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Minimal model M(p ′,p)

◮ Central charge

c = 1−
6(p −p ′)2

pp ′

(with p ′,p coprime and say p > p ′)

◮ Conformal dimensions:

hr ,s =
(pr −p ′s)2 −(p −p ′)2

4pp ′
= hp ′−r ,p−s

1 ≤ r ≤ p ′ −1 and 1 ≤ s ≤ p −1

◮ Highest-weight modules are completely degenerate



Embedding pattern of singular vectors

(r ,s) ∼ (p ′ − r ,p −s)
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Character of the irreducible modules

◮ Character:

χ
(p ′,p)
r ,s (q) =

1
(q)∞

−
qrs

(q)∞
−

q(p ′−r)(p−s)

(q)∞

+
qrs+(p ′+r)(p−s)

(q)∞
+

q(p ′−r)(p−s)+r(2p−s)

(q)∞
− · · ·

where (Verma character)

1
(q)∞

≡
1

∏
n≥1(1−qn)

=
∑

n≥0

p(n)qn

◮ This formula is thus an alternating sign expression ...
◮ obtained by representation theory...
◮ but not very physical !



Fermionic character formula

◮ Every character in minimal models has a representation in terms
of a positive multiple-sum

◮ This is called a fermionic character

◮ It reflects the filling of the space of states with quasi-particles
subject to restrictions and without singular vectors



Fermionic character formula

◮ Every character in minimal models has a representation in terms
of a positive multiple-sum

◮ This is called a fermionic character

◮ It reflects the filling of the space of states with quasi-particles
subject to restrictions and without singular vectors

◮ Example: Ising vacuum:

χ
(3,4)

1,1 (q) =

∞∑

m=0

q2m2

(q)2m

where

(q)m ≡

m∏

i=1

(1−qi)

manifestly positive:

1
(1−qj)

= 1+qj +q2j + . . .



The M(2,2k +1) model [Feigin-Nakanashi-Ooguri ’91]

χ
(2,2k+1)

1,s (q) =

∞∑

m1,··· ,mk−1=0

qmBm+Cm

(q)m1 · · ·(q)mk−1

where
Bij = min(i, j) Cj = max(j −s +1)



The M(2,2k +1) model [Feigin-Nakanashi-Ooguri ’91]

χ
(2,2k+1)

1,s (q) =

∞∑

m1,··· ,mk−1=0

qmBm+Cm

(q)m1 · · ·(q)mk−1

where
Bij = min(i, j) Cj = max(j −s +1)

Basis of states:
L−n1 · · ·L−nN |h1,s〉 (ni > 0)

with
ni ≥ ni+k−1 +2 and np−s+1 ≥ 2

(sort of generalized exclusion principle plus a boundary condition that
selects the module)

Origin in CFT: These constraints come from the non-trivial vacuum
singular vector



The M(2,2k +1) model [Feigin-Nakanashi-Ooguri ’91]

χ
(2,2k+1)

1,s (q) =

∞∑

m1,··· ,mk−1=0

qmBm+Cm

(q)m1 · · ·(q)mk−1

where
Bij = min(i, j) Cj = max(j −s +1)

Questions

◮ What is the CFT interpretation of the mj?

◮ If a fermionic form is related to an integrable perturbation:
this is the φ1,3 one:
how does this enters in the structure?



The M(3,p) models [Jacob, M ’06; Feigin et al ’06]

Extended algebra construction:

φ2,1 ×φ2,1 = φ1,1 +φ3,1 = φ1,1

e.g., with

φ ≡ φ2,1 and h ≡ h2,1 =
p −2

4

φ(z)φ(w) =
1

(z −w)2h

[
I +(z −w)2 2h

c
T (w)+ · · ·

]
S

and S = (−1)pF where F counts the number of φ modes



Basis of states

Generalized commutation relations + singular vector of φ:

