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Idea and Question

Is it possible to construct a quantum state characterized by:

a wave function peaked at two
different spatially separated locations;

such that “interacting” with system at 0
something happens at L?

If exist then one should have entanglement and a sort of teleportation. We shall see
that:

it is possible only when in a system emerge Majorana fermions interacting with
pertinent (soliton-antisoliton) background
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Degeneracy, tunneling . . .

Majorana fermions induce exotic entanglement in quantum states
Let us imagine to induce teleportation by quantum tunneling . . .

tail of wavefunction too small to be of any practical use

P. Sodano Teleportation, Majorana zero modes and long distance entanglement



Idea and Question
Degeneracy, tunneling . . .

Conventional second quantization
An explicit model with emergent Majorana fermions

Concluding remarks

Degeneracy, tunneling . . .

Majorana fermions induce exotic entanglement in quantum states
Let us imagine to induce teleportation by quantum tunneling . . .

scenario in which the wavefunction has well
separated peaks (spatially separated) with
eventually a forbidden region in between

localization of minima well separated and
large barrier→ semiclassical method
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Degeneracy, tunneling . . .

Majorana fermions induce exotic entanglement in quantum states
Let us imagine to induce teleportation by quantum tunneling . . .

ψs = ψ1 + ψ2

May I use ψs for exotic entanglement? i.e.: may I interact with the system in the vicinity
of point 1 and see something of the other hand?
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Degeneracy, tunneling . . .

Majorana fermions induce exotic entanglement in quantum states
Let us imagine to induce teleportation by quantum tunneling . . .

ψs = ψ1 + ψ2

May I use ψs for exotic entanglement? i.e.: may I interact with the system in the vicinity
of point 1 and see something of the other hand?

NO WAY!
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Degeneracy, tunneling . . .

Majorana fermions induce exotic entanglement in quantum states
Let us imagine to induce teleportation by quantum tunneling . . .

On top of ψS = ψ1 + ψ2 there is ψA = ψ1 − ψ2 and the two states on split by ∆E = f (A)
and ∆E → 0 as A→ a.

=⇒ thus the two states are almost degenerate.

Degeneracy forbids our dream of teleportation?
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Degeneracy, tunneling . . .

Since

1√
2

(ψS + ψA) =
√

2ψ1(x)

i.e.: when I interact with the system near 1 I see ψS and ψA and therefore I am
populating a state which is linear combination of the 2; for instance ψ1.

Furthermore:

1√
2

(ψS − ψA) =
√

2ψ2(x)

ψ1 and ψ2 are not stationary states
⇓

they mix . . . very slowly too!
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Degeneracy, tunneling . . .

If we insist on teleportation by quantum tunneling (exotic entanglement) we need to find
a state like

+

which is confined away from other states in the spectrum

Schrödinger equation? → NO!

Dirac like equation?
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Dirac like equation

Simple one dimensional model

[iγµ∂µ + φ(x)]ψ(x , t) = 0

{γµ, γν} = 2gµν , gµν =

(
1 0
0 −1

)
soliton-antisoliton

θ = 0 as the vacuum
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Dirac like equation

soliton-antisoliton

φ(x)

{
φ0 x < 0 or x > L
−φ0 0 < x < L

If ψ(x , t) = ψE (x)e−iEt

i
(

0 d
dx + φ(x)

d
dx − φ(x) 0

)(
uE (x)
vE (x)

)
= E

(
uE (x)
vE (x)

)
(1)

ψ−E (x) = ψ∗E (x) particle-hole symmetry of Dirac equation

Equation (1) has exactly two bound states.
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Dirac like equation

E+ ≈ +φ0e−φ0L

φ+(x) ≈
√
φ0



(
1
0

)
e−φ0x + O(e−φ0L) x < 0(

1
0

)
e−φ0x +

(
0
−i

)
e−φ0(x−L) + O(e−φ0L) 0 < x < L(

0
−i

)
e−φ0(L−x) + O(e−φ0L) x > L

E− ≈ −φ0e−φ0L = −E+

φ+(x) ≈
√
φ0



(
1
0

)
e−φ0x + O(e−φ0L) x < 0(

1
0

)
e−φ0x +

(
0
i

)
e−φ0(x−L) + O(e−φ0L) 0 < x < L(

0
i

)
e−φ0(L−x) + O(e−φ0L) x > L

⇓

φ−(x) = φ∗+(x)
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Dirac like equation

