

Recent Advances in Optical Frequency Standards & Precision Measurements

Patrick Gill

Geoff Barwood, Hugh Klein, Kazu Hosaka, Guilong Huang, Stephen Lea, Helen Margolis, Krzysztof Szymaniec, Stephen Webster, Adrian Stannard & Barney Walton

National Physical Laboratory, UK

Advances in Precision Tests & Experimental Gravitatition in Space Galileo Galilei Institute, Arcetri, Firenze 28th Sept 2006

- Introduction to optical frequency standards
- Different approaches
- Recent trapped ion advances
- Cold atom lattice clocks
- Opportunities, problems
- Summary & future

The optical advantage **Frequency Instability:** • Frequency ~ 10⁵ times higher **10**⁻¹² Linewidth determined by interrogation time (limited **10**⁻¹³ either by natural decay or Allan Deviation **10**⁻¹⁴ Cs fountain (9.2 GHz) probe interaction time) **10**⁻¹⁵ \rightarrow better stability in optical Sr⁺ ion (445 **10**⁻¹⁶ **10**⁻¹⁷ Yb⁺ ion (642 THz) Month Hour Day V : Frequency of clock transition **10**⁻¹⁸ 10³ 10[°] **10**¹ **10**⁻¹ 10^{2} 10^{4} **10**⁵ 10⁶ 10^{7} N: Number of atoms / ions τ [sec] $T_{\rm int}$: Ramsey interrogation time Assuming: Cs fountain: T_{int} = 1 sec : Sampling time τ Sr⁺ ion: T_{int} = 0.4 sec NPLO Yb⁺ ion: $T_{int} = 10$ sec

Improvements in optical frequency standards

optical systems:

trapped ions: ¹⁹⁹Hg⁺, ⁸⁸Sr⁺, ¹⁷¹Yb⁺, ²⁶Al⁺, In⁺ Ca⁺

cold atoms: Ca, Mg,

 \rightarrow Sr, Yb, Hg

Opportunities (better than Cs) Limitations (no better than Cs value)

Femto-second Comb comparison

L-S Ma et al, Science 2004

Uncertainty between combs locked to the same optical reference:

Trapped ion optical frequency standards

Trapped ion optical clock candidates

Trapped ion optical clock natural linewidths & frequency uncertainties						
Ion	λ	Transition	Theory	Expt	Freq uncer	rt. Laboratory
¹⁹⁹ Hg ⁺	282 nm	${}^{2}S_{1/2} - {}^{2}D_{5/2}$	1.7 Hz	7 Hz	0.9 Hz	NIST
⁸⁸ Sr ⁺	674 nm	${}^{2}S_{1/2} - {}^{2}D_{5/2}$	0.4 Hz	9 Hz, 5Hz	1.7 Hz	NPL, NRC
¹⁷¹ Yb ⁺	435 nm	${}^{2}S_{1/2} - {}^{2}D_{3/2}$	3 Hz	10 Hz	2.1 Hz	PTB
⁴⁰ Ca ⁺	729 nm	${}^{2}S_{1/2} - {}^{2}D_{5/2}$	0.14 Hz	1 kHz	-	UIBK, CRL
115 In +	236 nm	${}^{1}S_{0} - {}^{3}P_{0}$	1 Hz	170 Hz	230 Hz	MPQ/Erlangen
¹⁷¹ Yb ⁺	467 nm	${}^{2}S_{1/2} - {}^{2}F_{5/2}$	0.5 nHz	180 Hz	600 Hz	NPL
²⁷ Al ⁺	266 nm	${}^{1}S_{0} - {}^{3}P_{0}$	8 mHz	20 Hz	-	NIST

¹⁹⁹Hg⁺ 282 nm quadrupole transition (Bergquist et al, NIST)

- Atomic line ~ 1.8 Hz
- $Q \approx 5 \times 10^{14}$
- State detection by electron shelving
- Small blackbody shift
- static quadrupole shift can be minimized

Al⁺/Hg⁺ Comparison courtesy J C Bergquist

¹⁹⁹Hg⁺ clock transition uncertainty budget

Effect	Parameter	Hg+ shift <i>[x 10⁻¹⁷]</i>	Hg⁺ Uncert [x 10 ⁻¹⁷]	
Blackbody shift	Operating temperature	negligible	Negligible	Total meas
Micromotion 2 nd order Doppler	RF field	-0.3	0.3	uncertainty
Micromotion AC Stark	RF field	0.3	0.3	0.91 × 10-13
Secular 2 nd order Doppler	Secular temperature	-0.3	0.3	
2 nd order Zeeman	magnetic field	-120.3	0.1	
AC Zeeman	RMS field	0	3.0]
AOM phase chirp	Drive power	0	0.03	
Background gas collisions	Collision period	0	0.4	
Total		-120.6	3.0	