φ−s1 φ−s2 · · ·φ−sN−1 φ−sN |σℓ〉 ,

with
si ≥ si+1 −

p
2

+3 , si ≥ si+2 +1

and the boundary conditions:

sN−1 ≥ −h +
ℓ

2
+1 , sN ≥ h −

ℓ

2

where

sN−2i ∈ Z+h +
ℓ

2
and sN−2i−1 ∈ Z−h +

ℓ

2

The spectrum is fixed by associativity



The M(3,p) character formula

χ
(3,p)

1,s (q) =
∑

m1,m2,···mk≥0

qmB ′m+C ′m

(q)m1 · · · (q)mk−1(q)2mk

,

where k is defined via

p = 3k +2−ǫ (ǫ = 0,1)

with 1 ≤ i, j ≤ k −1

B ′
ij = min(i, j) , B ′

jk = B ′
kj =

j
2

, B ′
kk =

k +ǫ

4
,

and C ′ reads

C ′
j = max (j −s +1,0) , C ′

k =
k −ǫ−s+1

2
,



The M(3,p) character formula

χ
(3,p)

1,s (q) =
∑

m1,m2,···mk≥0

qmB ′m+C ′m

(q)m1 · · · (q)mk−1(q)2mk

,

where k is defined via

p = 3k +2−ǫ (ǫ = 0,1)

Questions

◮ What is the CFT interpretation of the mj?

◮ If a fermionic form is related to an integrable perturbation:
this is the φ1,3 one:
how does this fit with a formulation in terms of the φ2,1 modes ?



On the CFT derivations of fermionic characters in
M(p ′,p) models

◮ The M(2,p) and the M(3,p) models are the only ones for which
there is a ‘complete’ CFT derivation of the fermionic characters

◮ Generalization of the M(3,p) case to M(p ′,p):

1- Replace φ2,1 by φp ′−1,1 [M,Ridout ’07]

2- Treat φ2,1 with its 2 channels
[Feigen-Jimbo-Miwa-Mutkhin-Takayema ’04,’06]

◮ Monomial bases have been derived/conjectured for all models but
the corresponding formula is not written

◮ These bases can be reexpressed in terms of RSOS-type
configuration sums



Origins of Fermionic forms

◮ Bases in affine Lie algebras (parafermions) [Lepowski-Primc ’85]

◮ Bases for the M(2,p) models [Feigin-Ooguri-Nakanishi ’91]

◮ Dilogarithmic identities [Nahm et al ’92; Kuniba-Nakanishi-Suzuki
(generalized parafermions)]

◮ Many conjectured expressions for the minimal models
[Kedem-Klassen-McCoy-Melzer ’93]

◮ Counting of states in XXZ: truncation and q-deformation
[Berkovich-McCoy-Schilling: ’94-’95]

◮ Spinon bases for ŝu(2)k [Bernard et al, Bouwknegt et al ’94]

◮ Mathematical transformations of identities (Bayley and Burge
transforms) [Foda-Quano, Berkovich-McCoy,...]



Origins of Fermionic forms: The RSOS side

◮ RSOS models:

Andrews-Baxter-Forrester (1984) (unitary case)

Forrester-Baxter (1985) (non-unitary case)

◮ Key observation [Date, Jimbo, Kuniba, Miwa, Okado]:

1D configuration sums (obtained by CTM) in regime III
(a lattice realization of the φ1,3 perturbation)
are the M(p ′,p) irreducible characters

◮ Configurations sums leads to fermionic character in a systematic
way [Melzer, Warnaar, Foda, Welsh]



Origins of Fermionic forms: The RSOS side

◮ RSOS models:

Andrews-Baxter-Forrester (1984) (unitary case)

Forrester-Baxter (1985) (non-unitary case)

◮ Key observation [Date, Jimbo, Kuniba, Miwa, Okado]:

1D configuration sums (obtained by CTM) in regime III
(a lattice realization of the φ1,3 perturbation)
are the M(p ′,p) irreducible characters

◮ Configurations sums leads to fermionic character in a systematic
way [Melzer, Warnaar, Foda, Welsh]

