SUSY INTEGRABLE SPIN CHAINS AND DISCRETE HIROTA DYNAMICS

A.Zabrodin (ITEP, Moscow)

GGI, Florence, 29 October 2008

based on

V.Kazakov, A.Sorin, A.Z. Nucl.Phys. B790 (2008) 345; A.Z. Theor. Math.Phys. 155 (2008) 567

Motivation

• Classical versus quantum integrability: <u>Classical</u> integrable equations take part in <u>quantum</u> problems even at $\pi \neq 0$

Quantum spin chains

Discrete classical Hirota dynamics

(I.Krichever, O.Lipan, P.Wiegmann, A.Z. 1996)

 Clarifying SUSY Bethe ansatz, explaining variety of Bethe equations, "duality" transformations, etc.

Plan

- 1. Integrable SUSY GL(K|M)-invariant spin chains: commuting transfer matrices
- 2. TT-relation (Hirota equation) for quantum transfer matrices
- 3. Boundary and analytic conditions
- 4. Solving the TT-relation by classical methods
 - Auxiliary linear problems
 - Backlund transformations
 - "Undressing" procedure: nested Bethe ansatz as a chain of Backlund transformations
- 5. Generalized Baxter's TQ-relations
- 6. QQ-relation (Hirota equation for Q's) and Bethe equations

(P.Kulish 1985)

GL(K|M)-invariant R-matrix acts in the tensor product $\pi_0 \otimes \pi_1$ of two irreps and

 obeys the graded Yang-Baxter equation (P.Kulish, E.Sklyanin 1980)

• for any $g \in GL(K|M)$ obeys the condition $\pi_0(g) \otimes \pi_1(g) R_{01}(u) = R_{01}(u) \pi_0(g) \otimes \pi_1(g)$

Quantum monodromy matrix

Quantum transfer matrix (periodic b.c.)

 $T^{(\pi_0)}(u) = \operatorname{str}_{\pi_0} \left(\mathcal{T}(u) \right)$

Yang-Baxter equation commutativity

 $[T^{(\pi_0)}(u), T^{(\pi'_0)}(u')] = 0$

Generalization: twisted b.c.

$$g = \operatorname{diag} (x_1, \dots, x_K, y_1, \dots, y_M) \in GL(K|M)$$

insert before taking str
$$T^{(\pi_0)}(u;g) = \operatorname{str}_{\pi_0} (\pi_0(g)T(u))$$

YB equation + GL(K|M)-invariance $\int [T^{(\pi_0)}(u;g), T^{(\pi'_0)}(u';g)] = 0$

Rectangular representations

(We consider covariant representations only)

$$T(a, s, u) = T^{(\pi_s^a)}(u - s + a; g)$$
$$= \operatorname{str}_{\pi_s^a}(\pi_s^a(g)\mathcal{T}(u - s + a))$$

Functional relations for transfer matrices

P.Kulish, N.Reshetikhin 1983; V.Bazhanov, N.Reshetikhin 1990; A.Klumper, P.Pearce 1992; A.Kuniba, T.Nakanishi, J.Suzuki 1994; Z.Tsuboi 1997 (for SUSY case)

 $T^{(\pi_0)}(u)$ for general irreps π_0 can be expressed through T(1, s, u) for the rows f

$$T(a,s,u) \propto \det_{1 \leq i,j \leq a} T(1, s+i-j, u+a+1-i-j)$$

This is the Bazhanov-Reshetikhin det-formula for rectangular irreps.

Analog of Weyl formula for characters

The same for SUSY and ordinary case

directly follows from the BR det-formula

TT-relation

• is identical to the *HIROTA EQUATION*

$$T(a, s, u+1)T(a, s, u-1) - T(a, s+1, u)T(a, s-1, u) = T(a+1, s, u)T(a-1, s, u)$$

The same relation holds for any of their eigenvalues

Hirota difference equation (R. Hirota 1981)

- Integrable difference equation solvable by <u>classical</u> inverse scattering method
 - A 'master equation" of the soliton theory:
 - provides universal discretization of integrable PDE's
 - generates infinite hierarchies of integrable PDE's
- We use it to find all possible Baxter's TQ-relations and nested Bethe ansatz equations for super spin chains

(similar method for ordinary spin chains: I.Krichever, O.Lipan, P.Wiegmann, A.Zabrodin 1996)

Analytic and boundary conditions

T(a, s, u) are polynomials in u of degree N for any a, slength of spin chain

What is
$$T(0, s, u)$$
? And $T(a, 0, u)$?

