LISA Pathfinder and LISA

S. Vitale, University of Trento/INFN Trento <u>Vitale@science.unitn.it</u>

·)14 (5)

LISA essentials ¹^P the smart orbits

UNIVERSITÀ DECLI STUBI DI TRENTO

LTP

- Measurements on detected sources:
 Δθ ~ 1° 1°
 - $\Delta(\text{mass}, \text{distance}) \le 1\%$

Firenze 28 09 2006

S. Vitale

Power loss due to beam divergence makes interferometry by reflection impossible

Firenze 28 09 2006

S. Vitale

The GW from difference of phase in adjacent arms

The standard GW interferometer

Laser phase noise common to both arms: GW signal from difference: laser noise is suppressed

LISA unequal arms confuse phases

 10^{5} km

Need to recombine light emitted at equal times Needs knowledge of armlength with ± 20 m

The drag-free key elements: 1 the displacement

sensor

The drag-free key elements: 1 the displacement

sensor

The drag-free key elements: the displacement

sensor

Firenze 28 09 2006

1 nm/\/Hz resolution

4 mm gaps and 0.3 Volt bias

In-FEEP Cluster after 1500h of continuous operation (3500h for Thruster 1) itale

Figure 7.3: The FEEP Cluster

UNIVERSITÀ DEGLI STUDI El TRENTO

EADS

0 • 0

Firenze 28 09 2006

S. Vitale

Compact Objects Orbiting Massive Black Holes, high-precision probes of strong-field gravity

Formation of Massive Black Holes, cores of active galactic nuclei, formed before most stars

Fluctuations from Early Universe, before recombination formed 3° background

The star in our Galaxy (White Dwarfs, Neutron Stars) Very bright signal

List of known sources (verification binaries)

class	source	dist (pc)	$f=2/P_b$ (mHz)	M₁ M⊙	M₂ M₀	h	SNR (1 Year)
WD+WD	WD 0957-666	100	0.38	0.37	0.32	4.00E-22	4.1
	WD1101+364	100	0.16	0.31	0.36	2.00E-22	0.4
	WD 1704+481	100	0.16	0.39	0.56	4.00E-22	0.7
	WD2331+290	100	0.14	0.39	>0.32	2.00E-22	0.3
WD+sdB	KPD 0422+4521	100	0.26	0.51	0.53	6.00E-22	2.9
	KPD 1930 +2752	100	0.24	0.5	0.97	1.00E-21	4.1
AM CVn	RXJ0806.3+1527	300	6.2	0.4	0.12	4.00E-22	173.2
	RXJ1914+245	100	3.5	0.6	0.07	6.00E-22	195.0
	KUV05184-0939	1000	3.2	0.7	0.092	9.00E-23	27.3
	AM CV n	100	1.94	0.5	0.033	2.00E-22	35.6
	HP Lib	100	1.79	0.6	0.03	2.00E-22	32.0
	CR Boo	100	1.36	0.6	0.02	1.00E-22	10.6
	V803 Cen	100	1.24	0.6	0.02	1.00E-22	9.2
	CP Eri	200	1.16	0.6	0.02	4.00E-23	3.3
	GP Com	200	0.72	0.5	0.02	3.00E-23	1.1
LMXB	4U1820-30	8100	3	1.4	< 0.1	2.00E-23	5.7
	4U1626-67	<8000	0.79	1.4	< 0.03	6.00E-24	0.2
W UM a	CC Com	90	0.105	0.7	0.7	6.00E-22	0.5

Galactic WD binaries

- LISA is expected to provide the largest observational sample of white dwarfs (WDs)
 - Very large number in frequency space

$$\frac{dN}{df} = 2 \times 10^8 \, Hz^{-1} \left(\frac{0.001 \, Hz}{f}\right)^{11/3}$$

- WDs are detected as
 - Individual deterministic signals (primarily for f > 3 mHz)
 - Astrophysical foreground (for f < 3 mHz large number of sources per frequency bin)