...but the derivation is not constructive and the underlying
quasi-particle structure remains unclear (except in the unitary
case)



RSOS(p ′,p) paths (regime-III)

States in the finitized M(p ′,p) minimal models (with p > p ′) are
described by RSOS(p ′,p) configurations

Configurations

◮ Configuration = sequence of
values of the height variables
ℓi ∈ {1,2, · · · ,p −1}

(0 ≤ i ≤ L)

◮ with the admissibility
condition: |ℓi − ℓi+1| = 1

◮ and the boundary conditions:
ℓ0, ℓL−1 and ℓL fixed



RSOS(p ′,p) paths (regime-III)

States in the finitized M(p ′,p) minimal models (with p > p ′) are
described by RSOS(p ′,p) configurations

Configurations

◮ Configuration = sequence of
values of the height variables
ℓi ∈ {1,2, · · · ,p −1}

(0 ≤ i ≤ L)

◮ with the admissibility
condition: |ℓi − ℓi+1| = 1

◮ and the boundary conditions:
ℓ0, ℓL−1 and ℓL fixed

Paths

◮ A path is the contour of a
configuration.

◮ Path = sequence of NE or SE
edges joining the adjacent
vertices (i, ℓi ) and (i +1, ℓi+1)

of the configuration within the
rectangle 1 ≤ y ≤ p −1 and
0 ≤ x ≤ L

◮ with ℓ0 and ℓL fixed
◮ and fixed last edge: SE



A typical configuration for the M(p ′,7) model: ℓ0 = 1, ℓ19 = 4, ℓ20 = 3
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A typical configuration for the M(p ′,7) model: ℓ0 = 1, ℓ19 = 4, ℓ20 = 3

1 3 5 7 9 11 13 15 17 19
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and the corresponding path (with ℓ20 = 3)
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A typical path for the M(p ′,7) model: ℓ0 = 1 and ℓ20 = 3 and final SE

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6



A typical path for the M(p ′,7) model: ℓ0 = 1 and ℓ20 = 3 and final SE

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6

◮ But this corresponds to a state for which model ? (value of p ′?)
◮ ...and to which module (r ,s)?
◮ ...and what is its conformal dimension?



Weighting the path

The dependence of the path upon the parameter p ′ is via the weight
function:

w̃ =

L−1∑

i=1

w̃i

Vertex w̃i Vertex w̃i

i
2

i
2

h

h

i

i

−i
⌊
h (p−p ′)

p

⌋

i
⌊
h (p−p ′)

p

⌋

h+1

h−1

i

i

b

b

b

b



1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6

The expressions of w̃i/i for the extrema

p ′ = 2 p ′ = 3 p ′ = 6
h max min max min max min
6 −3 − −2 − 0 −

5 −2 4 −2 3 0 0
4 −2 3 −1 2 0 0
3 −1 2 −1 2 0 0
2 0 2 0 1 0 0
1 − 1 − 1 − 0



The simplicity of unitary models

The weight function is not positive

Exception: the unitary models: p ′ = p −1
⌊

h
(p −p ′)

p

⌋
=

⌊
h
p

⌋
= 0 since h < p

Vertex w̃i Vertex w̃i

i
2

i
2

h

h

i

i

0

0

h+1

h−1

i

i

b

b

b

b



Weight vs conformal dimension

◮ Classes of paths are specified by ℓ0 and ℓL

◮ Ground-state path = unique path with minimal weight with ℓ0, ℓL
given

◮ This path represents a highest-weight state

◮ Let its weight be w̃gs

◮ The relative weight ∆w̃ = w̃ − w̃gs is the (relative) conformal
dimension



Generating functions for paths

The GF is the q-enumeration of the paths

X (p ′,p)
ℓ0,ℓL

(q) =
∑

paths with
ℓ0 and ℓL fixed

q∆w̃



Generating functions for paths

The GF is the q-enumeration of the paths

X (p ′,p)
ℓ0,ℓL

(q) =
∑

paths with
ℓ0 and ℓL fixed

q∆w̃

When L → ∞: this is a character of M(p ′,p):



Generating functions for paths

The GF is the q-enumeration of the paths

X (p ′,p)
ℓ0,ℓL

(q) =
∑

paths with
ℓ0 and ℓL fixed

q∆w̃

When L → ∞: this is a character of M(p ′,p):

But for which module?

