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Noncommutative spaces in physics

[xµ, xν] = iθµν , µ, ν = 1, . . . D

θµν ordinary (commuting) numbers: ‘flat’ NC space

Other possibilities (NC sphere, Riemann spaces etc.)

(Connes, Madore, Grosse, Wess,...; Douglas, Schwartz, Seiberg, Witten,...)

• Can arise as specific limits in string theory

• Potential description of Planck scale spacetime physics

• Effective description (e.g., lowest Landau level physics)

Could be viewed as a fundamental effect (cosmological bounds

from CMB radiation etc.) or as a tool (e.g., noncommutative

Chern-Simons description quantum Hall states)
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• No notion of points

• Functions f become operators

• Product of functions f · g associative but noncommutative

• Derivatives and integral defined as

∂µf = [−iωµνxν, f ] ωαβ = (θ−1)αβ

∫
dDxf =

√
det(2πθ)Trf

Most notions of field calculus generalize. E.g.,

•
∫
∂f ∼ 0 translates into Tr[f, g] ∼ 0;

• ∂(f · g) = ∂f · g+ f · ∂g still true; etc.

Can include ‘internal space’ (spin, flavor,...) as extra copies of

the space where the xµ act
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Star products: Weyl ordering of monomials xµ · · ·xν

f = f({xµ})W ↔ commutative f(x)

In terms of the Fourier transform f̃(k) of f(x):

f̃(k) =
√

det(θ/2π)Tr fe−ikµx
µ

f =
∫
dk eikµx

µ
f̃(k)

• Derivatives and integrals map into ordinary commutative ex-
pressions
• Product maps into the noncommutative star product

(f ∗ g)(k) =
∫
dq f̃(q) g̃(k − q) e

i
2θ
µνkµqν

We can view noncommutative field theory as ordinary field the-
ory with a nonlocal, noncommutative product for functions
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Noncommutative gauge theory becomes particularly nice in the
operator formulation

Covariant coordinates:

Xµ = xµ + θµνAν Xµ → U−1XµU

SMYM ∼ Tr[Xµ, Xν]2

Chern-Simons action:

SCS ∼ εµνρTrXµXνXρ

• Unify abelian and nonabelian expressions
• θµν, rank of group become superselection parameters
• The above become ordinary-looking expressions in the ∗-product
formulation
• Reduce to commutative expressions in θ → 0 limit
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What can we do with it?

What does that have to do with bosonization?

We will use it to describe fuzzy fluids...

...and give an exact description of a many-body fermionic system
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Fuzzy fluids: the Lagrangian way

Particle coordinates: ~X(~x, t) (~x are ‘fiducial’ particle-fixed coor-
dinates of fixed density)

Velocity: ~v = d ~X
dt ; density 1

ρ =
∣∣∣∣det ∂X

i

∂xj

∣∣∣∣
Make particles fuzzy: xi are noncommutative → so are the Xi

• Particle-reparametrization invariance becomes unitary rotations:
Xi → UXiU−1

• Xi become covariant coordinates
• Noncommutative gauge theory describes the dynamics of a
fuzzy fluid (or fuzzy membrane, if dim X > dim x)

(Hoppe, deWitt, Nicolai,...)

• Noncommutative Chern-Simons theory: fuzzy incompressible
fluid in 2 dimensions → FQH states (Susskind, AP,...)
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Fuzzy fluids: the Eulerian way

In Lagrangian fuzzy fluids we can still define commutative cur-
rents:

ρ(y, t) =
∫
dx δ(X − y) ~v(y, t) =

∫
dx
d ~X

dt
δ(X − y)

They satisfy (commutative) continuity

∂ρ

∂t
+ ~∇ · (ρ~v) = 0

Ordinary Eulerian fluid (avatar of Seiberg-Witten map)
(Jackiw, AP)

Can also start with genuine noncommutative Euler density ρ

Will naturally describe fermions (and parafermions).
So let’s jump right there...
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Starting point: N non-interacting fermions in D spatial dimen-
sions. (Consider D = 1 for notational convenience.)

Single particle hamiltonian Hsp(x, p) and phase space x, p:

[x, p]sp = i~ Hsp|n〉 = En|n〉

N-body state basis: Fock states; e.g., |gr〉 = |1, . . .1,0, . . . 〉

Alternative description: single-particle ‘density’ operator

ρ =
N∑
i=1

|ψi〉〈ψi| , 〈ψi|ψj〉 = δij

with Schrödinger equation of motion

i~ρ̇ = [Hsp, ρ]sp
(Sakita, Khveshchenko, Nair, Karabali,...)
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• ρ must satisfy the algebraic constraints ρ2 = ρ , Trρ = N

‘Solve’ the constraints in terms of a unitary field U :

ρ = U−1ρ0U , ρ0 =
N∑
n=1

|n〉〈n| = |gs〉

An appropriate action for U which leads to EOM is

S =
∫
dt(K −H) =

∫
dtTr

(
i~ρ0U̇U

−1 − U−1ρ0UHsp

)

U encodes both coordinates and momenta. Resulting Poisson
brackets for the matrix elements ρmn of ρ:

{ρmn, ρrs} =
1

i~
(ρmsδrn − ρrnδms)
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Drawbacks of the description:

• Can describe only ‘factorizable’ states
• Violates quantum mechanical superposition principle

Still it reproduces the full Hilbert space of the N fermions upon
quantization!