These states have energies well separated from the rest of the spectrum
(continuum starts at E = φ0)
The energies are exponentially close to 0 as L→∞
Each wavefunction has two peaks: one at x = 0 and one at x = L
Second quantized Dirac:

Ψ(x , t) = ψ+(x)e−iE+t b + ψ∗+(x)eiE+t b†

since ψ−(x) = ψ∗+(x) and E− = −E+

When L is large one can consider quasi-stationary states:

ψ0(x) = 1√
2

(
eiE0tψ+ + e−iE0tψ−

)
=

≈
√

2φ0



(
cos E0t

0

)
e−φ0x + . . .(

cos E0t
0

)
e−φ0x +

(
0

sin E0t

)
e−φ0(x−L) + . . .(

0
sin E0t

)
e−φ0(x−L) + . . .

with support near x = 0
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Dirac like equation

When L is large one can consider quasi-stationary states:

ψ0(x) = 1√
2

(
eiE0 tψ+ + e−iE0 tψ−

)
=

≈
√

2φ0



(
cos E0t

0

)
e−φ0x + . . . x < 0

(
cos E0t

0

)
e−φ0x +

(
0

sin E0t

)
e−φ0(x−L) + . . . 0 < x < L

(
0

sin E0t

)
e−φ0(x−L) + . . . x > L

with support near x = 0

and

ψL(x) = 1√
2i

(
eiE0 tψ+ − e−iE0 tψ−

)
=

≈
√

2φ0



(
sin E0t

0

)
e−φ0x + . . . x < 0

(
sin E0t

0

)
e−φ0x +

(
0

− cos E0t

)
e−φ0(L−x) + . . . 0 < x < L

(
0

− cos E0t

)
e−φ0(L−x) + . . . x > L

with support near x = L
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Dirac like equation

Ψ(x , t) = ψ0(x , t)
1√
2

(
a + b†

)
+ ψL(x , t)

1√
2i

(
−a + b†

)
+ . . .

α = 1√
2

(
a + b†

)
α† = 1√

2

(
a† + b

)
β = 1√

2i

(
a† − b†

)
β† = 1√

2i

(
−a + b†

)
By interacting with the system at x = 0 we populate ψ0.

As L→∞ the state is an entangled state of fractional fermion number (Dirac fermions).

Measurement of charge will collapse the state either in ψ0 or ψL since 1
2 is a sharp

eigenvalue!
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Majorana fermions

The situation is different with Majorana fermions!

ψ+ and ψ− correspond to the same eigenstate.

This state is either occupied or unoccupied.

Convention
(−1)F = −1 unoccupied state
(−1)F = 1 occupied state

ψ0 and ψL are then superpositions of occupied and unoccupied states and than
violate fermion parity!

Thus a consistent (no strange things happening with 2π-rotations) theory of
Majorana fermions interacting with soliton-antisoliton background does not admit
ψ0 and ψL as acceptable states.

If we have something at x = 0 “automatically” we find something at x = L since
wavefunction have peaks at x = 0 and x = L.

“Exotic entanglement”
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Conventional second quantization of complex fermion

Let’s assume that - in some approximation - it makes sense to have single non interact-
ing particle whose wavefunction satisfy Schrödinger equation:

i~∂Ψ

∂t
= H0Ψ(x , t)

with H0 usually a matrix and Ψ =

 �
�
�

 a column vector.

For instance, in 3 + 1 dimensions:

H0 = i~α~∇+ βm

with ~α and β set of 4 hermitian matrices (anticommuting).
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Conventional second quantization of complex fermion

Furthermore
∃Γ : γ~αΓ = ~α∗ , ΓβΓ = −β∗

so that

ΓH0Γ = −H∗0 and ΓΨ∗E = Ψ−E

⇒ Γ induces a 1− 1 mapping from ΨE → Ψ−E .

If ~α =

(
~σ 0
0 −~σ

)
, β =

(
0 1
1 0

)
than Γ =

(
0 −iσ2

iσ2

)
. Note Γ = Γ∗

and Γ2 = 1.