Need to relate (r ,s) to ℓ0 and ℓL



A new weight function for the paths (FLPW)

◮ Make the defining rectangle looks p ′-dependent

◮ Color the p ′ −1 strips between the heights h and h +1 for which:

⌊
hp ′

p

⌋
=

⌊
(h +1)p ′

p

⌋
−1.

◮ Solutions:

h = hr ≡

⌊
rp
p ′

⌋
for 1 ≤ r ≤ p ′ −1.



Our path for any M(p ′,7) model
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Our path for any M(p ′,7) model

1 3 5 7 9 11 13 15 17 19
1

2

3
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The same path for the M(2,7) model.

1 3 5 7 9 11 13 15 17 19
1

2
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r = 1



The same path for the M(3,7) model.
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r = 2

r = 1



The same path for the M(3,7) model.

1 3 5 7 9 11 13 15 17 19
1

2
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4

5

6

r = 2

r = 1

The same path for the M(4,7) model.

1 3 5 7 9 11 13 15 17 19
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r = 1

r = 2

r = 3



The same path for the M(5,7) model.

1 3 5 7 9 11 13 15 17 19
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r = 1



The same path for the M(5,7) model.

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6
r = 4

r = 3

r = 2

r = 1

The same path for the M(6,7) model.

1 3 5 7 9 11 13 15 17 19
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r = 1

r = 2

r = 3

r = 4

r = 5



Observations:

◮ The band structure is symmetric with respect to up-down
reflection

◮ For unitary models, p = p ′ +1, all the bands are colored

◮ For the M(2,p) models, there is a single colored band

◮ Colored bands are isolated when p ≥ 2p ′ −1



New weight function for the paths: w (FLPW)

Vertex Weight Vertex Weight

0

0

ui

vi

ui

vi

0

0b

b

b

b

b

b

b

b

ui =
1
2

(i − ℓi + ℓ0) , vi =
1
2

(i + ℓi − ℓ0)

This is a positive definite weighting



Our M(2,7) path with the “scoring vertices”

◦ ↔ ui • ↔ vi

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6

r = 1

bc

bc

bc

bc bc

b b

b

b



The ground-state path for the case ℓ0 = 1 and ℓL = 3

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6

r = 1
bc

A single scoring vertex:

ui =
1
2

(i − ℓi − ℓ0) ⇒ u2 =
1
2

(2−3−1) = 0

The weight is absolute: w = 0



Module identification vs boundaries

◮ Tails in colored bands have weight w = 0

◮ Such tails are the proper ends for infinite paths

◮ Characterization of r ,s:

ℓ0 = s and ℓL =

⌊
rp
p ′

⌋

The modules are thus characterized by the boundary conditions



The path

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6

r = 1

s =

describes the state of lowest dimension in the vacuum module
|h1,1〉 = |0〉 of M(2,7)

i.e.: it represents a finitized version of the vacuum state

All modules are covered by taking 1 ≤ s ≤ p −1 = 6
(since 1 ≤ r ≤ p ′ −1 = 1)



The first few sates in the M(2,7) vacuum module:

1
2
3
4
5
6

0 0 0 0 0 0
w = 0 w = 2 w = 3 w = 4 w = 4 w = 5

1
2
3
4
5
6

0 0 0 0
w = 5 w = 6 w = 6 w = 6

These correspond to the first few terms in the character

χ2,7
1,1(q) = 1+q2 +q3 +2q4 +2q5 +3q6 + · · ·



Characters = GF for infinite paths

◮ GF for paths is
X (p ′,p)

ℓ0,ℓL
(q) =

∑

paths

qw

◮ Set ℓ0 = s and ℓL = ⌊ rp
p ′ ⌋

◮ GF = finitized version of the Virasoro characters χ
(p ′,p)
r ,s (q)

◮ The full Virasoro character is

χ
(p ′,p)
r ,s (q) = lim

L→∞
X (p ′,p)

s,

⌊
rp
p ′

⌋(q)



Where are the quasi-particles in a RSOS(2,p) path?

e.g., in the RSOS(2,7) path?