Transfer matrix for the trivial irrep is proportional to the identity operator:

$$T(0, s, u) = \phi(u - s), \quad T(a, 0, u) = \phi(u + a)$$

$$\phi(u) = \prod_{i=1}^{N} (u - \xi_i) \xrightarrow[\text{Here } a, s > 0.]{\text{Extension to}}$$

Fat hook

The domain where T(a,s,u) for GL(K|M) spin chains does not vanish identically

SUSY boundary conditions

The standard classical scheme

We are going to apply this scheme to the Hirota equation for transfer matrices

Auxiliary linear problems (Lax pair)

T(a+1, s, u)F(a, s, u+1) - T(a, s, u+1)F(a+1, s, u) = zT(a+1, s-1, u+1)F(a, s+1, u)

T(a, s+1, u+1)F(a, s, u) - T(a, s, u)F(a, s+1, u+1) = zT(a+1, s, u+1)F(a-1, s+1, u)

for any z (classical spectral parameter)

The Hirota equation for *T*(*a*,*s*,*u*)

S

Backlund transformations

Simple but important fact:

Therefore,

is a **Backlund transformation**

Boundary conditions for F - ?

Undressing by BT-I: vertical move

Notation: $T(a,s,u) \equiv T_{\kappa,M}(a,s,u) \rightarrow F(a,s,u) \equiv T_{\kappa-1,M}(a,s,u)$

Undressing by BT-II: horizontal move

Notation: $T(a,s,u) \equiv T_{\kappa,m}(a,s,u) \rightarrow F(a,s,u) \equiv T_{\kappa,m-1}(a,s,u)$

Repeating BT-I and BT-II several times, we introduce the hierarchy of functions

$$T_{k,m}(a,s,u) \qquad \qquad \begin{array}{l} k=1,\ldots,K;\\ m=1,\ldots,M\end{array}$$

such that

- They obey the Hirota equation at any "level" k,m and are polynomials in u for any a, s, k, m
- They are connected by the Backlund transformations $BT-I: T_{k,m}(a, s, u) \rightarrow T_{k-1,m}(a, s, u)$ $BT-II: T_{k,m}(a, s, u) \rightarrow T_{k,m-1}(a, s, u)$
- At the highest level $T_{K,M}(a,s,u) = T(a,s,u)$
 - At the lowest level $T_{0,0}(a,s,u) = 1$ at a = 0 or

at s = 0, $a \ge 0$, and 0 otherwise

trivial solution in the degenerate domain

The idea is to "undress" the problem to the trivial one using a chain of Backlund transformations

At each step we have a continuous parameter z

Put
$$\begin{cases} z = x_k & \text{for BT-I} \quad (k,m) \to (k-1,m) \\ z = y_m & \text{for BT-II} \quad (k,m) \to (k,m-1) \end{cases}$$

• • •

BT-I:

$$\begin{aligned} T_{k,m}(a+1,s,u)T_{k-1,m}(a,s,u+1) &- T_{k,m}(a,s,u+1)T_{k-1,m}(a+1,s,u) \\ &= x_k T_{k,m}(a+1,s-1,u+1)T_{k-1,m}(a,s+1,u), \\ T_{k,m}(a,s+1,u+1)T_{k-1,m}(a,s,u) &- T_{k,m}(a,s,u)T_{k-1,m}(a,s+1,u+1) \\ &= x_k T_{k,m}(a+1,s,u+1)T_{k-1,m}(a-1,s+1,u) \end{aligned}$$

BT-II:

$$\begin{aligned} T_{k,m-1}(a+1,s,u)T_{k,m}(a,s,u+1) &- T_{k,m-1}(a,s,u+1)T_{k,m}(a+1,s,u) \\ &= y_m T_{k,m-1}(a+1,s-1,u+1)T_{k,m}(a,s+1,u), \\ T_{k,m-1}(a,s+1,u+1)T_{k,m}(a,s,u) &- T_{k,m-1}(a,s,u)T_{k,m}(a,s+1,u+1) \\ &= y_m T_{k,m-1}(a+1,s,u+1)T_{k,m}(a-1,s+1,u) \end{aligned}$$

Boundary conditions at intermediate levels *k*=1, ..., *K*, *m*=1, ..., *M*

j=1

$$\operatorname{sdet} g_{k,m} = \frac{x_1 \dots x_k}{y_1 \dots y_m}$$

Operator generating series

Pseudo-difference operator

$$\mathcal{W}(u) = \sum_{s \ge 0} \frac{T(1, s, u+s-1)}{\phi(u)} e^{2s\partial_u}$$
 for normalization