Galactic WD (/NS) binaries

Firenze 28 09 2006

S. Vi

LTP SMBH Binary formation

Galaxies NGC 2207 and IC 2163

So bright to be visible Secure and Declistue "everywhere" in the Universe

Angular resolution up to 1'

Although the mass of the system must decrease because of radiative losses,

$$M_i = M_1 + M_2 > M_f$$
,

the area of all event horizons in the system must *increase* during the coalescence:

$$A_i = A_1 + A_2 < A_f$$
. (18)

A recent result in numerical relativity:

LTP Signal from EMRIs

le

⇒ Like a Geodesy satellite mapping Geopotential! ⇒ GRACE for Black Holes!

Do Black Holes really have no hair?

37

O run ----

M_{\bullet}	m	LISA		Short LISA	
		Optimistic	Pessimistic	Optimistic	Pessimistic
300 000	0.6	8	0.7	14	1
300 000	10	739	89	902	115
300 000	100	1*	1*	1*	1*
1000000	0.6	94	9	80	7
1000000	10	1000*	800	1000*	502
1000000	100	1*	1*	1*	1*
3 000 000	0.6	67	2	11	0.3
3 000 000	10	1700^{*}	134	816	25
3 000 000	100	2^{*}	1*	2^{*}	1

Cutler, Phinney et al.

TABLE X: Columns 3-6 give the number of EMRI events LISA can see for merger of body of mass. Columns 3-4 are for the normal 5×10^6 km baseline. Columns 5-6 are for a 1.6×10^6 km baseline. *Optimistic* uses all 3 TDI variables for 5 years, with ideal white dwarf background removal. *Pessimistic* uses only a single pair of arms for 3 years, with current gCLEAN white dwarf removal. m (column 2) into supermassive black hole of mass M_{\bullet} (column 1). Entries marked with a * are z < 1 lower limits computed from equation 43, since LISA can detect all sources out to $z \gg 1$, and evolution is unknown. All other entries computed from the Euclidean equation 42, since LISA cannot see the sources to cosmological distances.

Firenze 28 09 2006

LTP Is LISA feasible?

UNIVERSITÀ DECLI STUBI EL TRENTO

Firenze 28 09 2006

Free falling particles mark TT coordinates

where the second second

Achieving free motion in the horizontal plane (0 g)

Firenze 28 09 2006

Hollow proof-mass for torsion pendulum testing

Firenze 28 09 2006

UNIVERSITÀ DECLI STUDI

LTP

1. States

UNIVERSITÀ DECLI STUDI EI TRENTO

Converted into acceleration for LISA

Tilt and temperature subtracted

Read-out noise

LTP

Thermal noise form measured parameters

LISA requirements

The measured excess

Upper limit form fit and uncertainties

Galactic binaries signals

LTP

Testing specific disturbances. One example: temperature gradients

UNIVERSITÀ DECLI STUDI

 $N_{radiom} \propto P_{out}$ $N_{\it outgas}$ outgas $N_{rad\ press} \propto T_s^3 \Delta T_{eff}$

tale

ECLI STUBI

64

4-TM pendulum

10⁻¹⁰

The LTP Concept Shrink one LISA arm to 38 cm And fit it into one Spacecraft Goal: 3×10⁻¹⁴/√Hz f > 1mHz

Figure 2-1 LISA Electrode housing exploded view

LTP

-

76

S. Vitale

Fine alignment jig

UNIVERSITÀ DECLI STUDI

UNIVERSITÀ DECLI STUBI DI TRENTO

200

LTP lab in operation

CMM operation – metrology with 2.5 µm precision over 20 cm distances

Class 1000 cleanroom with large ultraclean laminar flow cabinet for bonding operations

Figure 3 TM-006 ground-polished bonded to TS-018 in the strength testing pulling machine

Laserhead Nd:YAG 1064nm

Pumpmodule bragg-stabilized 808nm with redundant bench

UNIVERSITÀ DECLI STUDI

all optical units in direct thermal contact with RLU housing

Fire.....

