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And yet it moves...



Noncommutative spaces in physics
[z, 2] = 0" , u,v=1,...D

OHY ordinary (commuting) numbers: ‘flat’ NC space
Other possibilities (NC sphere, Riemann spaces etc.)

(Connes, Madore, Grosse, Wess,...; Douglas, Schwartz, Seiberg, Witten,...)

e Can arise as specific limits in string theory
e Potential description of Planck scale spacetime physics
e Effective description (e.g., lowest Landau level physics)

Could be viewed as a fundamental effect (cosmological bounds
from CMB radiation etc.) or as a tool (e.g., noncommutative
Chern-Simons description quantum Hall states)



No notion of points

Functions f become operators

Product of functions f - g associative but noncommutative
Derivatives and integral defined as

auf — [_iwuvxya fl WaB — (9_1)a6

/dDa:f = \/det(2r0) Trf

Most notions of field calculus generalize. E.qg.,
e [Of ~ O translates into Tr[f,g] ~ O;
e O(f-g) =0f- g+ f-0g still true; etc.

Can include ‘internal space’ (spin, flavor,...) as extra copies of
the space where the z#* act



Star products: Weyl ordering of monomials z#---x¥

f = f{{z"}), <> commutative f(z)

In terms of the Fourier transform f(k) of f(x):

f(k) = \/det(/2m) Tr fe~tkua"

f= [ ket F)

e Derivatives and integrals map into ordinary commutative ex-
pressions
e Product maps into the noncommutative star product

(f*xg)(k) = /dq F(q) 5(k — q) €20 Fnaw

We can view noncommutative field theory as ordinary field the-
ory with a nonlocal, noncommutative product for functions
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Noncommutative gauge theory becomes particularly nice in the
operator formulation

Covariant coordinates:
XH =gl 494, Xt u-ixry

Sy m ~ Tr[XH, XV]?
Chern-Simons action:

e Unify abelian and nonabelian expressions

e OMY rank of group become superselection parameters

e [ he above become ordinary-looking expressions in the x-product
formulation

e Reduce to commutative expressions in 8§ — 0 limit



What can we do with it?

What does that have to do with bosonization?

We will use it to describe fuzzy fluids...

...and give an exact description of a many-body fermionic system



Fuzzy fluids: the Lagrangian way

Particle coordinates: X (Z,t) (Z are ‘fiducial’ particle-fixed coor-
dinates of fixed density)

Velocity: g=2a dt, denS|ty = ‘det

Make particles fuzzy: 2! are noncommutative — so are the X?

° Part|cle reparametrization invariance becomes unitary rotations:
Xt -uxwwu—1
e X' become covariant coordinates
e Noncommutative gauge theory describes the dynamics of a
fuzzy fluid (or fuzzy membrane, if dim X > dim x)

(Hoppe, deWitt, Nicolai,...)
e Noncommutative Chern-Simons theory: fuzzy incompressible
fluid in 2 dimensions — FQH states (Susskind, AP,...)
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Fuzzy fluids: the Eulerian way

In Lagrangian fuzzy fluids we can still define commutative cur-
rents:

b )= [ded(X—y) 500 = [do (X —y)

They satisfy (commutative) continuity

—I—V (pv) =0

Ordinary Eulerian fluid (avatar of Seiberg-Witten map)
(Jackiw, AP)

Can also start with genuine noncommutative Euler density p

Will naturally describe fermions (and parafermions).
So let’s jump right there...



Starting point: N non-interacting fermions in D spatial dimen-
sions. (Consider D = 1 for notational convenience.)

Single particle hamiltonian H_ (z,p) and phase space z, p:

[map]sp =h Hsp‘n> — En|n>

N-body state basis: Fock states; e.g., |gr) =1,...1,0,...)

Alternative description: single-particle ‘density’ operator
N
p= > i)Wl , (Vi) = di;
i=1
with Schrodinger equation of motion

th — [Hsp7p]sp
(Sakita, Khveshchenko, Nair, Karabali,...)
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e p must satisfy the algebraic constraints p2=p, Tro=N
‘Solve’ the constraints in terms of a unitary field U:

N
p=UtpU, po = D In)(n| =lgs)
n=1

An appropriate action for U which leads to EOM s

S = /dt(K _H) = /dtTr (ihpeUU™t — UL poUH,)

U encodes both coordinates and momenta. Resulting Poisson
brackets for the matrix elements pmn Of p:

1
{pmn7 prs} — ._(pms(sfrn T prnéms)
ih



Drawbacks of the description:

e Can describe only ‘factorizable’ states
e Violates quantum mechanical superposition principle

Still it reproduces the full Hilbert space of the N fermions upon
quantization!

e S is the Kirillov-Kostant-Souriau (KKS) form for the group of
unitary transformations on the Hilbert space

e Truncate to K first energy levels (K > N): S becomes the
KKS action for the group U(K)

e p=U"1poU and S have the gauge invariance

U) = V@RU®E) , [pg, V()] =0

which reduces the left degrees of freedom
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e Gauge invariance introduces Gauss law and a ‘global gauge
anomaly’
e Quantization condition: eigenvalues of pg must be integers