Similar object at any level k,m:

$$\mathcal{W}_{k,m}(u) = \sum_{s \ge 0} \frac{T_{k,m}(1,s,u+s-1)}{Q_{k,m}(u)} e^{2s\partial_u}$$

It is clear that

$$\mathcal{W}_{0,0}(u) = 1$$

Operator form of the Backlund transformations

Backlund transformations BT-I and BT-II can be represented as recurrence relations for the $\mathcal{W}_{k,m}(u)$

$$\mathcal{W}_{k-1,m}(u) = \left(1 - X_{k,m}(u)e^{2\partial_u}\right)\mathcal{W}_{k,m}(u)$$
$$\mathcal{W}_{k,m+1}(u) = \left(1 - Y_{k,m+1}(u)e^{2\partial_u}\right)\mathcal{W}_{k,m}(u)$$

where

$$X_{k,m}(u) = x_k \frac{Q_{k,m}(u+2) Q_{k-1,m}(u-2)}{Q_{k,m}(u) Q_{k-1,m}(u)}$$
$$Y_{k,m}(u) = y_m \frac{Q_{k,m-1}(u+2) Q_{k,m}(u-2)}{Q_{k,m-1}(u) Q_{k,m}(u)}$$

Factorization formulas

Arbitrary undressing path

 $\mathcal{W}_{K,M}(u) =$

product of these factors along the path according to the order of the steps

Equivalence of these representations follows from a discrete zero curvature condition

"Duality" transformations

Z.Tsuboi 1997; N.Beisert, V.Kazakov, K.Sakai, K.Zarembo 2005

The "duality" transformations can be most clearly understood in terms of <u>zero curvature condition</u> on the (*k*,*m*) lattice and the <u>QQ-relation</u> (V.Kazakov, A.Sorin, A.Zabrodin 2007)

"Zero curvature"

$$\left(1 - Y_{k-1,m+1}(u)e^{2\partial_u}\right)\left(1 - X_{k,m}(u)e^{2\partial_u}\right)$$
$$= \left(1 - X_{k,m+1}(u)e^{2\partial_u}\right)\left(1 - Y_{k,m+1}(u)e^{2\partial_u}\right)$$

The QQ-relation

$$x_k Q_{k-1,m-1}(u) Q_{k,m}(u+2) - y_m Q_{k,m}(u) Q_{k-1,m-1}(u+2)$$

$$= (x_k - y_m) Q_{k-1,m}(u) Q_{k,m-1}(u+2)$$

Again the Hirota equation!

We need polynomial solutions $Q_{k,m}(u) = \prod_{j=1}^{N_{k,m}} (u - u_j^{(k,m)})$ with the "boundary conditions" $Q_{0,0}(u) = 1, \ Q_{K,M}(u) = \phi(u)$

Building blocks for Bethe equations

$$\frac{Q_{k,m+1}\left(u_{j}^{(k,m)}\right)Q_{k,m}\left(u_{j}^{(k,m)}-2\right)Q_{k,m-1}\left(u_{j}^{(k,m)}+2\right)}{Q_{k,m+1}\left(u_{j}^{(k,m)}-2\right)Q_{k,m}\left(u_{j}^{(k,m)}+2\right)Q_{k,m-1}\left(u_{j}^{(k,m)}\right)} = -\frac{y_{m+1}}{y_{m}} \mathbf{k, m-1} \mathbf{k, m-k, m+1}$$

$$\frac{Q_{k,m+1}\left(u_{j}^{(k,m)}\right)Q_{k-1,m}\left(u_{j}^{(k,m)}-2\right)}{Q_{k,m+1}\left(u_{j}^{(k,m)}-2\right)Q_{k-1,m}\left(u_{j}^{(k,m)}\right)} = \frac{y_{m+1}}{x_{k}} \qquad \qquad \textbf{k,m k,m+1} \\ \textbf{k,m} k,m+1 \\ \textbf$$

 $K_{ab} = (p_a + p_{a+1})\delta_{a,b} - p_{a+1}\delta_{a+1,b} - p_a\delta_{a,b+1}$ is the Cartan matrix

Conclusion

- A lesson: SUSY case looks more natural and transparent
- Our approach provides an alternative to algebraic Bethe ansatz
- Generalizations and problems:
 - mixed (covariant + contravariant) irreps, infinite dimensional (non-compact) irreps
 - models with other types of *R*-matrices including non-standard ones like Hubbard or *su(2|2) R*-matrix in AdS/CFT