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6



Where are the quasi-particles in a RSOS(2,p) path?

e.g., in the RSOS(2,7) path?

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6

Idea: look at the “peaks in their whole”
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1

2

3

4

5

6

0

w̃ = 0

x1 x2 x3 x4



1

2

3

4

5

6

0
1
2

-1
1
2

w̃ = 0 w̃ = 0

x1 x2 x3 x4



1

2

3

4

5

6

0
1
2

-1
1
2

1
2

1
2

-2
1
2

1
2

w̃ = 0 w̃ = 0 w̃ = 0

x1 x2 x3 x4



1

2

3

4

5

6

0
1
2

-1
1
2

1
2

1
2

-2
1
2

1
2

1
2

1
2

1
2

-2
1
2

1
2

1
2

w̃ = 0 w̃ = 0 w̃ = 0 w̃ = x4

x1 x2 x3 x4



1

2

3

4

5

6

1
2

1
2

1
2

1
2

-3
1
2

1
2

1
2

1
2

w̃ = x5

x5



1

2

3

4

5

6

1
2

1
2

1
2

1
2

-3
1
2

1
2

1
2

1
2

w̃ = x5

x5

Observations:

◮ full peaks whose top is not above the colored band have w = 0

◮ full peaks whose top is above the colored band have

w = x -position of the maximum
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1

2

3

4

5

6

w̃ = x1

0
1

0

x1 x2 x3



0
1

0 1
2

−1
2

−1

1
2

1

2

3

4

5

6

w̃ = x1 w̃ = x2

x1 x2 x3



0
1

0 1
2

−1
2

−1

1
2

1
2

1
2

−2
2

−2

1
2

1
2

1

2

3

4

5

6

w̃ = x1 w̃ = x2 w̃ = 0

x1 x2 x3



1

2

3

4

5

6

1
2

1
2

1
2

-2
1
2

1
2

2

1
2

1
2

-2
1
2

1
2

1
2

w̃ = 3x5

x5



1

2

3

4

5

6

1
2

1
2

1
2

-2
1
2

1
2

2

1
2

1
2

-2
1
2

1
2

1
2

w̃ = 3x5

x5

Observations:

◮ valleys not below the colored band have zero weight
◮ valleys below the colored band have weight

w = x -position of the minimum

◮ Above path: two peaks above and a valley below the colored
band:

w̃ = (x5 −3)+x5 +(x5 +3) = 3x5



Transformation of the RSOS(2,p) paths

These observations suggest to transform the RSOS(2,7) path

1 3 5 7 9 11 13 15 17 19
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Transformation of the RSOS(2,p) paths

These observations suggest to transform the RSOS(2,7) path

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6

by flattening the colored band

1 3 5 7 9 11 13 15 17 19
1

2

3 = 4

5

6



redefine the vertical axis

1 3 5 7 9 11 13 15 17 19
−2
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1
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redefine the vertical axis

1 3 5 7 9 11 13 15 17 19
−2

−1

0

1

2

and fold the lower part onto the upper one

0

1

2

2 9 14 17



redefine the vertical axis

1 3 5 7 9 11 13 15 17 19
−2

−1

0

1

2

and fold the lower part onto the upper one

0

1

2

2 9 14 17

the weight is the x position of the peaks:

w = 2+9+14+17



Is this 1-1?

0
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2 9 14 17



Is this 1-1?