Majorana fermion: Ψ(x , t) = ΓΨ∗(x , t)
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Conventional second quantization of complex fermion

Ψ(x , t) satisfies
{

Ψ(x , t),Ψ†(y , t)
}

= δ(x − y)
Writing the second quantized Hamiltonian

H =

∫
dx : Ψ†(x , t)H0Ψ(x , t) :

one can derive the wave equation (1) from

i~∂Ψ(x , t)
∂t

= [Ψ(x , t),H0]

H0 is “single particle” Hamiltonian which is hermitian with a real spectrum

H0ΨE = EΨE∫
dx Ψ†E (x)ΨE′(x) = δEE′ ,

∑
E

ΨE (x)Ψ†E (x) = δ(x − y)
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∫
dx Ψ†E (x)ΨE′(x) = δEE′ ,

∑
E

ΨE (x)Ψ†E (x) = δ(x − y) (2)

Second quantized:

Ψ(x , t) =
∑
E>0

ΨE (x)e−iEt/~aE +
∑
E<0

ΨE (x)e−iEt/~b†−E

aE : annihilation operator for particle with energy E
b†−E : creation operator for hole with energy −E{

aE , a†E′
}

= δEE′ ,
{

b−E ,b†−E′

}
= δEE′ (3)

(2) + (3)⇒
{

Ψ(x , t),Ψ†(y , t)
}

= δ(x − y).
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Concluding remarks

Conventional second quantization of complex fermion

Ground state |0〉 is the state where all the positive energy levels are empty and all
negative energies are filled (all hole states are empty)

m

aE |0〉 = b−E |0〉 = 0

Excited states: excitations created by a†E are particle while those created by b†−E are
the “antiparticle” or holes.

a†E1
. . . a†Em

b†E1
. . .b†En

|0〉 generic n-particle state.
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Concluding remarks

Majorana fermion

Particle and holes have identical spectra

⇓

Particle and hole with the same energy are single (i.e. the same) excitation

⇓

Fields operator given

Φ(x , t) =
∑
E>0

(
ψE (x)e−iEt/~aE + Γψ∗E (x)eiEt/~a†E

)
Ground state: aE |0〉 = 0
Excitations: a†E1

a†E2
. . . . . . a†En

|0〉

Fields operator is “pseudo-real”:

Φ(x , t) = ΓΦ∗(x , t){
Φ(x , t),Φ†(y , t)

}
= δ(x − y)

P. Sodano Teleportation, Majorana zero modes and long distance entanglement



Idea and Question
Degeneracy, tunneling . . .

Conventional second quantization
An explicit model with emergent Majorana fermions

Concluding remarks

Majorana fermion

Particle and holes have identical spectra

⇓

Particle and hole with the same energy are single (i.e. the same) excitation

⇓

Fields operator given

Φ(x , t) =
∑
E>0

(
ψE (x)e−iEt/~aE + Γψ∗E (x)eiEt/~a†E

)
Ground state: aE |0〉 = 0
Excitations: a†E1

a†E2
. . . . . . a†En

|0〉

Fields operator is “pseudo-real”:

Φ(x , t) = ΓΦ∗(x , t){
Φ(x , t),Φ†(y , t)

}
= δ(x − y)

P. Sodano Teleportation, Majorana zero modes and long distance entanglement



Idea and Question
Degeneracy, tunneling . . .

Conventional second quantization
An explicit model with emergent Majorana fermions

Concluding remarks

Majorana fermion

Particle and holes have identical spectra

⇓

Particle and hole with the same energy are single (i.e. the same) excitation

⇓

Fields operator given

Φ(x , t) =
∑
E>0

(
ψE (x)e−iEt/~aE + Γψ∗E (x)eiEt/~a†E

)
Ground state: aE |0〉 = 0
Excitations: a†E1

a†E2
. . . . . . a†En

|0〉

Fields operator is “pseudo-real”:

Φ(x , t) = ΓΦ∗(x , t){
Φ(x , t),Φ†(y , t)

}
= δ(x − y)

P. Sodano Teleportation, Majorana zero modes and long distance entanglement



Idea and Question
Degeneracy, tunneling . . .

Conventional second quantization
An explicit model with emergent Majorana fermions

Concluding remarks

Majorana fermion

Particle and holes have identical spectra

⇓

Particle and hole with the same energy are single (i.e. the same) excitation

⇓

Fields operator given

Φ(x , t) =
∑
E>0

(
ψE (x)e−iEt/~aE + Γψ∗E (x)eiEt/~a†E

)
Ground state: aE |0〉 = 0
Excitations: a†E1

a†E2
. . . . . . a†En

|0〉

Fields operator is “pseudo-real”:

Φ(x , t) = ΓΦ∗(x , t){
Φ(x , t),Φ†(y , t)

}
= δ(x − y)

P. Sodano Teleportation, Majorana zero modes and long distance entanglement



Idea and Question
Degeneracy, tunneling . . .

