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Quantum dimension ds in the case of SU(2)k theory is equal to:
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The quantum dimension da is an irrational number 
which illustrates that Hilbert space has no natural decomposition 
as a tensor product of subsystems 
because the topologically encoded information is 
a collective property of anyon systems.

Algebraic data:    (ds, Fijk
lmn, δabc, N)
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It controls the rate of growth of the n-particle Hilbert space 
Vb

aaa…a = (da)ndb/D2 for anyons of type a. 
Here D2 = Σs=0

k/2 [2s+1]q
2 .



Additional meaning of the da’s

• p(      → 1)  =  1/da
2

• p( a b  → c)  =  Nc
abdc/(dadb) 

aa

dddN aa

rr
=

∑=
c

c
c
abba N ϕϕϕ o

Operator product expansion (OPE) fusion rules for primary fields:



String-net condensates

t << U t >> U



Equations of the tensor modular categories
are nonlinear pentagon and hexagon ones 



R. Rowell, R.Stong, Z. Wang, math-QA/07121377



V. Turaev, N. Reshetikhin, О. Viro, L. Каuffman 1992

These equations have a form



The braid group

• Bi Bi+1 Bi     =    Bi+1 Bi Bi+1 
• Bi Bk =  Bk Bi                              | i – k | ≥ 2  

• For bosons the Bi matrices are all the identity. 
• If the matrices Bi are diagonal, then the particles have Abelian statistics. 
• For anyons their entries are phases. 
• The wave function changes form depending on the order in which the 

particle are braided in the case of non-Abelian representations of the 
braid group when particles obey non-Abelian statistics. 



Temperley-Lieb algebra 

The generators ei of the TL algebra are defined as follows  
ei

2 =  d ei ,
ei ei+1 ei = ei , 
ei ek =  ek ei ( |k-i|  ≥ 2 ). 
ei acts non-trivially on the ith and (i+1)th particles: 

where d=q+q-1 is 
theBeraha number 
(a weight of the Wilson loop) 

1. The values of the parameter d are nontrivial restriction, which leads to the 
finite-dimensional Hilbert spaces. 
2. Besides, it turns out, that for the mentioned values of d the theory is unitary.



Ψ (   + a loop ) = d Ψ (  ) 

Meaning of the Beraha number d

The wave function ψ(α), defined on the one-dimensional manifold α, 
which is a joining up of the arbitrary tangle β and the Wilson loop, equals dψ(β):



Braid group and TL algebra

Bi = I – qei,      Bi
-1 = I – q-1ei

It obeys the braid group if d = q + q-1 = 2cos (π/(k+2)).



But how does the Hamiltonian look like?



Due to ei
2 =  d ei , (ei/d)2 = ei/d. 

Therefore,  effective Hamiltonians of the Klein type 
(J. Phys. A 15, 661, 1982)
could have a form of the sum of the Temperley-Lieb algebra 
projectors: 

H = -Σi ei/d

Temperley-Lieb algebra projectors



Irreps of ei’s

V. Jones, V. Pasquier, H. Wenzl; A. Kuniba, Y. Akutzu, M. Wadati; 
P. Fendley,       1984 - 2006



Mapping to the transverse field Ising model

In the case k=2 (when d=(2)1/2), we have the transverse field Ising model:
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Correlation functions: 

A.R. Its, A.G. Izergin, V.E. Korepin, V. Ju. Novokshenov, 
Nucl. Phys. B 340, 752 (1990).



Some steps of the proof
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Wen’s model



Universal form of effective Hamiltonians



In the case of the Kitaev model
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1. Effective Hamiltonians in systems with topologically ordered 
states in the case k=2 have a form of the Bloch matrix 

2. Z2 invariants are significant  for the classification 
of the classes of universality in 2D systems. In particular, 

Z2 , i.e. equals 0 or 1∈



4. What about larger values of the linking number ? 
For example, k=4. 

3.  In the case k=3, irreps of the ei’s lead to the Hamiltonian
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5of the Fibonnacci anyons, where φ=(1+ )/2 is the golden ratio. This is the k=3 RSOS 
model which is a lattice version of the tricritical Ising model at its critical point (A. Feiguin, 
S. Trebst, A.W.W. Ludwig, M. Troyer, A. Kitaev, Z. Wang, M. Freedman, PRL, 2007.)