0

1

2

2 9 14 17

is also related to

1
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6

1 3 5 7 9 11 13 15 17 19



Is this 1-1?

0

1

2

2 9 14 17

is also related to

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19

But this has a final NE edge: enforcing a final SE: 1-1 relation



Bressoud paths

These are integer lattice paths

◮ defined in the strip:

0 ≤ x ≤ ∞, 0 ≤ y ≤ k −1

(with p = 2k +1)

◮ composed of NE, SE and Horizontal edges (H iff y = 0)

◮ weight = x position of the peaks



Bressoud path = sequence of fermi-type charged
particles

◮ An example of Bressoud path for k = 5 and initial point (0,0) as a
sequence charged peaks (= particles)

2 6 10 14 18 24 28 32

2

4

1

3 (1)

(4) (2)

(1)

(3)

(2) (1)

(4)

◮ The charge content of the path is:

m1 = 3, m2 = 2, m3 = 1, m4 = 2



Bressoud paths ≈ 1D fermi-gas

Rules for constructing the generating function of all Bressoud paths
with fixed boundaries (ex: y0 = 0)

◮ For a fixed charge content (fixed {mj }): determine the
configuration of minimal weight (mwc)



Bressoud paths ≈ 1D fermi-gas

Rules for constructing the generating function of all Bressoud paths
with fixed boundaries (ex: y0 = 0)

◮ For a fixed charge content (fixed {mj }): determine the
configuration of minimal weight (mwc)

Example: m1 = 3, m2 = 2, m3 = 1:

0

1

2



Bressoud paths ≈ 1D fermi-gas

Rules for constructing the generating function of all Bressoud paths
with fixed boundaries (ex: y0 = 0)

◮ For a fixed charge content (fixed {mj }): determine the
configuration of minimal weight (mwc)

Example: m1 = 3, m2 = 2, m3 = 1:

0

1

2

◮ Evaluate its weight: above wmwc = 1+3+5+8+12+17

In general

wmwc =

k−1∑

i,j=1

min(i, j)mi mj



◮ Move the particles (peaks) in all possible ways and q-count them
Example: consider m1 = 3
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Example: consider m1 = 3
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◮ Rule 1: Identical particles are impenetrable (hard-core repulsion):
Example: move the rightmost by 9, the next by 6 and the third by
4
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◮ Move the particles (peaks) in all possible ways and q-count them
Example: consider m1 = 3

0

1

2

◮ Rule 1: Identical particles are impenetrable (hard-core repulsion):
Example: move the rightmost by 9, the next by 6 and the third by
4

0

1

2

◮ Generating factor for these moves
= the number of partitions with at most three parts:

1
(1−q)(1−q2)(1−q3)

≡
1

(q)3
→

1
(q)m1



◮ Rule 2: Particles of different charges can penetrate
Consider the successive displacements of the peak 1 in :

w = 6 w = 7
0

1

2

0

1

2

w = 8 + identity flip w = 9

0

1

2

w = 10 w = 11



◮ Every move of 1 unit increases the weight by 1 independently of
the presence of higher charged particles

i.e.
1

(q)m1

is generic

◮ The same holds for the other particles:

factor
1

(q)mj

for each type 1 ≤ j ≤ k −1

◮ Generating functions for all paths with fixed charge content

G({mj }) =
qwmwc

(q)m1 . . . (q)mk−1

with

wmwc =

k−1∑

i,j=1

min(i, j)mi mj



◮ Full generating function:

G =
∑

m1,···,mk−1

G({mj })

i.e.

G = χ
(2,2k+1)

1,1 =

∞∑

m1,··· ,mk−1=0

qN2
1 +···+N2

k−1+N1+···+Nk−1

(q)m1 · · · (q)mk−1

with Nj defined as
Nj = mj + · · ·+mk−1



◮ Full generating function:

G =
∑

m1,···,mk−1

G({mj })

i.e.