Conventional second quantization
An explicit model with emergent Majorana fermions

Concluding remarks

Majorana fermion

Practically:

If Ψ(x , t) is complex fermion and the Hamiltonian allows for particle-hole
symmetry, the complex fermion can be decomposed in 2 Majorana fermions

Φ1(x , t) =
1√
2

(Ψ(x , t) + ΓΨ∗(x , t))

Φ2(x , t) =
1√
2i

(Ψ(x , t)− ΓΨ∗(x , t))

Where are Majorana fermions in Nature?
1 Not in Q.E.D.! Since interaction of fermions with photon is not diagonal in the

separation between real and imaginary parts Φ1 and Φ2

⇓
If you split Ψ it remixes!

2 In superconductors? The electromagnetic field is screened

⇓
Bogoliubov quasi-electron behave like neutral particles. But beware of spin!
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Majorana fermions in superconductors

In s-wave superconductor quasi electron operator is(
Ψ↑(x)
Ψ∗↓(x)

)
ΓΨ∗ ≡

(
0 1
1 0

)(
Ψ↑(x)
Ψ∗↓(x)

)∗
=

(
Ψ↓(x)
Ψ∗↑(x)

)
spin up-down

is not Majorana condition since it entails
conjugation and spin-flip!

We need to consider a superconductor where the condensate has Cooper pair with the
same spin so that quasi-electron is(

Ψ↑(x)
Ψ∗↑(x)

)
ΓΨ∗ ≡

(
0 1
1 0

)(
Ψ↑(x)
Ψ∗↑(x)

)∗
=

(
Ψ∗↑(x)
Ψ↑(x)

) spin up-up

is Majorana condition since no spin-flip.

Thus candidates are p-wave superconductors such as Strontium Ruthenate.
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Zero energy states

Second quantization such that:

H0Ψ0 = 0 Ψ0 ≡ zero mode

for complex fermion:

Ψ(x , t) = ψ0(x)α +
∑
E>0

ψE e−iWt/~aE +
∑
E<0

ψE e−iWt/~b−E

{
α, α†

}
= 1 , {α, aE} = {α,b−E} = · · · = 0

Existence of a zero mode leads to degeneracy of fermion spectrum

aE |0〉 = b−E |0〉 = 0

but now it must carry a representation of algebra
{
α, α†

}
= 1
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Zero energy states

The minimal representation is 2-dimensional (| ↑〉, | ↓〉)

aE | ↑〉 = aE | ↓〉 = 0 = bE | ↑〉 = bE | ↓〉

α†| ↓〉 = | ↑〉 α†| ↑〉 = 0
α| ↓〉 = 0 α| ↑〉 = | ↓〉 (Jackiw-Rebbi)

Two tower of excited states
a†E1

. . . a†Em
b†E1

. . .b†Em
| ↑〉

a†E1
. . . a†Em

b†E1
. . .b†Em

| ↓〉
having the same energy

∑
i Ei

For complex fermion one has states with fractional fermion number (θ = eN ⇒ fractional
charge).
In fact: Q =

∫
dx 1

2 [Ψ∗(x , t),Ψ(x , t)] =
∑

E>0

(
a†E aE − b†−E b−E

)
+ α†α− 1

2

has fractional eigenvalues

Q| ↑〉 = 1
2 | ↑〉 Q| ↓〉 = − 1

2 | ↓〉

P. Sodano Teleportation, Majorana zero modes and long distance entanglement



Idea and Question
Degeneracy, tunneling . . .

Conventional second quantization
An explicit model with emergent Majorana fermions

Concluding remarks

Zero energy states

The minimal representation is 2-dimensional (| ↑〉, | ↓〉)

aE | ↑〉 = aE | ↓〉 = 0 = bE | ↑〉 = bE | ↓〉

α†| ↓〉 = | ↑〉 α†| ↑〉 = 0
α| ↓〉 = 0 α| ↑〉 = | ↓〉 (Jackiw-Rebbi)

Two tower of excited states
a†E1

. . . a†Em
b†E1

. . .b†Em
| ↑〉

a†E1
. . . a†Em

b†E1
. . .b†Em

| ↓〉
having the same energy

∑
i Ei

For complex fermion one has states with fractional fermion number (θ = eN ⇒ fractional
charge).
In fact: Q =

∫
dx 1

2 [Ψ∗(x , t),Ψ(x , t)] =
∑

E>0

(
a†E aE − b†−E b−E

)
+ α†α− 1

2

has fractional eigenvalues

Q| ↑〉 = 1
2 | ↑〉 Q| ↓〉 = − 1

2 | ↓〉

P. Sodano Teleportation, Majorana zero modes and long distance entanglement



Idea and Question
Degeneracy, tunneling . . .