PBs for p become upon quantization

[pmn7 prs]QM — pmsérn T pfrnéms

This is the U(K) algebra in Cartesian basis
e Quantum states: irreps of U(K) with Young tableau = p,

In our case p, gives the N-fold fully antisymmetric irrep of U(K)
— Hilbert space of N fermions on K single-particle states.
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Realize pmn a la Jordan-Wigner with K fermionic oscillators W,,:

K
wiv =N
n=1

V: second-quantized Fermi field

Prn = WHW

m

H=Tr(pH,) = Y VIL.(H ) mnV,
m,n

H becomes the second-quantized Fermi hamiltonian.

° pg = gp, describes parafermions of order @

e In the Ilimit K — oo, pmn reproduces the Wy, algebra.
Conditions p? = p and Trp = N fix highest weight state
— pick fermionic vacuum
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We can think of (classical) p as a fuzzy (noncommutative) fluid:

e p2 = p is the characteristic function of a domain in the non-
commutative plain x,p

e p represents a ‘droplet’ filling the domain

e T he density inside the droplet becomes 1/2nh

e Semiclassical picture of a Liouville fluid with evolving boundary

The ground state pg corresponds to a droplet filling states up to
Fermi energy Efp:

e U can become singular in the limit h — 0O

e U generates a canonical transformation in that case

e A nonsingular U becomes a phase and generates infinitesimal
boundary waves
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Recast the model as a noncommutative field theory with 0 = h:
H_ (z,p), p(z,p), U(z,p) *U(z,p)’ =1

= [ dwdp H(p)p(,p)
[p(x, ), p(a’, P)] gpr = [p(, ), 6(x — ', p — p')]s

1
S = 2—Tr/dtdwdp V(p — K5) * 0U(x,p) * U(z,p)" — /dtH
T

We obtained an exact bosonization of the fermion system in any
dimension. Still we paid some price:

e Noncommutative, nonlocal action

e U must satisfy ‘star-unitarity’ condition

e 2 (in general 2D) spatial dimensions
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Where is the conventional bosonization?

Can be recovered in the i — 0O limit;
o U=c"+ O(h?)
o p = py + hOppyOrd + O(h?)
The action in D =1 becomes
h
s=3 / dtdz 9:d(Op — vp0ed)
OHg,

Linear abelian bosonization (v, = —**| )
F

Assuming there are also n internal degrees of freedon on which
x,p do not act, fields become n x n matrices. A similar (subtler)
limit yields the Wess-Zumino-Witten model on the Fermi surface
with an additional potential (from H)

— Nonabelian bosonization
15



Still how can we recover the familiar exact (not A — 0) nonlinear
bosonization in D =17

e S is the noncommutative version of the WZW action (yields it
in commutative limit)

e Need an exact transformation that maps it to its commutative
counterpart

— One coordinate becomes auxiliary — reduction to 2D — 1 di-
mensions

Such transformations are called Seiberg-Witten maps

e First arose in noncommutative gauge theory

e Map noncommutative to commutative gauge fields respecting
gauge transformations
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In general the form of the action changes under a SW map

However, Chern-Simons and Wess-Zumino actions are special:
Exist Seiberg-Witten maps that leave them invariant

(Moreno, Schaposhnik; Grandi, Silva; Lopez-Sarrion, AP)

The infinitesimal transformation (in operator notation)

00
oU = ;—92(pr+ Upxr — zUp — UpU " 12U)

leaves noncommutative WZW action invariant and has a smooth
commutative limit when driven to 6 = 0

— standard (abelian or nonabelian) bosonization
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This can be exported to higher dimensions!

e Seiberg-Witten map only works in D = 2

e Pick a 2-dim submanifold of phase space and perform trans-
formation there

e End up with 2D — 2 noncommutative and 1 commutative vari-
able

Leads to higher dimensional noncommutative bosonization

Calling the noncommutative coordinates ¢ and the commutative
one o, the boundary field is defined as

R(o,¢) = iUt % 8,U
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It satisfies the fundamental commutator

1
(2mh)DP—2

(5’(01 —02) 6(d1 — $2)
501 = 72) [Ra, (61— 62)] )

[R1, Rol gy =

e Partly density, partly current

e Its quantization reproduces the full N-body fermionic set of
states.

e [ he hamiltonian may become complicated

e QQuadratic potentials remain simple
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Overview, Outlook

o A ‘fuzzy fluid’ description in the Euler picture achieves exact
bosonization in any dimension

e (Fuzzy fluid in Lagrange picture — noncommutative Chern-
Simons description of FQH states)

e Seiberg-Witten map makes contact with standard bosonization
(in D=1)...

e ...and gives ‘minimal’ bosonization in D > 1

* Is this really the minimal?

*x Expression of p in terms of R? (Known in D =1)
* Fermi operator?

*%x Any interesting applications...?
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