⁸⁸Sr⁺ 674 nm cold ion clock transition linewidth 0.16 • $m_{J} = 1/2 \rightarrow m'_{J} = 1/2$ ransition probability Fitted $\tau = 107(5)$ ms Zeeman component 0.12 corresponds to • Probe pulse length: 100ms 8.3 Hz linewidth • Frequency step width: 2 Hz 0.08 • 0.2 Hz s⁻¹ drift compensated 4 separate scans combined 0.04 0.00 -100 -50 100 150 -150 50 0 Frequency (Hz)

Consistent with Fourier-transform-limited linewidth of 9 Hz.

Nulling the ⁸⁸Sr⁺ electric quadrupole shift: & absolute freq measurement

Due to interaction between electric quadrupole moment of 4d ²D_{5/2} state and residual electric field gradient at position of ion

Frequency shift of 4d ${}^{2}D_{5/2}$ state with magnetic quantum number m_{i} is:

*f*_{Sr+} = 444 779 044 095 484.6 (1.5) Hz

Margolis *et al.*, *Science* **306**, 1355 (2004)

Projections for ⁸⁸Sr⁺ systematic frequency shifts

Second order Doppler shifts:

due to residual thermal motion ($\omega/2\pi \sim 1-2$ MHz) and micromotion ($\Omega/2\pi \sim 15$ MHz)

- $\Delta v_{T} \sim (\omega x_{a}/2c)^{2} \rightarrow 10^{-18}$ for T ~ 1 mK
- $\Delta v_{M} \sim (\Omega x_{a}/2c)^{2} \rightarrow 10^{-18}$ for micromotion well-minimised in 3D

Zeeman Shifts:

- Linear Zeeman $\Delta v_z \sim \pm 5.6 \text{ Hz nT}^{-1}$ for $\Delta m = 0$ components need symmetrical component averaging and mu-metal shielding for typical 1 μ T field and few nT noise
- Quadratic Zeeman $\Delta v_z \sim 5.6 \,\mu\text{Hz} \,\mu\text{T}^{-2}$ (for $\Delta m = 0$) $\rightarrow 6 \,\mu\text{Hz}$
- Blackbody shift $\Delta v_{BBz} \sim 40 \ \mu Hz$ for BB room temp field of 7 μT^2

NPL

Projections for Sr+ systematic frequency shifts II

Stark shifts:

- **Micromotion- and thermal-induced** interaction with time-averaged fields (eg patch fields) $\rightarrow \sim$ few mHz (10⁻¹⁷) with well-minimised micromotion
- Blackbody Stark shift (relative to 0 K) due to room temp apparatus $\rightarrow \sim 300 \text{ mHz} (6 \times 10^{-16})$

large due to T⁴ temp dependence, but essentially constant 1 K reproducibility of T(apparatus) \rightarrow 10 mHz (2 x 10⁻¹⁷)

also large uncertainty (+30 %) for Stark coefficients – need better values

AC Stark shifts: off-resonant interactions of probe (and other cooling / clear-out) light with coupled transitions out of upper & lower levels of clock transition 422 nm cooling & 1092 nm clear-out not a problem if fully switched off from ion during probe interrogation period
674 nm probe light Stark coefficient: ~ 0.5 mHz (Wm⁻²)
→ ~ 0.15 mHz (<10⁻¹⁸) for 30 nW in 300 µm

⁸⁸Sr⁺ 674 nm quadrupole optical clock:

- CCTF secondary representation of second (along with ¹⁹⁹Hg⁺, ¹⁷¹Yb⁺ quadrupole and ⁸⁷Sr)
- \cdot Extension of probe time \rightarrow 0.4 s natural lifetime with sub-Hz transform limited probe lasers
- Improve insensitivity to vibrations
- Cs-limited comb measurement of clock transition
- 2-trap comparisons for stability & systematics evaluation

Possibilities for a portable frequency standard
NPL I

- Quantum limited stability for probe times ~ 0.4 s natural decay \rightarrow 6 x 10⁻¹⁶ τ ^{-1/2}
- Feed-forward compensation of 0.2 Hz s⁻¹ (5x10⁻¹⁶ s⁻¹) ULE cavity drift
- Black-body Stark shift uncertainty for 1K temp rise \rightarrow 2 x 10⁻¹⁷
- Long single ion storage times possible

DFB now ECDL now, DFB?