Conventional second quantization
An explicit model with emergent Majorana fermions

Concluding remarks

Majorana fermion with a zero mode

No fractional charge since field is real!

Φ(x , t) = ψ0(x)α +
∑
E>0

ψE (x)e−iEt/~aE +
∑
E<0

ψE (x)e−iEt/~a†−E

Zero mode operator real⇔ α = α†{
aE , a†E′

}
= δEE′

α2 = 1
2 ; {α, aE′} =

{
α, a†E

}
= 0

A minimal representation can be constructed by: a|0〉 = 0 ∀E > 0
with α = 1√

2
(−1)

∑
E>0 a†E aE (Klein operator) ⇒ α = α† and, since

∑
E>0 a†E aE |0〉 = 0

α|0〉 = 1√
2
|0〉

A basis for Hilbert space: |0〉, a†E1
. . . a†Ek

|0〉 . . . and all are eigenvalue of
∑

E>0 a†E aE

with integer eigenvalue. In this basis α2 = 1
2 and thus

{
α, α†

}
= 1 is satisfied!
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Majorana fermion with a zero mode

Another inequivalent representation can be obtained starting with

α̃ = − 1√
2

(−1)
∑

E>0 a†E aE

⇓

two minimal representations leading to states which are orthogonal to each other and
without an automorphism relating them.

BUT

FERMION PARITY, i.e. symmetry of the fermion theory under Φ(x , t)→ −Φ(x , t), is
broken by these minimal representations. (rotation by 2π!!)
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Concluding remarks

Majorana fermion with a zero mode

At the quantum level fermion parity leads to conservation for the number of fermions
modulo 2, i.e. any physical process leads to creation or destruction of an EVEN
number of fermions

∃(−1)F : (−1)F Φ(x , t) + Φ(x , t)(−1)F = 0
(−1)F H = H(−1)F

In both representations
〈0|Φ|0〉 = 1√

2
Ψ0

〈0|Φ|0〉 = − 1√
2

Ψ0
⇒ fermion parity broken!
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Reducible representation

To restore fermion parity symmetry introduce β:{
β, β†

}
= 1 , β2 =

1
2

{β, α} = {β, aE} =
{
β, a†E

}
= 0

Then the algebra of α and β would have a two dimensional representation which can
be represented in terms of fermionic oscillators as

a =
1√
2

(α + iβ) , a† =
1√
2

(α− iβ)

⇓

α =
1√
2

(a + a†) , β =
1√
2i

(a− a†) a2 = 0 , a†
2
,
{

a, a†
}

= 1

a|−〉 = 0 a†|−〉 = |+〉
a|+〉 = |−〉 a†|+〉 = 0

Both |−〉 and |+〉 are eigenvalues of (−1)F and parity restored.

Fermion parity symmetry⇐⇒ hidden variable β!!

P. Sodano Teleportation, Majorana zero modes and long distance entanglement



Idea and Question
Degeneracy, tunneling . . .

Conventional second quantization
An explicit model with emergent Majorana fermions

Concluding remarks

Reducible representation

To restore fermion parity symmetry introduce β:{
β, β†

}
= 1 , β2 =

1
2

{β, α} = {β, aE} =
{
β, a†E

}
= 0

Then the algebra of α and β would have a two dimensional representation which can
be represented in terms of fermionic oscillators as

a =
1√
2

(α + iβ) , a† =
1√
2

(α− iβ)

⇓

α =
1√
2

(a + a†) , β =
1√
2i

(a− a†) a2 = 0 , a†
2
,
{

a, a†
}

= 1

a|−〉 = 0 a†|−〉 = |+〉
a|+〉 = |−〉 a†|+〉 = 0

Both |−〉 and |+〉 are eigenvalues of (−1)F and parity restored.

