-1.relation



Bressoud paths

These are integer lattice paths

» defined in the strip:

(with p =2k +1)
» composed of NE, SE and Horizontal edges (H iff y =0)

» weight = x position of the peaks



Bressoud path = sequence of fermi-type charged
particles

» An example of Bressoud path for k =5 and initial point (0,0) as a
sequence charged peaks (= particles)

PN WA

2 6 10 14 18 24 28 32

» The charge content of the path is:

m=3my=2mz3=1my=2



Bressoud paths ~ 1D fermi-gas

Rules for constructing the generating function of all Bressoud paths
with fixed boundaries (ex: yg = 0)

» For a fixed charge content (fixed {m;}): determine the
configuration of minimal weight (mwc)



Bressoud paths ~ 1D fermi-gas

Rules for constructing the generating function of all Bressoud paths
with fixed boundaries (ex: yg = 0)

» For a fixed charge content (fixed {m;}): determine the
configuration of minimal weight (mwc)

Example: m; =3, my, =2, mg =1:




Bressoud paths ~ 1D fermi-gas

Rules for constructing the generating function of all Bressoud paths
with fixed boundaries (ex: yg = 0)

» For a fixed charge content (fixed {m;}): determine the
configuration of minimal weight (mwc)

Example: m; =3, my, =2, mg =1:

v

Evaluate its weight: above Wy =14+3+5+8+12+17

In general

k—1
Wmwe = Z min(i,j) m; m;
=1



» Move the particles (peaks) in all possible ways and g-count them
Example: consider m; =3




» Move the particles (peaks) in all possible ways and g-count them
Example: consider m; =3

» Rule 1: Identical particles are impenetrable (hard-core repulsion):
Example: move the rightmost by 9, the next by 6 and the third by




» Move the particles (peaks) in all possible ways and g-count them
Example: consider m; =3

» Rule 1: Identical particles are impenetrable (hard-core repulsion):
Example: move the rightmost by 9, the next by 6 and the third by

» Generating factor for these moves
= the number of partitions with at most three parts:

1 _ 1 . 1
(1-9)(1—qg?)(1—q3)  (a)3 (A)m,




v

Rule 2: Particles of different charges can penetrate
Consider the successive displacements of the peak 1 in:




» Every move of 1 unit increases the weight by 1 independently of
the presence of higher charged particles

is generic
G

» The same holds for the other particles:

factor

foreachtype 1 <j<k-—1
(@)m,

» Generating functions for all paths with fixed charge content

q Wmwce

G = g @
with

k—1
Wmwe = Z min(i,j) m; m
-1



» Full generating function:

G= Z G({m;})

My, ,Mg_1

00 N2t +NZ | +Ng+-+Ng_g

(2,2k+1) q
G= =
Xl,l Z (Q)ml"'(q)mkfl

Mg, ,mMy_1=0

with N; defined as
N]‘ =m; +e Mg



» Full generating function:

G= Z G({m;})
My, Mg 1
i.e.
%) 2 .. 2
G:X(2‘2k+1): Z qN1+ +Nk,1+N1+ +Ng_1
11 (@)my - (A my_4

Mg, ,mMy_1=0

with N; defined as
N]‘ =m; +e Mg

» This is the fermionic character of the M(2,2k + 1) vacuum
module (FNO)

» derived directly from the RSOS(2,2k + 1) paths (using the
Fermi-gas method of Warnaar)



From RSOS(p’,p) to generalized Bressoud paths
» Restriction to p > 2p’ — 1: isolated colored bands
» Flatten all colored bands and fold the part below the first band
» Result: generalized Bressoud paths defined in

o<x<lL 0<y<p—p’—FJ

p/

» ...with H edges allowed at height

_ | _ (P
ym{p’J LO’J i

(with a condition relating the parity of successive H edges and
the change of direction of the path)

» ...and weight = (half) x position of the (half) peaks



Our M (3,7) path
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Our M (3,7) path
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is transformed into

VAN

19

15

13

11

=2

0,1 but noty

with H edges allowed at y



Weight of the path

1
w :2+5—|-9—|—19—|—§(7+11—|-13+15)
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These contributing vertices are not the “scoring vertices”
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Similary, our M(4,7) path
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is transformed into:
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Fermi-gas analysis of the B(3,p) paths

=3k +2): 3 particles

M(3,11) (case p




=3k +1): 3 particles

M(3,10) (case p




Direct Fermi-gas analysis:

) qum—o—Cmfemﬁ
i @= 3 (@m, - (@79, (A)om,

mq,mg, M >0

where k and € = 0,1 are defined by

p=3k+2—e¢
and
n—1 )
(@)= (aq)n =] J(1—aq")
i=0
with

Bjj = min(i,j), Ci=iJ.

New expression when e =1



Fermi-gas analysis of the B(k + 2,2k + 3) paths

=Kk) particles

M(6,11): 4 (

13 15 17 19 21 23 25 27 29 31 33 35

11




Character resulting from the direct Fermi-gas analysis

k—1
(k+2,2k+3) .\ _ gmem-+cm m; +p;
11 ()= I Bl
mq,---,My q)po i=1 |
where
and "
9)a P
{a} = (@)a—p(d)p if 0<b<a,
blq 0 otherwise,
and
pj =2mj 2 +4mj o+ +2(k—j+1)my
so that

po = number of half peaks



Conclusion

» The transformation of RSOS(p’,p) to B(p’,p) paths is a key step
for a direct fermi-gas analysis; it makes the quasi-particle
interpretation transparent



Conclusion

» The transformation of RSOS(p’,p) to B(p’,p) paths is a key step
for a direct fermi-gas analysis; it makes the quasi-particle
interpretation transparent

» Can this be lifted to a CFT interpretation?