NPL

Ground station clock (near → mid term) Space clock (Cosmic vision 2015-2025?)

Spectroscopy of ²⁷Al⁺

- 8 mHz linewidth clock transition
- minimal static quadrupole shift
- smallest known room temperature blackbody shift
- no accessible strong transition

D.J. Wineland *et. al.*, Proc. 6th Symp. on Freq Stds and Metrology, 2001.

Neutral Atom Optical Lattice Clock

mHz-wide ¹S₀ - ³P_{0,2} clock transitions available, much narrower than the ¹S₀ - ³P₁ intercombination transitions in Ca (370 Hz) and Mg (30 Hz) →Long interrogation times → better stability,

but how to hold the atoms?

Fountains or ballistic expansion not so good! Problems still remain with residual Doppler shifts, cold collisional shifts and < 1 sec interrogation times

Optical Lattice idea (Katori 2001)

- 3D off-resonant standing wave laser field \rightarrow Light-shift generated trapping sites with sub- λ spacing
- Long interaction times, many atoms
- 1st order Doppler effect eliminated (Lamb-Dicke regime)
- · Collisional shifts small if 1 atom per site
- How to deal with AC stark shift (light shift)

Neutral Atom Optical Lattice Clock (Sr or Yb or Hg or Ca)

- eg Sr ${}^{1}S_{0}-{}^{3}P_{0}$ has ~ 1 mHz natural linewidth
- Mott insulator transition from BEC to effect single atom only in each filled lattice site
- Light shift magnitude results from the difference in AC Stark shift caused by off-resonant lattice trapping beams on ¹S₀ and ³P₀ levels
- Minimise overall light shift by tuning to "magic λ " where 1S_0 and 3P_0 contributions cancel out

Cold Atom Optical Frequency Standard Candidates:

Cold atom optical clock linewidths (Δv) & uncertainties

Atom	λ nm	Transition	Δv (]	Hz)	Absol. Freq	Laboratory
			Theory	Expt	Uncert. (Hz)	
Mg	457 nm	${}^{1}S_{0} - {}^{3}P_{1}$	30			Hannover
Ca	657 nm	${}^{1}S_{0} - {}^{3}P_{1}$	370	700	5-8 Hz	PTB, NIST
Sr	698 nm	${}^{1}S_{0} - {}^{3}P_{0}$	0.001	2	5 Hz◀	JILA, Tokyo, SYRTE,
						PTB Firenze
Yb	551 nm	${}^{1}S_{0} - {}^{3}P_{0}$		20		NIST KRISS Duesseldorf

Secondary representations of the second: CCTF 2006 Recommendations

System	Studied at	Value / Hz	Relative uncertainty
¹⁹⁹ Hg+	NIST	1 064 721 609 899 145	3 x 10 ⁻¹⁵
⁸⁸ Sr+	NPL, NRC	444 779 044 095 484	7 x 10 ⁻¹⁵
¹⁷¹ Yb+	РТВ	688 358 979 309 308	9 x 10 ⁻¹⁵
⁸⁷ Sr	NMIJ / Toyko, JILA, LNE-SYRTE, PTB, Firenze, (NPL, NRC)	429 228 004 229 877	1.5 x 10 ⁻¹⁴ *

* included:	429 228 004 229 875 (4) Hz	Tokyo
	429 228 004 229 879 (5.3) Hz	SYRTE
	429 228 004 229 876 (4.5) Hz	JILA

Ser .

Comparisons of optical standards for fine structure constant variation with time

- Best trapped ion results are reaching into 10⁻¹⁷ region for stability and uncertainty, & can go further
- Neutral atom lattice clocks catching up fast
- Environmental field perturbations probably likely to make life difficult below 10⁻¹⁸
- Gravitational red shift most significant in this respect for comparing remote standards
 → 10⁻¹⁷ corresponds to 10 cm height difference
 → geoid fluctuations may drive this

So how do we compare high accuracy remote frequency standards?

- Improved microwave links? (eg ACES MWL?), but still need long averaging times for better than 10⁻¹⁶
- Optical fibre dissemination
 - Good results between SYRTE-LPL link with 10⁻¹⁷ resn Similar with NIST & JILA, offering local linkage for Cs, Hg+, Al+, Sr and Yb Desirability of access to European dark fibre routes
- Portable optical standards? 10⁻¹⁵ probably Ok, but how big an investment to go beyond this level?
- Inter-satellite optical links?

Thank you!