Fermion parity symmetry⇐⇒ hidden variable β!!

P. Sodano Teleportation, Majorana zero modes and long distance entanglement



Idea and Question
Degeneracy, tunneling . . .

Conventional second quantization
An explicit model with emergent Majorana fermions

Concluding remarks

The model

Quantum wire in p-wave superconductor

H =
L∑

n=1

(
t
2

a†n+1an +
t∗

2
a†nan+1 +

∆

2
a†n+1a†n +

∆∗

2
anan+1 + µa†nan

)
sites of wire 1 . . . n

an, a†n: operators creating electrons on sites n

t : hopping electrons

∆, ∆∗ arise from the presence of superconducting environment and describe the
amplitude for a pair of electron to leave or enter the wire from the environment
(assumption about size and coherence of Cooper pairs . . . )

µ chemical potential, i.e. energy of an electron sitting at site n
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The model

We assume:
|t | > ∆ hopping on the wire favored respect to hopping from (to) the bulk
|µ| < |t | electron bond has substantial filling

i~ȧn = [an,H]

i~ d
dt

an =
t
2

(an+1 + an−1)− ∆

2

(
a†n+1 − a†n−1

)
+ µan n = 2 . . . L− 1

n = 1, n = L boundary (open boundary condition)

a0(t) = 0 , aL+1(t) = 0

extend chain by one site and impose Dirichlet boundary condition

ψ+
n = φn

(
0
1

)
− φL+1−n

(
i
0

)
ψ−n = φn

(
0
1

)
+ φL+1−n

(
i
0

)
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φn = i

√
∆

2t
t2 − µ2

t2 −∆2 − µ2


(
−µ+ i

√
t2 −∆2 − µ2

)n
−
(
−µ− i

√
µ
)n

(t + ∆)n


φn = φ∗n

∑
n

|φ|2 =
1
2

ψ−n = ψ+
n
∗ ∑

n

ψ±n Ψ±n = 1

They have support near n = 1 and n = L and are exponentially small inside the wire.
They are complex Majorana fermion

Ψn(t) = ψ+
n e−iωa + ψ−n eiωa† + . . .
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They are complex Majorana fermion

Ψn(t) = ψ+
n e−iωa + ψ−n eiωa† + . . .

ψn(t) = φn

(
0
1

)(
a + a†

)
︸ ︷︷ ︸

support near 0

+φL+1−n

(
0
1

)
1
i

(
a− a†

)
︸ ︷︷ ︸

support near L

+ . . .

α =
1√
2

(
a + a†

)
β =

1√
2i

(
a− a†

) {
a, a†

}
= 1

a|−〉 = 0 a†|−〉 = |+〉
a|+〉 = |−〉 a†|+〉 = 0

|−〉 and |+〉 eigenvalues of (−1)F .
Imagine at t = 0 the system being in |−〉 and inject electron so that at t = 0 is sitting at
site #1.
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a†1|0〉? What is the transition amplitude for the transition of this state - after time T is
elapsed- to a stat in which the electron is at site L? Final state: a†L|−〉

A = 〈−|aLeiHta†1|−〉 = |Φ0
1|2︸ ︷︷ ︸

unusual zero mode contribution,
“exotic entanglement′′

+ (T − L dependent terms)︸ ︷︷ ︸
usual via excited

quasi − electrons in thecore

AEE =

(
2∆

t

)(
t2 −∆2 − µ2

(t + ∆)2

)
⇒ P =

∑
n

|φn|2|φ0|2 =
1
2

AEE
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What we do now?
Once the quantum wire p-wave superconductor is prepared, the extended Majorana
state of the electron is there, ready to use. The system has 2-degeneracy |+〉, |−〉.
Each preserves fermion parity

α|+〉+ β|−〉 not allowed! ⇒ |+〉 and |−〉 classical bit
⇒ |+〉 ≡ |ON〉 , |−〉 ≡ |OFF 〉
~e + |ON〉 = |OFF 〉
|OFF 〉+ ~e = |ON〉
If one would allow superposition

|ϑ, ϕ〉 = cos
ϑ

2
|−〉+ eiϕ sin

ϑ

2
|+〉

⇓
relative sign of the combination should not be observed

ϕ ∼ ϕ+ π
half a block sphere
peculiar q-bit
proximity effect |ON,ON〉 |OFF ,OFF 〉

|ON,OFF 〉 |OFF ,ON〉
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