G = χ
(2,2k+1)

1,1 =

∞∑

m1,··· ,mk−1=0

qN2
1 +···+N2

k−1+N1+···+Nk−1

(q)m1 · · · (q)mk−1

with Nj defined as
Nj = mj + · · ·+mk−1

◮ This is the fermionic character of the M(2,2k +1) vacuum
module (FNO)

◮ derived directly from the RSOS(2,2k +1) paths (using the
Fermi-gas method of Warnaar)



From RSOS(p ′,p) to generalized Bressoud paths

◮ Restriction to p ≥ 2p ′ −1: isolated colored bands

◮ Flatten all colored bands and fold the part below the first band

◮ Result: generalized Bressoud paths defined in

0 ≤ x ≤ L 0 ≤ y ≤ p −p ′ −

⌊
p
p ′

⌋

◮ ...with H edges allowed at height

y(r) =

⌊
rp
p ′

⌋
−

⌊
p
p ′

⌋
− r +1

(with a condition relating the parity of successive H edges and
the change of direction of the path)

◮ ...and weight = (half) x position of the (half) peaks



Our M(3,7) path
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Our M(3,7) path

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6

r = 2

r = 1

is transformed into

0

1

2

2 5 7 9 11 13 15 19

with H edges allowed at y = 0,1 but not y = 2



Weight of the path

0

1

2

2 5 7 9 11 13 15 19

bc bc bc bcbc bc

bc

bc

w = 2+5+9+19+
1
2

(7+11+13+15)



0

1

2

2 5 7 9 11 13 15 19

bc bc bc bcbc bc

bc

bc

These contributing vertices are not the “scoring vertices”

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6

bc bc

bc bc

bc

bc bc

b

b

b

b b b



Similary, our M(4,7) path

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6

is transformed into:

0

1

2

1 3 5 7 9 11 13 15 17 19

bc

bc

bc bc

bc bc

where H edges are allowed at y = 0,1,2 and
w = 14+ 1

2 (4+8+10+16+18)− (wgs = 1)



Fermi-gas analysis of the B(3,p) paths

M(3,11) (case p = 3k +2): 3 particles

1
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1 3 5 7 9 11 13 15 17 19 21 23 25 27



M(3,10) (case p = 3k +1): 3 particles

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27



Direct Fermi-gas analysis:

χ
(3,p)

1,1 (q) =
∑

m1,m2,···mk≥0

qmBm+Cm−ǫm2
k

(q)m1 · · · (q
1+ǫ;q1+ǫ)mk−1(q)2mk

,

where k and ǫ = 0,1 are defined by

p = 3k +2−ǫ

and

(a)n ≡ (a;q)n =

n−1∏

i=0

(1−aqi)

with
Bij = min(i, j) , Cj = j.

New expression when ǫ = 1



Fermi-gas analysis of the B(k +2,2k +3) paths

M(6,11): 4 (= k ) particles

1
2
3
4
5
6
7
8
9
10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

0
1
2
3
4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35



Character resulting from the direct Fermi-gas analysis

χ
(k+2,2k+3)

1,1 (q) =
∑

m1,··· ,mk

qmBm+Cm

(q)p0

k−1∏

i=1

[
mi +pj

mj

]
,

where

Bi,j = Bj,i Bi,j = (2i −1)j if i ≤ j and Cj = j

and [
a
b

]

q
=

{
(q)a

(q)a−b(q)b
if 0 ≤ b ≤ a,

0 otherwise,

and
pj = 2mj+2 +4mj+2 + · · ·+2(k − j +1)mk

so that
p0 = number of half peaks



Conclusion

◮ The transformation of RSOS(p ′,p) to B(p ′,p) paths is a key step
for a direct fermi-gas analysis; it makes the quasi-particle
interpretation transparent



Conclusion

◮ The transformation of RSOS(p ′,p) to B(p ′,p) paths is a key step
for a direct fermi-gas analysis; it makes the quasi-particle
interpretation transparent

◮ Can this be lifted to a CFT interpretation?