• S is the Kirillov-Kostant-Souriau (KKS) form for the group of
unitary transformations on the Hilbert space
• Truncate to K first energy levels (K � N): S becomes the
KKS action for the group U(K)
• ρ = U−1ρ0U and S have the gauge invariance

U(t) → V (t)U(t) , [ρ0, V (t)] = 0

which reduces the left degrees of freedom
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• Gauge invariance introduces Gauss law and a ‘global gauge

anomaly’

• Quantization condition: eigenvalues of ρ0 must be integers

PBs for ρ become upon quantization

[ρmn, ρrs]QM = ρmsδrn − ρrnδms

This is the U(K) algebra in Cartesian basis

• Quantum states: irreps of U(K) with Young tableau = ρ0

In our case ρ0 gives the N-fold fully antisymmetric irrep of U(K)

→ Hilbert space of N fermions on K single-particle states.
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Realize ρmn à la Jordan-Wigner with K fermionic oscillators Ψn:

ρmn = Ψ†
nΨm ,

K∑
n=1

Ψ†
nΨn = N

Ψ: second-quantized Fermi field

H = Tr(ρHsp) =
∑
m,n

Ψ†
m(Hsp)mnΨn

H becomes the second-quantized Fermi hamiltonian.

• ρ2
0

= qρ0 describes parafermions of order q

• In the limit K →∞, ρmn reproduces the W∞ algebra.

Conditions ρ2 = ρ and Trρ = N fix highest weight state

→ pick fermionic vacuum
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We can think of (classical) ρ as a fuzzy (noncommutative) fluid:

• ρ2 = ρ is the characteristic function of a domain in the non-
commutative plain x, p

• ρ represents a ‘droplet’ filling the domain
• The density inside the droplet becomes 1/2π~
• Semiclassical picture of a Liouville fluid with evolving boundary

The ground state ρ0 corresponds to a droplet filling states up to
Fermi energy EF :

Hsp(x, p) ≤ EF

• U can become singular in the limit ~ → 0
• U generates a canonical transformation in that case
• A nonsingular U becomes a phase and generates infinitesimal
boundary waves
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Recast the model as a noncommutative field theory with θ = ~:
Hsp(x, p), ρ(x, p), U(x, p) ∗ U(x, p)† = 1

H =
1

2π~

∫
dxdp Hsp(x, p)ρ(x, p)

[ρ(x, p), ρ(x′, p′)]QM = [ρ(x, p), δ(x− x′, p− p′)]∗

S =
1

2π
Tr

∫
dtdxdp ϑ(p−KF ) ∗ ∂tU(x, p) ∗ U(x, p)∗ −

∫
dtH

We obtained an exact bosonization of the fermion system in any
dimension. Still we paid some price:
• Noncommutative, nonlocal action
• U must satisfy ‘star-unitarity’ condition
• 2 (in general 2D) spatial dimensions
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Where is the conventional bosonization?

Can be recovered in the ~ → 0 limit:

• U = eiφ +O(~2)
• ρ = ρ0 + ~∂pρ0∂xφ+O(~2)

The action in D = 1 becomes

S =
~
2

∫
dtdx ∂xφ(∂tφ− vF∂xφ)

Linear abelian bosonization (vF =
∂Hsp
∂p

∣∣∣∣
F

)

Assuming there are also n internal degrees of freedon on which
x, p do not act, fields become n×n matrices. A similar (subtler)
limit yields the Wess-Zumino-Witten model on the Fermi surface
with an additional potential (from H)

→ Nonabelian bosonization
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Still how can we recover the familiar exact (not ~ → 0) nonlinear

bosonization in D = 1?

• S is the noncommutative version of the WZW action (yields it

in commutative limit)

• Need an exact transformation that maps it to its commutative

counterpart

→ one coordinate becomes auxiliary → reduction to 2D − 1 di-

mensions

Such transformations are called Seiberg-Witten maps

• First arose in noncommutative gauge theory

• Map noncommutative to commutative gauge fields respecting

gauge transformations
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In general the form of the action changes under a SW map

However, Chern-Simons and Wess-Zumino actions are special:

Exist Seiberg-Witten maps that leave them invariant

(Moreno, Schaposhnik; Grandi, Silva; Lopez-Sarrión, AP)

The infinitesimal transformation (in operator notation)

δU =
iδθ

2θ2
(xpU + Upx− xUp− UpU−1xU)

leaves noncommutative WZW action invariant and has a smooth

commutative limit when driven to θ = 0

→ standard (abelian or nonabelian) bosonization
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This can be exported to higher dimensions!

• Seiberg-Witten map only works in D = 2

• Pick a 2-dim submanifold of phase space and perform trans-

formation there

• End up with 2D−2 noncommutative and 1 commutative vari-

able

Leads to higher dimensional noncommutative bosonization

Calling the noncommutative coordinates φ and the commutative

one σ, the boundary field is defined as

R(σ, φ) = iU−1 ∗ ∂σU
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It satisfies the fundamental commutator

[R1, R2]QM =
1

(2π~)D−2

(
δ′(σ1 − σ2) δ(φ1 − φ2)

δ(σ1 − σ2) [R1, δ(φ1 − φ2)]∗
)

• Partly density, partly current

• Its quantization reproduces the full N-body fermionic set of

states.

• The hamiltonian may become complicated

• Quadratic potentials remain simple
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Overview, Outlook

• A ‘fuzzy fluid’ description in the Euler picture achieves exact

bosonization in any dimension

• (Fuzzy fluid in Lagrange picture → noncommutative Chern-

Simons description of FQH states)

• Seiberg-Witten map makes contact with standard bosonization

(in D = 1)...

• ...and gives ‘minimal’ bosonization in D > 1

? Is this really the minimal?

? Expression of ρ in terms of R? (Known in D = 1)

? Fermi operator?

?? Any interesting applications...?

20