Multiple burns raise apogee to 1.3 million km

Experiment Main Goals

1. Demonstrate that total acceleration noise in realistic conditions is not larger than goals

LISA Technology Package

Source	Name	Formula	Value [m s ^{-3/2}]
Correlated readout noise	f _{corr}	$f_{corr} = \sqrt{2} \sqrt{f_{trip}^2 + f_{ampip}^2 + f_{act100}^2}$	6.36×10 ⁻¹⁸
Uncorrelated readout noise	f _{unc}	$f_{unc} = \sqrt{2} \sqrt{f_{act0}^2 + f_{actth}^2}$	8.81×10 ⁻¹⁸
Thermal effects	f _{thermal}	$f_{\text{thermal}} = 2 \left(f_{\text{rad}} + f_{\text{radpr}} + f_{\text{og}} + f_{\text{th}} + f_{\text{gravIS}} \right)$	4.97×10^{-15}
Brownian Noise	f _{Brownian}	$f_{Brownian} = \sqrt{2} \sqrt{f_{diel}^2 + f_{gas}^2 + f_{magdmp}^2 + f_{magimp}^2}$	9.36×10 ⁻¹⁶
Magnetics S/C	f _{magnSC}	$f_{magnSC} = \sqrt{2} (f_B + f_{\Delta B} + f_{Bac})$	8.9×10 ⁻¹⁵
Magnetics Interplanetary	f _{magnIP}	$f_{magnIP} = \sqrt{2} (f_{Bi} + f_{Lz})$	3.25×10^{-16}
Charging and voltage	f _{charge}	$f_{charge} = \sqrt{2} \sqrt{f_q^2 + f_{vs}^2}$	3.61×10^{-15}
Miscellanea	f _{misc}	$f_{\text{misc}} = 2 \sqrt{f_{\text{VAC}}^2 + f_{\text{laser}}^2 + f_{\text{grav}}^2}$	6.04×10 ⁻¹⁵
Cross – talk	f _{cross – talk}	f _{cross – talk}	1.01×10^{-14}
Readout noise	f _{readout}	$f_{readout} = \sqrt{f_{corr}^2 + f_{unc}^2}$	1.09×10^{-17}
Drag – free	f _{dragfree}	$f_{dragfree} = Abs[\Delta \omega_x^2] x_{tot}$	1.57×10^{-15}
Total	f _{total}	$ \begin{aligned} \mathbf{f}_{\text{total}} &= \\ & \sqrt{\left(\mathbf{f}_{\text{dragfree}}^2 + \mathbf{f}_{\text{corr}}^2 + \mathbf{f}_{\text{unc}}^2 + \mathbf{f}_{\text{readout}}^2 + \mathbf{f}_{\text{thermal}}^2 + \mathbf{f}_{\text{Brownian}}^2 + \\ & \mathbf{f}_{\text{cross-talk}}^2 + \mathbf{f}_{\text{magnSC}}^2 + \mathbf{f}_{\text{magnIP}}^2 + \mathbf{f}_{\text{charge}}^2 + \mathbf{f}_{\text{misc}}^2 \right) \end{aligned} $	1.61×10 ⁻¹⁴
Measurement noise	f _{meas}	$f_{\text{meas}} = \sqrt{f_{\text{act}}^2 + f_{\text{bl}}^2 + f_{\text{OM}}^2}$	5.06×10^{-15}
Grand Total	fgtotal	$f_{gtotal} = \sqrt{f_{total}^2 + f_{meas}^2}$	1.68×10^{-14}

Testing quality of free fall

The plan:

LISA PF: In flight demonstration of reference frames 2009

LISA PF +6 years: LISA

LISA + 1 year: enjoy listening to black-holes

